SR R SR e R
Faodg 1 1992. 6

Complexity Analysis for the Improved
Parallel Logic Programming Systems'

In-Jeong Chung and Heung-Kyu Lee
2 o

B =5 A5E Ajade B 9 dlolg) A9 ¢kEEs @A) sle we ZRode
gk Zeoje), & =FolA el WA e Z ey Alxwed g /N4 S control strategy S
Aiokated on, ofof digt A2 Al syntax?} semantics TS st Wy =)= 2 o g
HE 5L —r‘vi”}"q ol o] o g A FL-w=x] drgslgic), g WY = x2 e Feayn
A sbukale] 2E2 alternating Turing machine® &t W& A4E8-E Abste], B =z 7]
Eate o] 43 AHetE ideaol gl e}dA)-E& ATME o843l &t

Abstract

This paper deals with the logic programming which is related with the computer system
security and the encryption of data communications. This paper suggests an improved control
strategy for the parallel logic programming systems, shows its formal syntax and semantics.
We classify the potential parallelisms of logic programs, and explain how these parallelisms
can be utilized in the logic programs. It then associates parallel logic programs with the highly
abstract computation model, called alternating Turing machine(ATM). ATM does capture the
essence the procedural interpretation of parallel logic programs, and the complexity of com-
putations of ATM represents a useful measure of complexity of derivations of logic programs.
We analyze the complexity of parallel logic programs, and show the justification for our suggested
idea utilizing ATM.

“o] -2 19909 E FuF A9 A5 FEAE AR A £4 e AT 2Aulo] Slste] ATILE
e AR st Aasha Y
* % VIFPIE WA 20T

* —+

60 AR b (1992, 6)

1. Introduction

Logic programming is one of the declarative
programming approaches which has the declarative
semantics as well as operational semantics. Logic
programming is very suitable not only to represent
the nondeterministic asynchronous parallel com-
putations, but also to address the encapsulatin of
operating systems and security or encryption of
communication. The abstract operations of logic
programs are generally useful in a world of
mutually mistrusted but cooperating agents.
Cryptography is only necessary for implementing
the operations of logic programs when there is no
mutually trusted secure agent. In this sense, logic
programming systems provide such a secure,
reliable agent for the embedded computations:
they can be used as a foundatin for secure
multi-user systems. Shapirou'> proposed a foun-
dation for secure distributed multi-user operating
systems using Concurrent Prolog.

The collected papers in ShapirolS)

survey recent
research in parallel logic programming systems.
They describe parallel logic languages: investigate
how logic programming systems carry out system
programming and nondeterministic parallel
algorithms: how to embed high-level language:
how to implement this language efficiently on
sequential and parallel computers.

Volume 1 of Shapiro' describes parallel logic
programming languages: contains the major topics
of parallel logic programming systems: addresses
the complexity of systoc logic programs: mentions
on distributed programming methodologies: how
these languages represent nondeterministic para-
llel algorithms: how the potential parallelism can
be exploited in logic programming programs.

Volume 2 investigates the relationship between
the system programming and logic languages:
reports on research towards advanced techniques

for programs development such as meta-interp-

reters, program transformations and partial
bindings: describes an implementation techniques
for logic languages: treats techniques for
emdedding the high-level programming paradigms
such as object-oriented, logic and functional
programming.

It also reports on a method for secure
communication in parallel logic programming
systems. The control and mapping techniques
draw heavily on the concepts of meta-interpretation
and partial evaluation. Some logic languages such
as Flat Concurrent Prolog can be used for the
encapsulation and encryption. Miller et al in
Shapirola‘) addressed the encryption and security
problem for the banking program, using Concu-
rrent Prolog. It presents a secure substrate for
secure systems and provides an implementation
of banking system as an axample.

The idea of logic programming, due to

Kowalski?

» is that an algorithm is composed of
two parts, logic and control: i.e. algorithm =
logic + control. The logic corresponds to what the
algorithm wants to solve, and the control
corresponds to how it can be solved. Ideally the
users would prefer to restrict their attention to
the logic part only, and leave the control part to
the implementation. i.e. an ideal logic
programming systems would allow the user to
mention only the logic part of the algorithm, the
control part should be transparent to user.
Unfortunately, there is not yet such an ideal logic
programming system.

The reason for the nonexistence of such an ideal
logic programming system is tha there is difference
between logic programming and logic programming
program. The difference is that (pure) logic
programming concerns only the logic part of the
algorithm for its declarative meaning, but logic

programming systems need to include some control

Mg Y wElEzasl

% AR 2=

4 61

M

strategy(CS) to affect efficiency. To paraphrase
the Kowalski’s)
control”,

dictum'® “algorithm = logic +

logic programming systems = logic
formalism + CS.

The CS enables a logic program to be executed
on a computer, having an effect on its efficiency.
It determines the operational semantics of logic
programs, while the declarative semantics is
decided by reading the program as a logical
formula. Therefore we should have reasonably
good CS for the parallel logic programming system
to achieve reasonably good efficiency.

This paper proposes an improved CS for parallel
logic programming systems, shows its formal
syntax and semantics. It then associates the logic
with the

computation model, shows their relationships, and

programs highly abstract parallel
analyzes the complexity of suggested system with
that model. It also shows that the suggested CS
would vield the unnecessary AND-parallelism and
OR-parallelism for parallel logic programming

system.

2. Alternating in AND/OR Tree of
Logic Programs

2.1 AND/OR Tree of Logic Programs

In the evaluation logic programming, the logic
reduction for a query Q with a program P can
be regarded as the task to find a solution to an
initially given problem, using a given collection
of facts and rules to reduce the programs to a
set of subproblems. For this task, a graphical
representation, called the AND/OR tree is used
to illustrate the solution of a query using a given
logic program.

Suppose that we are given a logic program which
» B,
» ¢n where

is a set of clauses of the form, A:-B{B,, -
and the query of the form :-¢; -

m, n20. In the parallel logic program, °,’
procedurally means the fork. i.e. a conjunction
p» ¢ indicates that goals p and ¢ will be solved
by different processes.

Now we will give sketch how we can obtain the
fully parallel AND/OR computation model from
logic program P using two kinds of processes,
AND-process and OR-process. The computation
model can be represented by AND/OR tree using
these AND/OR processes. In the following
discussion, AND-nodes and OR-nodes of AND/OR
tree are referred to as AND-processes and
OR-processes, respectively.

(i) Initially the goal statement constitutes a root
node, a special case of an OR-process. The label
of this root node is the initial goal.

(ii) If there are several alternative clauses to
a relation p in the logic program, draw an arc
form this node with predicate symbol p in the tree
to all possible nodes whose labels are the same
predicate symbol p, but with different arguments.
Since the original node with predicate symbol p
in its label can be solved if any one of its children
can be solved, we call this node OR node. Each
is an OR branch,
representing an alternative

subtree of an OR node
solution to the
problem.

(iii) The offsprings of an OR nodes are AND
nodes, one for each clause that unifies with the
given relation call. The children of this AND node
represent a set of subproblems to be solved. It
is called AND node, since this set of all
subproblems should be solved to satisfy the AND
node. AND node is marked by placing arcs(half
circle) on its branches.

(iv) A node which can be exactly matched with
some fact clause in the logic program has no
descendants. This node is called terminal node.

(v) The solution to the initial goal can be
obtained at the root of the tree by finding

62 JHAE RIS EEGEG(1992. 6)

compatible sets of branches. i.e. those labelled
by compatible substitutions.

Note that the fully parallel AND/OR computation
model described above is a graphical representa-
tion of problem solving. It will be used to
illustrate the solution of a query using a given
logic program.

Note also that this representation is very
abstracted AND/OR computation model which
reveals nothing about the control. i.e. how the

problem is solved.
2.2 Parallelism of logic programs

In this section we describe the major
chracteristics of the possible parallelism in logic
programs. The fully parallel AND/OR mode! with
AND/OR tree described above can be interpreted
with AND-parallelism and OR-parallelism. A
computation of logic program amounts to the
construction of a proof of an existentially quantified
conjunctive goals from the axioms.

The computation progresses via nondetermini-
stic goal reduction: at each step it has a current
goal A, - A, it arbitrarily seletcs a goal A;, for
1<i%n: it

selects a clause A’ :-B, *** By for which A and

some then nondeterministically
A’ are unifiable via a substitution 6, and uses
this clause to reduce the goal. The reduced goal
is (A4, = Ajps By s B Ajppy - A6, The
computation terminates when the current goal is
empty.

This description readily suggests two kinds of
parallel excution: the reduction of several goals
in parallel, called the AND-parallelism, and a
concurrent search of the computation paths
resulting form different nondeterministic choices
of the unifiable clauses, called OR-parallelism.

Therefore the parallel execution on the
AND-node in the fully parallel AND/OR model

AND-

parallelism, whereas the parallel execution on the

described above corresponds to the
OR-node corresponds to the OR-parallelism. Note
that the

computation rule in which relation calls are

term AND-parallelism refers to a
evaluated concurrently. OR-parallelism is paral-
lelism in the search rule, such that several
clauses are acted on concurrently. As stated in
Gregory et al?*®*®, it is the CS that enables a
logic program to be executed on a computer. The
CS decides both the computation rule as well as
the search rule. i.e. the CS decides the efficiency
of the execution of logic program.

We can classify the AND-parallelism and OR-
parallelism more in detail as below:

1) Restricted AND-parallelism: the concurrent
evaluation of several calls in a conjunction which
are independent. i.e. do not share variables.

2) Stream AND-parallelism: the concurrent
evaluation of several calls which share a variable
with the value of shared variable communicated
incrementally between the calls. Here the shared
variable behaves as communication channel
between the processes.

3) OR-parallelism: the concurrent application of
several clauses in a procedure while solving a call.

4) All-solutions AND-parallelism: the concurrent
evaluation of several calls in a conjunction, each
working on a different solution.

Of these four possibilities, 1), 3), and 4) are
perhaps easy to implement because each of the
prallel processes is working on a different solution
Stream AND-

parallelism is different from other parallelism

and they are independent.
mentioned here in two aspects. First of all, it has
the advantage that solutions can be communicated
incrementally by means of single assignment
On the other hand, it has the
disadvantage that at most one solution can be

property.

obtained. It contrasts with the explorative parallel

AR WY EeEe oy s SHE 24 63

logic programming programs such as Conery’s
AND/OR Process Model®.

However stream AND-parallelism is a more
primitive form of parallelism. If many solutions
are required to a relation, these solutions can be
obtained as members of a list, which is a single
solution to another relation. By the incremental
construction of the solution list, the solutions can
be made available one at a time®.

Options 1) and 2) differ from the corresponding
functinal concepts in that the opportunities for AND
parallel evaluation are not obvious from the
structure of a Horn clause program. Some control
mechanism or a sophisticated proof procedure may
be necessary to decide both the independence of
calls and the direction of stream communication
through shared variables. Moreover stream
AND-parallelism is difficult to implement in the
presence of nondeterminism, since there should
be some synchronization mechanism between the
producer of the shared varables and consumer
of them. To implement stream AND-parallelism
efficiently, some means of constraining the
nondeterminism is necessary. The existing parallel
logic programming languages such as Concurrent
Prolog™”. Parlog? and GHC' are based on
concepts of stream AND-parallelism and committed
choice nondeterminism(CCN) as explained in

section 3. 2.

3. Related Works

In pure logic programs without consideration to
the control part, the operational semantics and
declarative semantics coincide. The interpreter of
pure logic programs follows all possible paths in
the search space and hence its search space
increases exponentially. i.e. blind breadth first
search without any constructs for CS prohibits the
practical parallel implementation of pure logic

program due to its inherent combinatorial

explosion. Therefore, for an implementable
programming language we need the CS and
supporting constructs so that the available
parallelism is controlled and thereby limits the
branching factor. Note that it is the CS of a logic
program that enables a program to be executed
on a computer in a practical way.

The nature of a CS decides the operational
semantics of a logic program, while the declarative
semantics is decided solely by reading the logic
program. Different CSs might be obtained by
varying the computation rule and search rule. This
is the reason why the CS decides the efficiency
of the

programs.

implementaion of logic programming

The CSs logic programming languages so far
have following problems.

3.1 Prolog

Prolog requies a user to provide a lot of CS
information, partly by the order of literals in a
clause and partly by the extra-logical control
features such as cut operator. The leftmost literal
in a clause would be chosen first for execution,
and the nondeterministic choice of the unifiable
clause is simulated by sequential search and
backtracking. Since the order of clauses in a Prolog
program and the order of literals in a clause are
important, the effectiveness of cut is critically
dependent on the order of the clauses in a Prolog
program.

Moreover Prolog uses the depth first search
strategy which might introduce nonterminating
possibilities, and the extra-logical control feature
for its CS, called the cut operator.

The cut operator, which affects the operational
behaviour of Prolog program, is used to reduce
the search by pruning the search space. Its aims

64 IETERRERERIE(1992. 6)

are to prevent Prolog programs from subsequent
useless computation paths due to the nondeter-
minism, or from nonterminating possibilities due
to its depth first search strategy. It can be used
to cut off computation paths that do not yield
solutions, and thereby reducing the search space.
However, its use is controversal, since it has some
side-effects and asymmetric properties, and can
only be interpreted by operational semantics(red
cut), in contrast to the declarative style of logic
programs. The red cut operator can change the
nature of a Prolog program in the sense that the
declarative meaning and the procedural meaning
of the program would not be the same.

3.2 Parallel logic programming languages ba-
sed on committed choice nondeterminism
(CCN) and stream AND-parallelism

In order to overcome the deficiencies of Prolog
described in the above section, some parallel logic
programming languages such as Concurrent
Prolog13). Parlogﬁ) and GHC™ were introduced
recently. These languages have the notion of
nondeterministic commitment to a single clause
in the same manner as the selection of a single
statement list in Dijkstra’s guarded commands®.
This approach was influenced by the elegant
adoption of Dijkstra’s formalism in Hoare’s CSP
programming paradigm”.

The CSs of these parallel logic programming
languages are based on the CCN? and efficient
implementation of stream AND-parallelism using
the commit operator as described below.

CCN is the policy of committing to the body
of the clause with the first guard that evaluates
to be true, disregarding all other choices. Briefly,
it is the 'don’t care’ nondeterminism, in which the
system ’doesn’t care’ how a solution is obtained,

so does not need to search. It is the basis of

Dijkstra’s language of guarded commands and
Hoare’s CSP. Kowalski'” indicates that it is the
intelligent backtracking in the sense that it
eliminates unnecessary searching.

In the parallel logic programming languages
based on CCN, every clause except the goal has
the form of A:-Gq, Gy *** G l B, -+ B, where
m, n 2 0. The construct * I " is called the commit
operator. The left side of the commit operator is
called the guard part, and the right part is called
the body part. The declarative reading of the above
clause is: A is true if Gy G, and By, - B, are
true.

Operationally, the guard is a test that must be
executed successfully, in addition to the input
matching, before the clause i1s selected. The
commit operator is used in Concurrent Prolog,
and GHC for their
nondeterminism without side-effect. It distingui-

Parlog control and
shes the gurard part and the body part of a
clause. It has a similar effect as the cut operator
of Prolog, but has a cleaner semantics due to its
symmetry, much the same way as the guarded
command has a cleaner semantics than the
conventional if-then-else construct. Besides the
commit operator, Concurrent Prolog adds a new
syntactic construct *?’, an annotation denoting
a read-only variable for the synchronization of
processes. The annotation on read-only variables
would be used to specify communication const-
raints.

In Parlog, the synchronization between the
processes Is performed by the mode statement.
The mode statement determines the communica-
tion constraints on Parlog processes by specifying
which variables should be used for input variables,
and which variables should be used for output
variables. The use of mode statement does have
significant advantages with respect to efficiency in
that the safety check of Parlog is done during the

N4

49 WY Eelme oy Aade] hE 2y 65

compilation statically, and Parlog does not require
the multiple environment in which there may be
distinct to an identical variable an needed in
Concurrent Prolog. In GHC, there is no explicit
syntactic construct for the synchronization: it is
done by two general rules, rule of commitment
and rule of suspension'”. Since GHC has no
explicit syntactic construct for synchronization, it
requires a run time safety check whenever a
variable is to be bound and this implementation
is expensive. For the deatailed synchronization
differences between these languages, see Chung

and et al® ¥

3.3 Epilog

Epilog® is an extension of Prolog. Its purpose
is the construction of a multiprocessor environment
and an abstract paralle] architecture based on the
dataflow model of Prolog. Epilog uses some
constructs, such as thresholds and annotations on
variables, based on dataflow model to control the
available parallelism and thereby limit the braching
factor. However, Epilog is not a generic parallel
logic programming language. It was designed to
execute Prolog programs for the realization of
dataflow model and multiple processors of Prolog
programs. Epilog is not concerned with solving
the coricurrent nondeterministic problems: instead
it is concerned with the parallel execution of Prolog
programs. The apparent difference between Epilog
and the parallel logic languages is in the design
methodology. The motivation of Epilog is different
from that of the parallel logic programming
languages based on CCN and efficient impleme-

ntation of stream AND-parallelism.
3.4 Conery’s AND/OR process model

Conery suggested an AND/OR Process Model?,

an abstract parallel model of logic program. It
provides a framework for execution of logic
programs where an interpreter solves a goal by
dividing it into independent pieces for solution by
other interpreters.

While the parallel logic programming languages
described in the above section are based on the
CCN to implement the stream AND-parallelism
efficiently, the parallelism exploited by Conery’s
AND/OR Model is oriented towards a more
explorative style of nondeterminism, replacing the
backtracking method of sequential system by a
semi-intelligent backward execution algorithm.
nondeterminism was first
developed by Pollard™" in 1981. In the Conery’s
algorithm, AND process style is designed to work

The explorative

with in conjunction with OR process style of
OR-parallelism.

Conery’s system includes algorithm to detect
dependencies between calls as well as heuristics
to select the optimal orderings for the sequential
evaluation of dependent calls for constructing the
nondeterminism. This run time detection of
dependent calls might be effective in exploiting
parallelism and

potential restraining useless

nondeterminism, because variables shared
between calls in the source program may actually
be instantiated by the time the call is invoked,
rendering the calls independent. However, this
complex algorithms involved can constitute a
computational overhead.

Stream AND-parallelism takes advantages of
partial bindings allowed by logical variables using
the feature for object oriented programming and
the other elegant features, but with the expense
of exploratory nondeterminism. Conery’s AND/OR
Process Model is opposite: it sacrifices parallelism
when partial bindings are present but is able to

exploit explorative style of nondeterminism?- ®.

66 EER R R ERRE(1992. 6)

4. Improved control strategy
4.1 Improved control strategy

To restrain the unnecessary parallelism and
nondeterminism in the guard part and body part
of a clause, we add the following two constructs
based on the dataflow model for the suggested
CS, in addition to existing construct of commit
operator.

Qur aims with the improved CS for an effective
parallel logic programming systems are as follows:

(i) Control of execution of parallel logic
programs by specifying a partial order on the
execution of logic programs which are based on
CCN and efficient implementation of stream
AND-parallelism. It is desirable that the specifi-
cation is natural in the sense that sequencing
constraints in the guard part, body part and clauses
are expressed explicityly.

(ii) Automatic detection of concurrency in logic
programs, Here, the parallel logic programming
system should exploit the intrinsic parallelism.

To achieve the above aims, we represent the
sequencing constraints and inherited parallelism
of logic programs which are based on CCN and

efficlent implementtion of AND-parallelism by
using the notion of a control group defined as
below:

(a) A control group is either a P_group or an
S _group. An element of a group is called a control
unit. Here, P_group represents the control group
which will be executed in parallel, and S group
represents the control group which will be exe-
cuted sequentially. i.e. every pair of the two
control units in S_group has partial order between
them, and there is no partial order among the
control units in P_group.

(b) A P_group and an S group is a set of control
units tht are either atoms or control groups.

To avoid confusions, we use parenthesis {} and
brackets <> to denote the parallel and sequential
P-group and

execution of a an S-group,

respectively.

4.2 Syntax

Since we introduce essential constructs for the
above purposes, the legal syntax allowed in the
suggested parallel logic systems is different from
the syntax of the pure logic or conventional parallel
logic systems.

*:=" {body_party ‘." |
‘=" {guard.party ‘|’
‘-7 {guard part) ‘1" <body.party ‘.’

. l

{clause? ::= {atomic formula) ‘.’
{atomic formula)
{atomic_formulay
{atomic_formula)
{guard part) :i=literal) (‘|| dliteral))*
(body._part) ::={literal> (' | *literal))*
literal> ::={atomic formula) |
{P_group> [
{S_group?
{S.groupy :i=°<’ diterad ‘- dliteraly ‘>’

{P_group,

2= diteral (iteral>)* ‘Y’

N W e Ee e

A&siel S35 B4y 67

For each clause there is at most one commit
operator. In a guarded clause there may be any
number of CAND or COR operations for the
sequencing of literals or clauses. The legal clauses
are those which consist of these constructs, atomic
formulas, predicates, variables, functions and
constants, etc.

Now we define the legal syntax of the
suggested parallel logic programming systems
using the notion of BNF notations as above.

The atomic formuals are constructed from pre-
dicate identifiers and terms in the usual fashion.
Note that we can omit the symbols for “{}’
(bracket for P_group) or ‘()" (parenthesis for
S group) if there is no ambiguity.

4.3 Semantics

The CS suggested in this paper can represent
a partial order of literals in the guarded clauses
and the clauses, with the CAND (‘=’), COR
(* 11 ") control constructs, in addition to the co
mumit operator. Influenced by the elegant adoption
of Dijkstra’s formalism® in Hoare’s model”, the
notion of nondeterministic commitment to a single
clause is used in the parallel logic programming
systems. An important consequence of adopting
such a nondeterministic commitment rule is the
‘single assignment property’, instead of the °
generate and test’ (with backtracking) paradigm
of a sequential logic programming programs. The
commit operator is used for this purpose.

In order to restrain the unnecessary parallelism
and nondeterminism, we adopt the following two
constructs based on the dataflow model® for the
suggested CS, in addition to existing construct of
commit operator of CCN. With these constructs
we can represent a partial order on the execution
of literals in the guard, body part, and clauses
of a logic programs.

Conditional And(CAND)

The CAND operator ", is used to control
unnecessary AND-parallelism in the guard part and
body part by restraining a left-to-right sequence.
The literal on the left of CAND construct will be
executed first: if its
successfully then the literals to the right of CAND
will be executed next. If the left hand side of

execution terminates

CAND terminates with failure, then the result of
failure is reported immediately. This operator is
designed to represent a partial order among literals
in the guard part or body part of a clause. We
can specify the order of control units in S_group
by CAND.

Even if PRISMY is a logic programming
language that provides the user with control
facilities to specify a partial order on the execution
of literals and clauses in a program, it only allows
CAND for literal sequencing. There is neither
commit operator nor COR in PRISM.

Conditional (COR)

This construct, * {17, is used to control the
unnecessary OR-parallelism by reimposing an
ordering on the set of literals in a clause. Since
in parallel logic programming programs, the
collection of clauses for a relation is an unordered
set (unlike the Prolog’s ordered list of clauses).,
this new construct COR can be used to reimpose
an ordering on the set of clauses in our parallel
logic programming systems.

Here, one set of literals will be evaluated before
another set. However, unlike CAND, the right
hand side of COR will be executed only if its left
hand side terminates with failure: if the left hand
side of COR succeeds, then its result of success
is immediately reported to the parent. This
operator is designed for the clause sequencing.
For example, the meaning of clause of p:-g {| 7.

68 R e RGE(1992. 6)

If it fails then the subsequent literal » will be
executed. whereas if ¢ succeeds then execution
halts and the result of success is reported to its
parent.

With COR, we can further control the restricted
OR-parallelism. Without COR, we cannot control
the restricted OR-parallelism as desired. The
conventional CS with commit operator only
provides a limited form of OR-parallelism, called
the restricted OR-parallelism. Note that if we do
not use the commit operator, we assume the full
OR-parallelism. If we only use the commit
operator, we assume the restricted OR-paralle-
lism. With COR, we can obtain completely flexible
OR-parallelism.

In the control of OR-parallelism, there is ana-
logue between COR and cut operator of Prolog.
But COR has cleaner semantics than cut operator
and is in fact very different from cut. Fot the
detailed explanation on their difference, unique-

ness, and for the comparison with other existing
parallel logic languagues, see Chung?¥. In
addition to the usage to restrain the useless
AND-parallelism and OR-parallelism, the syntactic
constructs allowed in the improved system give
many desirable properties such sufficient guard
property, deadlock free property. naturalness,
etc.

5. Alternating Turing machines and
logic programs

5.1 Alternating Turing machines

As seen in the next subsection 5.2, the
complexity of computations of Turing machine can
be used as the complexity of derivations of logic
programs. For that purpose, we use an extended
Turing machine, called the alternating Turing
machine(ATM) V.

g0 U, E, A, R, N\D,

where % is the number of working tapes
Q is a set of finite states
Z is a set of finite input symbols
T is a set of finite tape symbols,
& is transition relation
* s an endmarker
B is blank symbol

U CQ is a set of universal states
ECQ is a set of existential states
A CQ is a set of accepting states
R CQ is a set of rejecting states
N CQ is a set of negating states

Definition: An Alternating Turing machine(ATM) is an eleven tuple M =4Q, Z. T, §, *,

including blank symbol(B)

gy is the initial state of M such that ¢ €@

Here, U, E, A, R, N are the members of the partition of Q.

AR 8y

i

PEe s ALus $3E 24 69

Note that the language accepted by an ATM
defined as above can be also accepted by another
ATM M’ whose states do not include the negating
states, and these two ATMs have the same

Y. According to Chandra?,

computation power
these two kinds of machiness M and M’ can be
regarded interchangeably. Therefore, if needed.
we assume the ATMs whose states do not include
the negating states. M has a read-only input tape
with endmarker * and %k working tapes, which
are set initially empty.

The operational behaviour of ATM M is
described as below: An existential state @ spawns
a set of states by its applicable transition relation,
and accepts if at least one of them accepts. 1.e.
an existential state a generates several possible
next states by, by, ***, b, in one step, and a leads
to acceptance if there exists a successor b; (15i<n)
which leads to acceptance.

A universal state ¢ spawns a set of possible next
states by its transition relation, and accepts if all
of them accept. i.e. a universal state a generates
a set of states by, by, ==+, b, in one step, and «
leads to acceptance if all successors &y, bas ***s b,

lead to acceptance.

Definition: A step of M consists of reading a
symbol from each % + 1 tapes (one read-only input
tape. k working tapes), writing a symbol on each
of the 2 working tapes, then moving each of the
heads left/right one square according to the

transition relation §.

Definition: A configuration Cy of M is defined
by the set Cyy = {o | o € (QxZ*x((T' - {BD ™),
where each o={q, w. y> €C, represents the
state of M, the input, the nonblank contents of
the % working tapes, and the head positions of
read-only input tape and k working tapes. Ifqg € U
(E, A, R), then o is called universal configuration
(or existential, accepling, rejeciing configuration,
respectively).

The initial configuration of M on input w is given
by aplw) = {qp» w, €, where ¢ denotes the empty
string. Note that each configuration represents an
instantaneous description(ID) of M at some point
during a computation.

A computation path ay. ay, *-*. (possibly infinite)
is a sequence of configurations of M where a4,
is a successor of a;. A computation tree T of M
is a directed tree, where each node of T is a
configuration of M with the property that each path
of T is a computation path of M. A computation
tree T accepts an input string w if it is a finite
tree and its root is associated with the initial

configuration o.

Definition: A characteristic function lc: Cy —
{true, false} is a function which labels a configu-
ration a with frue if g leads to acceptance or false if
a leads to rejection. i. e. M accepts (rejects) the
input string w if and only if its initial configuration
is ever labeled with frue(or fulse, respectively).

Therer is a recursive procedure for doing this:

lea) = A l'*“lc(B) if @ is universal configuration and « l—*- B

v ,"*‘IC(B) if ¢ is existential configuration and o r*—B

true if o is accepting

Jalse if a is rejecting

70 AE R G RGE(1992. 6)

Therefore, M accepts (rejects) the input string
W if and only if Ic(oy(w)) =true (or false,
respectively). M halts on w if and only if it either
accepts w or rejects w, and LIM) ={w €Z*

I leCoolw)) = true)

Definition: M accepts an input string in time
t if lc(oow)) = true, where C = {a | oo(w) 'r**o.
in { or fewer stepts}

Also M accepts w in space s if Ip{ag(w)) = true,
where D= {a } space(a) <s} and space(a) is the
sum of nonblank contents of the £ working tapes
in configuration a. Here, s, { are some integer
numbers.

We say that M accepts w in time T(n) (or space
S(w)), provided that for any w €L(M), M
accepts w in time at most T(| w i) (or space
SC|w |). respectively).

For the
complexities berween ATM, deterministic Turing

relationship of time and space

machine and nondeterministic Turing machine,
see Chanadra and et alV¥1%,

ATMs accept all recursive enumerable sets
because any nondeterministic Turing machine is
a particular case of an ATM, consisting only
existential states. For converse, for any given
ATM M and an input string W, enumerate finite
subsets C of Cy, construct the characteristic /c.
accept w if we get le(og(w)) =true. If such a
subset C exists then M accepts w, and if M accepts

w then such a subset C exists.

5.2 Relationship of logic programs and
alternating Turing machines

The reason why ATM is chosen as the tools
of complexity analysis of logic program is that ATM
is a surprisingly good model of parallel complexity
and is a generic model of parallel computations.
Moreover, ATM provides a basis for evaluating

the parallel complexities of logic programs.
There is a close relationship between an abstract
interpreter of logic program P and the execution
mechanism of ATM M. We can associate the
AND/OR
computation model of P. The computation of ATM

computation tree of M with the

does capture the procedural behaviours for the
derivations of parallel logic programs, and the
computation tree of ATM corresponds to the
AND/OR computation tree of logic programs. As
seen in the operational behaviour of ATM in the
subsection 5.1, an universal state (existential
state) behaves as an AND node(OR node,
respectively) of an AND/OR tree of logic program.

The existential state of M corresponds to the
nondeterministic choice of a clause whose head
unifies with a goal, whereas the universal state
of M represents the simultaneous satisfaction of
the goals in the body of a clause. M is in a rejecting
state when there is no applicable next transition
if and only if no clause is in P whose head unifies
with the goal. M is in an accepting state when
the input tape is empty if and only if during the
exection of P, current goal is the empty clause
obtained from the goal reduction.

In fact the computations of M with its
computation tree is the exactly the same as the
proof procedure of P with its AND/OR computation
model. An universal configuration of M can be
of AND/OR
computation model of P. It leads to acceptance

thought as an AND process
if all of its successors lead to acceptance. An
existential configurtion can be thought as an OR
process of AND/OR computation model of P. It
leads to acceptance if any of its successors leads
to acceptance. From these apparent similarities
between the execution of logic program and the
computation of ATM, the complexity of derivations
for parallel logic program is closely related to the

complexity of computations of ATM.

Mg e

fi

tk

gz aen) A=)l S B4 71

6. Complexity analysis

We will perform the complexity analysis for the
logic programs using a general, theoretical fra-
mework for the computational complexity of logic
programs.

The reason is that it is extremely difficult to
come up with a precise, meaningful comparison
when we do the performance evaluation for the
parallel logic programs. The evaluations for
parallel logic programs on a physical computing
machines would be dependent on particular
algorithms, systems and hardware considerations.
Moreover it is not natural and reasonable to do
the evalutations for parallel nondeterministic logic
programs with the execution on a sequential von
Neumann computing machines.

In this paper, we ignore the overheads
dependent on particular algorithms, systems, and
hardware considerations. In order to estimate the
improvement in efficiency of the suggested system,
we measure the ratio of the potential gain of
suggested parallel logic programming systems to
the gain of the conventional systems. This
measure. called the potential parallel factor(PPF),
is the maximum possible gain of the parallel logic
systems over the sequential one. Since this

measure provides us with the quantitative
description of the effect of parallelism, it can be
used to compare the complexity of different logic
programring systems. For this measure, we use
the ATM, which is highly abstract computation
model and describes the parallel computational
behaviour of logic programs, as described in the
above section 5.

In section 5, we observe that the derivations
of logic programs and the computations of ATMs
These

similarities between logic programs and ATMs.

are closely related. results reveal

From these similarites, we relate the complexity

measures of logic programs with those of ATMs.

In addition to several desirable properties of
logic programs (such as sufficient guard property,
Chung®®
relationship between the

deadlock-free, etc). shows the

parallel complexity
(NC-class) and the complexity of logic programs.
It also discusses the relationship between the
ATM’s low level primitive computations (such as
proof

movements, iterations etc) and the

procedure {(such as instantiation, query size,
number of variables in a clause, ect) of logic
ATM’s
bookkeeping is performed in its working tapes.

program. It shows how necessary
For the properties or articles not mentioned in
this paper. see Chung®’.

Since the computations of ATMs describe the
derivations of logic programs and due to the close
relationship betwen logic programs and ATMs, the
complexity of computations of ATMs can be used
to bound complexity measure of derivations of logic
programsx)' 14),18)

Moreover, as stated in Chandra’, it is desirable
that when the problem of interest involves
alternating quantifiers, we should classify the
problem with complexity of ATMs and then
translate the classification to one in terms of
deterministic machines.

Therefore, we first associate different classes
of logic programs with corresponding classes of
ATMs,

translating the ATMs to one in

then we classify these problems by
terms of

deterministic machines.

theorem 6. 1: Let A4, A, and A4 be the number
of alternations of ATMs M,;, M, and M; respe-
ctively, where My, M, and My are the alternating
Turing machines associated with the corresponding
logic programs Li, L, and Lj respectively. Here,
L, is a pure logic program without any syntactic

constructs for the efficiency, i. e. its CS is the

72 EHRESSERE(992. 6)

blind exhaustive search, and L, is the program
with the CS of CCN only, and Lj is the program
with the suggested CS.

Furthermore, let S;, Sy and S; be the space
complexity of M, M,, and M3 respectively for

Fig 6.1 Computation tree for the exhaustive

search

a

ol ’ff/@ ™

Fig 6.2 Computation tree for the previous control

strategy

/2\

Fig 6.3 Computation tree for the suggested
control strategy

the input w with the length n. Then A;(n), 2
As(n), 2 Ax(n) and S;(n), 2 Sy(n), 2 Sy(n).

proof: Let Ty, T,, and T3 be the computation
tree of the ATMs M, M,, and M, respectively.
Since T, is the computation tree obtained from
the exhaustive breadth first search. every possible
movement between the configurations of M,
appears in T, and every possible consistent
solution of L;, would appear in T} in this sense
T gives the complete solution set even if it causes
the combinatorial problem, and T, is the fully
complete AND/OR tree. T is shown in figure 6. 1.

T, is a subtree of Ty, since for the offsprings
of an existential configuration node of 7T, only
one path will be followed: once a clause of a
procedure is committed, all the other existential
configuration nodes with same parent would not
be followed.

In Ty, we sacrifice the completeness of T for
its efficiency. In figure 6.2, one successor B;
(1 £i < n) from the set of all successors By, ***, By
of an existential configuration node o is selected:
all other successors By, ***, Bi—1» =**» B, would not
be followed.

Moreover, we can cut off the unnecessary nodes
by partially sequentializing the firing of literals of
a clause in the universal configurations with the
commit operator: if the guard part of a clause fails,
the literals in its body part would not be evaluated,
1. e. these offsprins of the universal configuration
corresponding to the body part of the clause would
not appear in Ts.

As shown in figure 6.3, suppose that the
successor f; (1Si<n) is selected from the
*» B, with the CS of CCN only.
where a is the root, existential node of T,.

successors [y, -

Furthermore let Z; be a subtree in which only
one successor is selected from all successors of

an existential configuration node in Z;. Then

4R 4y ez

Alawle] Habs E4 73

He

clearly Z;" is a subtree of Z;, hence T} is a subtree
of Ty. i. e. A(n) 2 A,(n).

With the suggested idea, we could have only
successor from an existential configuration node
in 7 by restraining OR-parallelism, and we can
reduce the offsprings in its universal configuration
nodes by restraining AND-parallelism. With the
same method we can cut off unnecessary offsprings
for subsequent nodes. T3 is a computation tree
whose figure is given in figure 6.3, Clearly Z;”
is a subtree of Z, hence T; is a subtree of T.
i. e. Ax(n) 2 Aj(n). Therefore A,{n) 2 A,(n)
2 As(n).

Assume that the space complexity S;{n) of M,
is decided by a configuration node £ of Ty. If &
is in Ty then §;(n) =S,(n). If k£ is not in T,
clearly S,{n) which is the space complexity of T
is less than S;. (If S,(n) 2 S;(n), then S,(n)
should be a complexity of M;, a contradiction).
With the same argument, we get S,(n) 2 S;(n).
Therefore S;{n) 2 S,(n) 2 Sy(n).

theorem 6. 2: Let M;, M, and M3 be the ATMs
described in the above theorem 6.1. Then My,
M, and M3 can be simulated by the deterministic
Turing machines(DTMs) N;, N, and Ny with the
space complexity DSPACE(S%(n)), DSPACE(S3
(n)) and DSPACE(S;(n)), respectively. (Note
that we obtain S;(n) 2 S,(n) 2 S5(n) in the
theorem 6.1)

proof: Let's explain about the recursive
procedure MAIN in the algorithm 6.1 to decide
whether some configuration o leads to an acceping
configuration or to a rejecting configuration where
M is an ATM with space complexity S(n) and
there exist some useless nondeterminism in the
configurations of the computation tree of M.

M takes some configuration a as its single input
parameter with space(a) £ S(n) and returns the

value of true (or false) if a leads eventually to an
accepting configuration (or rejecting configuration
respectivly). The initial input parameter a is the
initial configuration of the form oy =<gy %, €%
where gq is the starting state of state M. x is the
input string to be scanned, €* denotes the initial
empty & working tapes.

Let’s explain how MAIN can be implemented
on DTM N that uses a tape as a stack to keep
local storage over a call.

When « is an acceping {or rejecting configura-
tion), MAIN terminates immediately by returning
the value of true(or false respectively).

Let C={Y | space(™) £S(n)}, i. e. C is the
set of all configuration that can use at most S(n)
as the sum of the lengths of the nonblank working
tapes contents. When @ is an existential
configuration, and a €C, DTM N should test
each configuration B whether some f eventually
leads to an accepting configuration or to rejecting
configuration where a "*-B, L (@) =v1.(B) and
the disjunction is taken over the set {f | a r*-B
and all configuration along the path in a f*’B are
existential configuration and elements of C, and
B’s are not existential configuration. }

In order to do this, as described in the below
MAIN writes

nonexistential B defined above successively until

algorithm 6.1, down each
N finds out some B such that there is a path from
o to B, and would eventually lead to an accepting
configuration.

If there is no such B defined as above, which
leads to an accepting configuration, N terminates
MAIN with returning the value of false, and if
there is some B defined as above which leads to
an accepting configuration eventually, N termi-
nates with returning the value frue.

Similarly, when a is a univrsal configuration
and an element of C, the action of MAIN can be
described as following. Since /.(a) = AL(B) and

74 ARG i

(1992, 6)

the configuration is taken over the set {B | f*‘B
through only universal configuration in C and B
is not universal configuration}. N should test for
ech B whether every B eventually leads to an
accepting configuration and there exist a path from
o to B.

In order to do this, MAIN writes down suc-
cessively all non-universal configuration B defined
as above with the property space(f) £ S(n) and
calls PATH(a, B) to check whether there is a
path from a to f through only universal configu-
ration in C. If PATH(a, B) returns true, it calls
MAIN(B)
configuration B eventually leads to an accepting

recursively to decide whether
configuration or not.

As shown in algorithm 6. 1, recursive procedure
MAIN with the single input parameter o calls
procedure PATH to decide whether there is a path
from o to B. If a is a universal (existential
configuration). it decides whether there is a path
from a to B where all configuration in the path
are universal (existential respectively) and should
be elements of C.

Note that the procedure PATH may take its
input parametrs o, B with different association on
these two configuration i. e. may be universal
(existential) configuration even if o is an
existentual (universal respectively) configuration.

Even if there is some nondeterminism in the
configuration of the computation tree of ATM, the
decision whether a I’**B will take space S(n) just
by guessing the correct path nondeterministically.

If there is no controlling on this nondeterministic
gussing, DTM N(i=1, 2) will take S?(n) global
space for this decision due to the nondeterministic
guessing of the correct path among the alternative
paths. The squaring of space complexity SZ(n)
from S;(n) is due to Savitch®. i.e. N,(or Ny)
would take S3(n) (or S3(n) respectively) global

space storage for the deterministic decision form

the nondeterministic guessing of the correct
path. When DTM N does not have to guess
nondeterministically the correct path. i.e. when
there is an explicit mechanism to control this
nondeterministic guessing and to specify the
correct path, there would be just constant factor
in the space complexity. Moreover it can be
simulated by another DTM with a single tape and
S(n) space complexity space®.

Since space(a) £ S(n), the sum of the lengths
of the nonblank working tape contents of a is
bounded by S(n), therefore at most S(xn) local
storage would be needed for each call to MAIN.
Moreover the depth of recursion is bounded by
to MAIN

corresponds to another alternation, and when a

A(n). since each recursive call
is the parameter to a particular instantiation of
MAIN, then only a need be saved over recursive
calls. Therefore DTM M, will use at most A;
() *S,(n) (=1, 2, 3) space for the local storage
and S¥H(n) (i=1, 2) and S;(n) global space.

procedure MAIN(qa)
begin

case

a is an existential configuration: do

write down each nonexistential B €C

successfully;
it PATH(a. B) through only existential
configurations

then MAIN(B) else try on another B

defined above;

o is a universal configuration: do
write down all nonuniversal § €C;
if PATH(a, p)
configuration
then MAIN(B) else return false;

through only univrsal

o 1S an accepting configuration: return true;

AAE W mezaae Asele] Bgs 4 75

o is an rejecting configuration: return false;
end MAIN

PROCEDURE PATH(a, B)
begin
case
a is a universal configuration: do
decide whether there is a path from o to 8
such that all configuration appearing on the
path
(with the poissible exception of B) are

universal configurations and an element of C.

B is an existential configuration: do
decide whether there is a path from a to f
such that all configurations appearing on the
path
(with the possible exception of B) are
existential configurations and an element of C.

end PATH
algorithm 6.1
7. Conclusion
This papr addresses the parallel logic
programming systems and their complexity

analysis. The logic programming systems play an
important role in the artificial intelligence and
deductive database. They are useful in a world
of mutually mistrusted but cooperating agents. In
this sense, logic programming systems provide the
authentication of

security, encryption and

multi-user systems. The logic programming
systems can be utilized as a secure systems in
the doimain of operating systems, database and
communication.

In this paper we suggest an improved control

strategy for parallel logic programming systems.
We present its formal syntax and semantics. The
suggested idea is a combination of committed
choice nondeterminism and the dataflow model.
The commit operator is used for the committed
choice nondeterminism. It distinguishes the guard
part and the body part of a clause. The constructs
based on the dataflow model are used to control
the unnecessary AND-parallelism and OR-paral-
lelism by specifying the partial order of literals
in a guarded clause or the clauses for a relation.
The suggested idea reduces the search space by
pruning the unnecessary offsprings. With the
suggested control strategy, we can exploit the
maximum useful parallelism by obtaing optimal
granularity.

In order to justify that the suggested idea is
reasonable, we need the potential parallel factor
for comparing the performance evaluations. To do
so, parallel logic programs are analyzed by means
of alternating Turing machines which constitute
the parallel computation models that capture the
essence of the procedural interpretation of parallel
logic programs.

The complexity of ATMs does represent a useful
measure of the potential parallel factor. To show
this we associate the alternating Turing machines
with the parallel logic programs. The computation
trees of ATMs exactly represent the AND/OR
computation trees of parallel logic programs.

It is suggested that when the problems of
interest intrinsically involve alternaing quantifiers,
we classify the prblems in terms of the complexity
of ATMs and then analyze performance by the
complexity of deterministic Turing machines.

We show that a natural reduction of the
alternating Turing machines for our suggested idea
yields a deterministic Turing machine whose
complexity is linearly related to that of the ATM.
However such a reduction for the conventional

76 EHREER TRt G992. 6)

committed choice nondeterminism only has
complexity tht is polynomially related to that of

the ATM.

References

1. A. K. Chandra, D. C. Kozen and L.].
Stockmeyer: Alternation, JACM, Vol. 28 No. 1,
pp.114-133, Jan. 1981

2. I. J. Chung: Improved control strategy for
Proc. of IEEE
tools for Al

parallel logic programming,
interantional conference on
pp. 702-708, 1989.

3. I. J. Chung: Improved control strategy for
parallel logic programming, Ph. D. dissertation,
Univ. of lowa 1989.

4. J. S. Conery: Parallel execution of logic
programs, Kluwer Academic Pub. 1987.

5. E. W. Dijkstra: Guarded commands,
nondeterminacy and formal derivations of
programs. CACM Vol. 18 No. pp,453-457, 1957.

6. S. Gregory: Parlog, Addison Wesley 1987.

7. C. A. R. Hoare: Communicating sequential
processes, CACM Vol. 21 No. 8, pp.666-677,
1978.

8. J. E. Hopcroft and J. D. Ullman:
Introduction to automata therory, languages and
computation, Addison Wesley 1979.

9. S. Kasif: Control and data driven execution
of logic programs: a comparison, Internationl J.
of parallel programming Vol. 15, No. 1, pp.73-99,
1986.

10. R. A. Kowalski: Algorithm = logic + control,
CACM Vol. 22, No. 7, pp.424-436, 1976.

11. G. H. Pollard: Parallel execution of Horn
clause programs, Ph. D. dissertation, Dept. of
computing, Imperial College, 1981.

12. W. Savitch: between

nondetrministic and deterministic tape complexi-

Relationship

ties, J. of computer sytems and sciences, Vol.
4, No. 2, pp.177-192, 1970.

13. E. Shapiro: Subset of Concurrent Prolog
and its interpreter, Techncal report TR-003 Feb,
1983.

14. E. Shapiro: Alternation and the computation
complexity of logic programs, J. of logic
programming No. 1, 1984.

15. E. Shapiro: Concurrent Prolog, Collected
papers, Vol. 1, and Vol. 2, MIT Press, 1987.

16. P.
alternation, third international conference on logic
programming, LNCS Vol. 225, pp.99-106.

17. K. Ueda: Guarded Horn Clauses, LNCS
Vol. 221, Springer Verlag pp.168-179, 1985.

18. M.]J. Wise: Prolog multiprocessors,
Prentice Hall of Austrailia 1986.

Stepanek: Logic programs and

MAY W Eelzaad Asde) 2HE 34

[FER

3 A AEFAD

19804 24 © g=HEtrled A4etn F (o)A
& 198081 39 —1983+d 2% ¢ AMAAAL AHFE AR 2

SEEEEEREY 101 39-1983d 29 ¢ Foluigtn, BRI A}

19831 39Y—19843 8% © olFdxlfgm A A Y7}

1989+ 124 :] Univ. of lowa S84 &4, °]¥hAl(Ph.D.)

1992+ 39 —19924d 29 : zAigw i A 2wy

1992+ 3¢ — A | gy ApAzpsEt Qaksty) faa

o] & Tt

19784 24 (A Ew I AAFRH EA(FHAD
19819 24 [g=salyled] A4k E<d(e]E8AMAD
19843 84 [g alr)ed AR EJ(FEAD
A h 1986 8% @ u)=k vlAl7} Wid Manufacturing Center 474
1986'd 9¥— dA : daH}rled 2us
19873 84 : %35 Imperial College in London T¥+
Fghalol L W AR], VLSIAA, AAZ 2 2388 A2=54.

19784 29 © A&t Adztei et AlaEA s F(e]gh)

