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FLUID-STRUCTURE INTERACTION ANALYSIS OF
LIQUID STORAGE STRUCTURES
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Abstract

In this paper, liquid sloshing effects in rectangular storage structures for spent fuel under earthquake
loadings are investigated. Eulerian and Lagrangian approaches are presented. The FEulerian approach is
carried out by solving the boundary value problem for the fluid motion. In the Lagrangian approach,
the fluid as well as the storage structure is modelled by the finite element method. The fluid region
is discretized by using fluid elements. The (1X1)-reduced integration is carried out for constructing the
stiffness matrices of the fluid elements. Seismic analysis of the coupled system is carried out by the
response spectra method. The numerical results show that the fluid forces on the wall obtained by two
approaches are in good agreements. By including the effect of the wall flexibility, the hydrodynam1c
forces due to fluid motion can be increased very significantly.
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FLUID-STRUCTURE INTERACTION ANALYSIS OF LIQUID STORAGE STRUCTURES

1. INTRODUCTION

The safety of the spent fuel storage structures
is extremely important, because the failure of
the structures, containing cooling water and
spent fuel which are of high level in radioact-
ivity, may have disastrous consequences on lives
and environments. Seismic excitation is the most
important force to be considered in the design
of those structures. The objectives of this study
is to develop efficient methods for seismic
analysis of the structures. The study focuses
on the fluid-structure interactions including the
effect of the wall flexibility of the structures.

There are two types of approaches for the
solution of the coupled systems of the structure
and fluid. One is the Eulerian approach, in
which the fluid motion is formulated in terms
of velocity potential : see Housner(1957), Veletsos
(1974), Epstein(1976), Balendra(1982), Haroun
(1983 and 1984) and Yun(1986). The other is
the Lagrangian approach, in which the fluid
may be treated as a solid with zero shear
modulus :see Sundqvist(1983) and Chen(1990).
In this study, both Eulerian and Lagrangian
approaches are presented. The Eulerian approach
is carried out by solving the boundary value
problem for the fluid motion and applying
Navier-Stokes equation for the hydrodynamic
forces on the wall. In the Lagrangian approach,
the storage structure and the contained fluid
are modelled by the finite element method, utiliz
ing a general purpose structural analysis program
ADINA(1984). The fluid region is discretized
by using the fluid elements. The gravity effect
on the sloshing motion is represented by using
a series of equivalent vertical springs along the
free surface. The (1Xx1)-reduced integration is
carried out for constructing the stiffness matrices
of the fluid elements. Dynamic analysis of the

coupled system is carried out for the earthquake
loadings by the response spectra method.

The numerical results of several example cases
indicate that the fluid forces on the wall obta-
ined by two approaches are in good agreements.
It has been also found that the effect of the
flexibility of the wall is very important. By
including the effect, the base shear and base
moment of the structure can be increased very

significantly.

2. EULERIAN APPROACH

2.1 Modelling of rectangular storage structures

The storage structures are assumed to be
rigidly mounted onto the bases on the ground
and partially filled with fluid as shown in Figure
1. The behaviors of the structures during ear-
thquake are basically 3-dimensional. However,
for the computational simplicity, the 2-dimens-
ional structure as shown in Figure 2 is consid-
ered in this study. The walls of the structures
are modelled by using beam elements. The
equivalent bending rigidity of the wall is dete-
rmined in such a way that the fundamental
natural frequency of the 3-dimensional structure
may be maintained. In the actual analysis, only
a half of the fluid-structure system is considered,
because the motion of the system under horiz

Figure 1. Rectangular storage structure.
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Figure 2. 2-dimensional model of a rectangular storage
structure.

|
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ontal earthquake loading is anti-symmetric with
respect to the vertical plane at the center.

2.2 Velocity potential and hydrodynamic forces
For the irrotational flow of an incompressible
inviscid fluid, the velocity potential, ¢ (x,z;1),
satisfies the Laplace equation in the fluid region.

24 (x,z;,0)=0 in Q o))

Then, the fluid-wall boundary conditions can
be expressed as tollows :

¢ . (ELz)=Wz1) ¥4}
$.(x,0,0=0 3
¢ (0 HD=E (x;0) @
o §(x, H;1)=pgé (x;0)=0 5)

where &(x;1) is the elevation of the free surface
over the mean surface level ; W{(z;1) is the horiz
ontal displacement of the wall; ¢,, represents
24/a¢; P is the mass density of fluid;and g is
the gravitational acceleration.

The general solution for the Eq. (1), which
satisfies the boundary condition on the tank wall,
Eq. (2), can be expressed as,

# (x.2:0)=37 Ay(z:1) sin Apx+xWzr) (6)

where A,=(2n—1)x/(2L), and A4,(z;1) is the time

varying coefficient of the n-th term in the sine
series which is to be determined using the other
boundary conditions. The free surface elevation
can be also expressed in terms of the sine series

as,

e(x,-t)=g 7a(f) sin A,x @

where 7.(f) represents the generalized free sur-
face amplitude associated with sin A,x.
Substituting Egs. (6) and (7) into Egs. ),
(3). (4) and (5), one can obtain expressions for
An(z;1) in terms of Wz;) and 7.(f). The horiz
ontal displacement of the wall is represented
by using third order polynomial of z within each
beam element. Consequently, the deformation
of the whole wall section is represented by much
higher order terms. However, it is not practical
to use the same interpolation functions to des-
cribe the fluid boundary condition along the wall,
because the liquid motion is mostly associated
with the low frequency vibration modes. Hence,
an approximate shape which is a third order
polynomial function through the depth of the
contained fluid is used to obtain .4,(z;f) in this
study. The approximate shape, W(z;1), is dete-
rmined by the least square fitting of the horiz
ontal displacements of the beam at the nodes,

“{w(2)}, as follows,

Wz~ W(z:)={P(z)}T [RI{w(1)} ®

where {P(z)}"=<1,z,2%22>, and the coefficient
matrix [R] can be obtained from the z-coordin-
ates of the nodes below free surface.

Once the solution for A,(z;7) is obtained, the
velocity potential can be expressed into two
parts as,

b (x,2:0= 9 (x, 2w (1))
+ bz S i) ©
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where ¢; and ¢ may be considered as the
impulsive and the convective components of the
velocity potential, respectively.

Substituting Eq. (9) into the free surface
boundary conditions, one can obtain the relati-
onship between {7} and {v‘&} as,

(Mgliny+ (Kglim=(S){w} (10)

where diagonal matrices [My] and [Kj] can be
interpreted as mass and stiffness matrices ass-
ociated with the free surface motion;and [S]
is the coefficient matrix of the exciting force
associated with the wall motion.

Using Eq. (9) and Navier-Stokes equation,
the hydrodynamic pressure exerted on the wall
can be expressed in terms of velocity potential.
Then, using the virtual work principle, the nodal
hydrodynamic force vector, {F}, can be obtained

as,
(Fy=—[M}w}—[S {7} 11)

where [M,] is the hydrodynamic added mass
matrix associated with the horizontal movement
of the liquid ; and [S] is the matrix relating the
horizontal force on the wall with the free surface
motion. It can be easily shown that the matrices
8] in Eqs. (10) and (11) are identical.

2.3 Equation of motion of fluid-structure
system Combining Egs. (10) and (11), the
equation of the fluid-structure system can be
obtained as,

g W 5 )
(12)

where {d} is the nodal displacement vector of
the wall; {R.} is the vector representing the
reaction at the base;[M,] and [S] are the
matrices corresponding to [M,] and [S] but with

proper dimensions. Decomposing the displacement
vector {d} into the components at the base {d;}
and at the free nodes {d.}, Eq. (12) can be
rewritten as,

My Mw 0 dy
Nl,i,b A\/I.i,‘,, 0 d"w +

-5 -S, My

(13

From Eq. (13), it can be observed that the
coefficient matrices are unsymmetric due to the
presence of the matrix [S] representing the
coupling effect between the surface wave motion
and the wall motion. Therefore the extraction
of the gigenvalues and eigenvectors as well as
the solution of the coupled equation becomes
extremely difficult. Owing mainly to the diffi-
culty, the coupling terms have been commonly
omitted in many investigations:see Veletsos(l
974) and Haroun(1983). In the present study,
however, Eq. (13) is transformed. Substituting
for {d,}, determined from the second row of
Eq. (13), the third row of the same equatioh
becomes.

(SeM ™} Moy —Slidst+[Mylin)

FHSoM L Kupl{dny+[SuM ™, Kunl{d}
+Ky+Se ML STm=(0} 4)
Premultiplying the second row of Eq. (13) by

(KM~} ] yields
(KoM ™ Mpl{dp+ K} M) {do}
+(KueM L K] {doy+[KuwM ) K] {d}
+ KM ™, STli7y=1{0) 15)

Combining the first row of Eq. (13) with Egs.
(14) and (15) leads to

My, M, O Jh
KoM My Kuew 0 [{d,
SoMoMu =S 0 My |l
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(16)

By expressing the displacement vector of the
free nodes, {d,}, as the sum of the ground
movement, {d,}, and the relative displacement
to the ground movement, {d,}, ie.,

{d=[L1--- " {dp}+{d;} 17

the following equation with symmetric matrices
can be obtained from the second and the third
rows of Eq.” (16),

Koo 0 1[d ] [ KuMilKew KuuMILST d,
0 My |14 SuMZIR .y K+ 5,005150 | g

= — (M){d) (18)

where [M,] is the effective mass matrix for the
base movement as,
KuwMoI Moy + K {11, 117

M = ’ (19)
i SuMZ My — S

From the Eq. (18), the natural frequencies
and the mode shapes of the fluid-structure
system can be readily computed. Then, the
seismic response can be calculated by the res-
ponse spectra method utilizing mode superpos-

ition.
3. LAGRANGIAN APPROACH

In this approach, the contained fluid as well
as the storage structure is modelled by the finite
element method. A general purpose structural
analysis program ADINA is utilized for this
analysis. As in the Eulerian approach described
in the previous section, the fluid-structure inte-
raction analysis is carried out by using 2-dime-

nsional model. Plane strain conditions are assu-
med for the analysis against the horizontal
earthquake excitations. The walls of the storage
structure are modelled by using 4-noded solid
elements. The fluid region is represented by
utilizing 4-noded fluid elements.

The fluid elements used are equivalent to the
solid elements with zero shear modulus but with
an appropriate bulk modulus for the compress-
ibility of the contained fluid. The (1 1)-reduced
integration is carried out for constructing stiff-
ness matrices of the fluid elements, since the
(2X2)-normal integration of the 4-noded fluid
elements causes overestimations of the stiffness
of the fluid elements. The (1X1)-reduced inte-
gration gives constant pressure within an elem-
ent and no stiffness against deformation shape
without volume change. Consequently, spurious
zero energy modes may be produced in the
modal analysis. In this study, the spurious modes
are identified based on the results of the modal
analysis, and they are disregarded in the dyn-
amic response analysis.

The effect of the restoring force on the free
surface due to gravity, which is associated with
Eq. (5), can be represented by a series of ver-
tical equivalent springs. When a quiescent free
surface is disturbed by a vertical displacement,
&, the restoring forces, f. due to the pressure
change and the stiffness of the corresponding
equivalent spring, k, can be evaluated as

f=p g £ dS (20)
k=flé=p g dS (21)

where dS is an infinitesimal area of the free
surface.

The relative motion of the fluid along the
wall is allowed only in the tangential direction
to the wall as shown in Figure 3.

—107—



FLUID-STRUCTURE INTERACTION ANALYSIS OF LIQUID STORAGE STRUCTURES

for free surface recommended by US NRC Regulatory Guide

boundary cond.

Y LA
1533535335555553%)

Fluid Elements

sliding  —"]
interfoce :

T 7777 T T T

Figure 3. Finite eiement modelling for a flexible wall case.

4. NUMERICAL EXAMPLES AND DISCUSSIONS

4.1 Properties of example cases

Three cases of reinforced concrete structures
for storage of spent fuel are investigated. The
widths of the structures(2L) are taken as 12,
30 and 60m, respectively. The wall thickness
(h) is taken to be 1.2m for three structures. The
fluid is assumed to be filled upto 13m above
the base.

The material properties of the concrete storage
structures are : Young’s modulus(£)=19.6 GPa,
Poisson’s ratio(v)=0.2, and mass density(e,)=
2.4%10*°Kg/m?®. The properties of fluid elements
are : bulk modulus(K)=2.0 GPa, and mass density
(»)=1.0x10°Kg/m®.

For the seismic response analysis, the design
response spectrum for the horizontal direction

1.60(1973) is used. The peak ground acceleration
i1s taken as 0.2g, and the modal damping ratio
is 0.5 percent for each mode.

4.2 Free vibration analysis

For the seismic excitations in the horizontal
direction, only the anti-symmetric modes of the
fluid sloshing and the structural motions cont-
ribute to the dynamic response. The frequencies
of the anti-symmetric sloshing modes computed
for three structures are listed in Table 1. Good
agreements can be observed between the results
by different approaches. It is also found that
the effect of wall flexibility to the sloshing
frequencies are negligible. The natural freque-
ncies of the anti-symmetric structural modes
are also evaluated. The added mass effect is
included in the analysis. The first two freque-
ncies are shown in Table 2. Fairly good agre-
ements between the results by the Eulerian and
Lagrangian approaches can be observed.

Table 2. Frequencies of anti-symmetric structural

modes(Hz)
. Natural . .
Width Eulerian Lagrangian
Frequency
wi” 33 2.8
12m o
wy 20.7 18.4
Str
som W) 32 3.0
wy' 19.9 17.0
wir . i
60m 1 33 3.0
wi” 20.0 16.7

Table 1. Frequencies of anti-symmetric sloshing modes(Hz)

Width Natural Rigid wall Flexible wall
Frequency Eulerian Lagrangian Housner Eulerian Lagrangian
12m w{"‘ 0.26 0.26 0.26 0.26 0.26
wio 0.44 0.36 0.44 0.44 0.36
w‘I’“ 0.15 0.15 0.15 0.15 0.15
30m g
w;" 0.28 0.24 0.28 0.28 0.24
w;"‘ 0.09 0.09 0.09 0.09 0.09
60m ’
wy’ 0.19 0.20 0.19 0.19 0.20
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Figure 4. Anti-symmetric mode shapes for the sloshing and the structural modes of a flexible wall

From the results of the Lagrangian approach
utilizing the finite element idealizations both for
the structure and the fluid, the first 29 modes
are found to be the sloshing modes. The first
two anti-symmetric structural modes are the
3lst and 33rd modes as shown in Figure 4. The
corresponding natural frequencies are found to
be 3.0 and 17.0 Hz for the structure of 30m
width. These values are slightly less than those
(3.2 and 19.9 H:z) obtained by the Eulerian
approach. The discrepancies may be cuased by
different ways of modelling the wall structures
:le.,, beam elements in the Eulerian approach
and plane strain elements in the Lagrangian
approach.

4.3 Free surface elevation

Table 3 shows the maximum free surface
elevation obtained by the Eulerian and the
Lagrangian approaches. Maximum elevation
mainly depends on the first sloshing mode. The
effect of the wall flexibility on the sloshing
motion is found to be negligible. The results
obtained by the Lagrangian approach are in
good agreements with those by the Eulerian
and the Housner’s methods.

Table 3. Maximum free surface elevation(m)

Width Eulerian Lagrangian Housner
12m 0.91(0.91) 0.97(0.96) —(1.27)
30m 1.14(1.13) 1.14(1.13) —(1.29)
60m 1.13(1.13) 1.12(1.12) —(1.04)

Note : The values in the parentheses are obtained from
rigid wall cases, the others from flexible wall cases.

4.4 Base shear and base moment

The maximum shear and bending moments
hydrodynamically induced at the bases of the
walls are evaluated, and the results are shown
in Tables 4 and 5. Comparisons with the results
by the Eulerian approach indicate that the
Lagrangian approach evaluates the convective
components fairly accurately, while it tends to
underestimate the impulsive components, part-
icularly for the cases with rigid walls. However,
for the cases with flexible walls, the discrepa-
ncies are found to be remarkably small ie. less
than 5 percent. It is noted that the maximum
base shears and bending moments due to hyd-
rodynamic pressure for the flexible wall cases
are about 3 times greater than those for the
rigid wall cases. It is because the fundamental
natural frequencies of the wall structures are
in the range, where the spectral accelerations
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Table 4. Maximum base shear forces due to hydrodynamic pressure(KN)

Width ] Eulerian approach Lagrangian approach Housner method
Convec. Impul. SRSS Convec. Impul. SRSS Convec. Impul. SRSS ABS
l2m 33 359 361 31 354 355 - - - -
(33) (112) 117) (31 (99 (104) (33) (127) (131) (161)
30m 90 543 551 X 527 535 - - - -
( 90) (164) (187) (89 (127) (156) ( 90) (187) (208) 277)
f0m 120 546 559 117 518 531 - - - -
(120) (165) (204) (117) (106) (158) (109) (195) (223) (304)

Note : The values in the parentheses are for the rigid wall cases, the others are for the flexible wall cases.

Table 5. Maximum base moments due to hydrodynamic pressure(KN—m)

Width Eulerian approach Lagrangian approach Housner method
Convec. Impul. SRSS Convec. Impul. SRSS Convec. Impul. SRSS ABS

312 2522 2541 298 2497 2515 - - - -
1zm (310 (609) (683) (297) (522) (601) (328) (631) (711 ( 959)
668 3425 3490 657 3324 3389 - - - -
30m (666) (848) (1078) (655) (663) (932) (694) (925) (1156) (1619)
. 810 3334 3431 783 3168 3263 - - - -
b0m (810) (844) (1174) (781) (584) 975) (784) (961) (1241) (1745)

Note : The values in the parentheses are for the rigid wall cases, the others are for the flexible wall cases.

of the input response spectrum are about 5
times of the maximum ground acceleration.

5. CONCLUSIONS

From the example analysis, it has been found
that the Lagrangian approach utilizing the finite
element modelling for the structure and the
contained fluid yields very good results for the
hydrodynamic forces on the wall, compared with
those obtained by the more conventional Eulerian
approach. Considering the versatility of the finite
element modelling, the Lagrangian approach is
judged to be a possible alternative way for the
fluid-structure interaction analysis, particularly
for the storage structures with complex geom-
etries. It has been also found that the effects
of the wall flexibility can be very important
for the seismic analysis of the storage structures.
By including these effects, the hydrodynamic
forces on the wall may be amplified as much

as three times of those corresponding to the rigid
wall cases.
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