Modal analysis of a vehicle cabin model having high decoupling tendency

다종의 가진방법을 이용한 비연성 경향을 가진 차실모형의 모우드 해석

  • Published : 1992.02.01

Abstract

Interior noise in a car is known to have an important influence on product acceptability. This noise is closely correlated with structural-acoustic vibration. When considering noise problem, the structural-acoustic relation of a vehicle cabin model needs to be identified. However, it is very difficult to get the modal parameters of this kind of cabin structure composed of thin plates: because it not only can be excited by the acoustic vibration of cavity, but also tends to have decoupling effects of one plate from another. In order to obtain modal parameters more precisely, various excitation techniques, i.e. impact, pure random, burst random, and swept sine testing are applied for the first step. In the case of the cabin model, impact and swept sine testing show good results. Next, the determination of the excitation point by trial- and-error and the accurate measurements of FRF's are performed with these methods. The modal parameter extraction is carried out for the final step. This paper proposes a new approach to find the modal parameters more reliably in the case of high decoupling effects. That is, the convergence of MIF and MCF in each panel, which provide some criteria for the validity of the obtained modal parameters, is observed. And from those results, the pretty accurate modal parameters can be determined. A comparative assessment between the modal testing and the FEM is also performed.

Keywords