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Some comments are necessary, however, on
their theoretical approach. When any kind of the
fibers are added to the reinforced concrete, the
matrix is still the cement paste. Both fibers and
rebars are reinforcements, and the aggregates are
fillers, This concept is very important to visualize
the micromechanics correctly. Whether the fibers
are added or not, the interface bond stress be-
tween the concrete mix and the rebar is exactly
that of between the cured cement paste and the
rebar. Thus far, there is no fiber which can im-
prove such stress(strength) between cement
matrix and steel bars. When the fibers are added,
the interface bond between the fibers and the
cured cement paste plays vital role. The “appar-
ent”(over-all) bond stress has more than one
component. When the rebar is pulled, the “pure”
bond between the cured cement paste and the bar
is transmitted to the concrete by means of shear,
If the bar is deformed, larger amount of shear
will be transferred contributing to increased
“over-all” bond strength even though this
increased shear is not from “pure” bond. Then,
the fiber starts to work. It inhibits the crack for-
mation and propagation of the cracks after they
are formed, contributing to added “over-all” bond
stress. In theory, the surface of the fiber can be

modified to control toughness(the ability to
absorve the energy) and ductility, by means of
controlling the bond stress between the fiber and
the cement matrix. To conclude, the addition of
fibers to the concrete will inprove the capability
Detailed

micromechanism is necessary for the develop-

of the joints. modeling of

ment of correct theory.
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Discussion No. 4-D.H.Kim, Korea:

I didn’'t know when I should speak, because
might say something other than this theme. Even
though I have designed a few hundred structrues,
both  buldings
structures, I think I am a kind of outsider for this

and bridges, and military
concrete subject because, recently, I have been
working on composite materials which are used
mostly by aerospace people. But, just now, I
heard two gentlemen say, and I thought I should
give my opinion here. Sometimes the outsider’s
opinions are important for the recommendations

purposes.

First of all, to me, concrete is a composite
made up of both particulates and fibers. By fiber,
including steel bars, I mean the length-to diam-
eter aspect ratio of infinity, not only short ones,

When we analyze the composites in general, we
and both

roational and linear,

do use the generalized coordinates.
forces and displacements,
which means all six components for each. So, to
me, analysis and design should always be in three
dimensions, This means that the moment and the
shear must be considered at the same time, so
that analysis becomes much simpler.

Another thing is the word “ductility” of con-
crete which is quite new to us, There is, in con-
crete shear walls, a behavior which we may call
“ductility”. Whatever matrix is used, a polymer,
ceramic, metal or cement composite, when acted
on by impact or vibration, micro-cracking starts
and propagates. This micro-cracking absorbs the
dynamic force. If the force is not completely ab-
sorbed by the crackings, then, there comes the
pull-out and eventually cutting-off of the fibers,
one after the other. These will absorb additional
energies. This means that this structure becomes
tough against the impact and cyclic loading.
Toughness means the capability to absorb en-
ergy. If you see from outside of the structure,
the external energy from earthquake is, at least
partially, dissipated. This mechanism of energy
absorption may be called “ductility”, and the con-
crete shear wall certainly has it. There are cer-
tain ways of formulating and characterizing this
kind of absorption and dissipation.

This ductility may be increased by proper de-
sign,

The first method is to use reinforcements with
as small diameters as practical and make the
bond between the reinforcements and the matrix
“flexible”.

are reinforced by “weak” fibers and the interface

“weaker” or Some ceramic composites

is made weaker on purpose to increase toughness.



Another method is to increase the toughness of
the matrix(cement mortar in this case) itself by
adding other matrices like some polymers. In or-
der to minimize the micro-cracking, we add some
material which increases the toughness or try to
alter the material properties. Toughness may be
increased at the sacrifice of strength. However,
the required strength can be obtained by adding
proper reinforcements,

As an example, the standard specification for
fiber reinforced thermosetting polymer pipes,
ASTM D2992-A /B, requires cyclic loading of at
least 150 million cycles and 100.000 hours of con-
tinuous loading, and if any single drop of water
leaks, this structure is supposed to have failed.
Any pipe which survives such test under certain
pressure is rated as this pressure grade. Because,
we believe, any structure, with whatever ductile
material we used, will have micor-cracking,
progressing to large cracking, we may apply the
similar method used for composite pipes to the
concrete walls. We solved such problem of pipes
by adding either water-stopping layers, or some
material to increase ductility, eventually increas-
ing the fatigue strength. As an example, when a
thermosetting polymer, such as epoxies,
polyesters, some other noble matrices, is used,
we add either some kind of thermoplastics or
elastomers to increase the ductility at the sacri-
fice of tensile strength. We must trade off sme
porperties to achieve our purposes. I think the
same thing can be done with reinforced concrete.

To summarize, we can increase the
ductility-which we often call toughness-of con-
crete walls by.

1) addition of short fibers. Fibers could be poly-

mer, carbon, or steel.

2) addition of additives, including polymers.

3) addition of long fibers, which have

length-to-diameter aspect ratio of infinity.

for the third concept, proper processing

method must be studied. However, this method
could be one of the schemes to have enhanced
toughness and ductility when the structure is ex-
posed to the dynamic forces, such as from earth-
quake.

In design and analysis, the reinforced concrete
may be treated as fibrous composites. Then we
may be able to establish the mechanisms of

1) Energy absorption by ductile matrix.

2) Fiber pull-out and cutting which will gradu-
ally absorb and dissipate the external force,
such as earthquake.

3) Bond between the matrix(concrete) and par-
ticulate(aggregate) which will contribute to
toughness.

There was a paper on alalyzing the concrete
wall with lamination theory. My opinion on this is
that

1) It is an advanced concept treating the panel
much closer to the reality.

2) It could be much better if the
bending-stretching coupling action and the
interlaminar stress concepts were disscussed.

action and the interlaminar stress concepts
were disscussed.

My final recommendation is that we pay some
attention to a kind of interdisciplinary cooper-

ation. This may improve our progress further.

Disscussion No. 5—D.H . Kim, Korea:

I would like to make some brief comments on
what discussed in this session.

First, any panel, whether it is wall or a slab, it
may be under in-plane shear, out-of-plane bending
and shear, and any kind of boundary forces and
displacements. So, instead of considering, we
may treat the panel as a three-dimensional prob-
lem. Instead of handling it by either “truss
model” or “arch model” which can yield only ap-

proximate in-plane stresses, we may approach the



problem by the laminate theory. Complete sol-
ution of the three-dimensional problem may be
possible by the use of laminate theoty.

The reinforcement(type, distribution, sizes,
and orientation) plays important role for the
panel strength. We may be able to design the op-
timum structure by utilizing laminate theory.

The problem of a panel with openings can be
solved. There are many theories available.

In fact, any two-dimensional problems, includ-
ing vibration and buckling problems, with any
boundary conditions, including mixed boundaries,
can be solved.

The problem is the panels in a building interact
with the frame. The panel, a wall or slab, is with
unknown boundary conditions which must be
given by the enclosing frame. These boundary
conditions of the walls or the slabs can be solved
only if we can solve the whole structure, includ-
ing the frames and panels which are interacting
together., We may have to stress to put more ef-
fort to develop the method of analyzing such
three-dimensional problems of whole structure,
Even if we get such solution, the boundary con-
dition of the panels will be a mixed one. Solving
panel problems, including in-plane shear and
out-of-plane bending, with boundary conditions of
displacements and forces mixed, may turn out to
be exciting to the engineers,
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