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On Tidal Energy Horizontal Circulation
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Abstract [] Some features of tidal energy horizontal flux in the ocean are considered, using the concept
of “energy flux ellipses” which is a hodograph of momentary fluxes over a tidal semi-period. A
number of characteristics of this ellipse are considered as well as some peculiarities of energy flux
field in different types of tidal waves and their combinations (plane, Kelvin, Sverdrup, Poincare,
amphidromic system). For forced tidal waves in equatorial channels some results are obtained explain-
ing the dependence of energy flux direction on the channel dimensions.
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1. HORIZONTAL TIDAL ENERGY FLUX

The local horizontal flux of tidal energy is closely
related with the wave nature of tidal movements
and is characterized by its surface density w=pgh&i
in which p is sea surface density, g- gravity, h - de-
pth, &-tidal surface elevation, U - vertically averaged
tidal current velocity vector with comonents u and
v. In general, for one tidal harmonic constituent
one can write

E=H cos(ct—o);
u=U cos(ct—a,);
v=V cos(ct—¢,),

@

where H, U, V are amplitudes, ¢, ¢,, ¢, are phases,
o is tidal frequency, t is time. If the tidal current
is reversing (rectilinear), v vanishes and we obtain
w=w,+w, where

w,=(1/2)pghHU cosB[ 1+ cos2(ct—d)J;

w,=(1/2)pghHU sinf sin2(ct— ¢). @

Here w,, w, are active (pulsating) and reactive (alter-

nating) parts of w and B=¢,—¢ is the phase shift
between € and u (Godin, 1969). The w, to w, pro-
portion in local tidal oscillation determines its stru-
cture indicating the proximity to either progressive
or standing type. Both w, and w, oscillate with the
frequency 2c and their phase shift equals to + 90°.
Time averaging of w gives zero for w, and so the
density of net energy flux is:

{wy =<{w,>=(1/2) pghHU cosp. 3)

If the tidal current is rotary (what is more com-
mon) and its hodograph is an ellipse, the vector
w also changes its direction and has the compone-
nts w, and w, each in general consisting of active
and reactive parts as follows

w,.. =(1/2) pghHU cosB.[ 1+ cos2(ct—)J;
W,.. =(1/2) pghHU sinf, sin2(ct—0);

“

W, =(1/2) pghHV cosB,[ 1+ cos2(ct—)];

w;,,=(1/2) pghHV cosB, sin2(ct— o). ©)

where B,=¢.,—¢ and B,=¢,—¢ are phase shifts of
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components u and v with respect to & From Egs. (4)
and (5) one can see that the relations w,x: W,, and
W« W, do not depend on time, ie. the directions
of W, and W, remain constant and may be determin-
ed by the azimuths

Ya=tan" (W, /w,,)=tan " '(U cosB.)/(V cosB,)]

ytan (W) =tan [(Usin)/(Vsing)]. @

Comparison of Eq.(6) with Eq.(1) shows that the
azimuth y, coincides with direction of the current
for the moment tyw=d¢/c (high water) and the azi-
muth y,-with that for zero level moment t,=ty+ T/
4 (T=2n/oc is tidal period). Time averaging of w
again gives zero for w and for the density of net
energy flux one obtains

Wy =(1/2)pghHusm, 0!

where Uyw is the current vector for the moment
of high water.

The behaviour of W in time can be described
by a “fan-like” varation of a vector issuing from
given origin point. The hodograph of this vector
forms an ellipse geometrically similar to that of ti-
dal current Nekrasov, 1987. Both the ellipses have
the same oblateness and orientation, and it is con-
venient to depict them simultaneously with coincid-
ing origin points (Fig. 1). In this case the line seg-
ment connecting the centers of current and flux el-
lipses correcponds in direction (and also in value,
if the scale accepted for w is used) with the net
flux vector {w,. The w-vector runs round the flux
ellipse twice per one tidal period T, whereas the
u-vector performs only one complete revolution per
T. On the whole the simultaneous representation
of both ellipses may be used as an energetically
informative diagram.

In general the horizontal energy flux provides the
transfer of tidal energy from sources to sinks. This
transfer is realized in form of tidal waves which
can be ecither free or forced determining, correspon-
dingly, either induced (co-oscillating) or proper (in-
dependent) tide. It seems expedient to consider
some characteristic features of the horizontal energy
circulation by apnlication of W-diagrams to common-
ly known analytical solutions describing diffc;rent
types of tidal waves. Various examples of such dia-
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Fig. 1. Construction of energy vector diagram.
a) tidal oscillations of sea susface; b) tidal current
ellipse and corresponding hodograph of W-vector
(energy flux ellipse).
I-hourly corrent vectors, 2-hourly W-vectors, 3-net
flux vector <{W).

grams are shown below.
2. PLANE WAVES

For individual plane tidal wave the w-diagrams
have rectilinear form in accordance with reversing
character of tidal currents. In Fig. 2 the w-diagrams
for free progressive, standing and intermediate (pro-
gressive-standing) waves are given corresponding to
purely active, purely reactive and mixed type of
energy fluxes. If a is the amplitude of positevely
directed wave and b is that of negatively directed
one, k being their wavenumber, so for three mentio-
ned cases one obtains for w:

w,=(1/2M[1+cos2(ct—kx)J;
w,=M sin2kx sin2ot; 8)
w,, = (1/2M(1 — [ 1 + cos2(ot—kx)]

+M 2 sin2kx - sin2ct,
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Fig. 2. Energy flux in plane waves.
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a) Purely active energy flux (solide curve) in plane progressive wave at the moment t=0. Dotted curve-sea surface
profile vector filed for W are given for two moments. Cotidal lives are also shown. For points lying on cotidals
0, Il and VI the energy vector diagrams (here rectilinear) are depicted; b) Energy flux in plane standing wave
for four moments (t=1.5; 4.5, 7.5 and 10.5). Fluxes are reactive and equal to zero for nodes and antinodes,
being maximal at half way between them: c) Active (thin), reactive (broken) and summary (thick) flux density
distribution in progressive-standing wave with r=0.577 for various moments. By dotted line the “progressive past”
of the mixed wave for relevant moments is shown. Energy vector diagrams for some points are given in the

bottom.

and

wpp=(1/2) M;
(W =0; ©)
W =(1/2) M(1—1),

where M=pg az\/ﬁ Only for progressive wave the
vector field of net fluxes is spacely uniform; in other
cases it is attenuated in nodes and antinodes and
is amplified at half way between them.

The elliptic form is acquired by W-diagram in
case of cross-intersection of plane waves. In particu-

lar but important case of crossing of two standing
waves, the so-called “Harris amphidromies” arise
with cotidal lines pattern resembling a system of
gears staggerly meshed and forming cells of rhom-
bic form with alternating sign of phase gyration
(Fig. 3). The tidal currents become rotating the se-
nse of rotation corresponding to that of phase gira-
tion. Geometric details of resulting picture depend
on the amplitude and phase relationship of partial
waves superposed and the angle of their intersec-
tion. In Fig. 4 the W-diagrams for two contiguous
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Fig. 3. Amphidromic systems (“Harris amphidromies”) re-
sulting from cross-interference of two plase stan-
ding waves with n,=06; a=60° and y=60° (2
hours). The rhombic cells of right and left phase
gyration are shown with covesponding amphidro-

mic points (black or white) in their centers.

s L v

cells, “meshed” with their mutual cotidal lines, are
shown. One can see that though the current and
flux ellipses (and so the instantaneous energy fluxes)
are different in right and left cells, the net flux pat-
terns in these cells are bilaterally symmetric. The
components of net flux are determined as follows:

{wy=—2M n, sino siny sin2k"y:

. 10
{wy=2M n, cosa cosy sin2k'x, (19)

where n, is the amplitude ratio of crossing standing
waves, o is semi-angle of their intersection, y is
the phase difference of these waves, and k', k” are
projections of wavenumber vector K on axes x and

Fig. 4.

171

Current (thin) and energy flux (thick) ellipses in
two contiguous cells. Instentaneous fluxes are diffe-
rent in these cells but net fluxes (broad open ar-
rows) are bilaterally symmetric.
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Fig. 5. Net fluxes in “Harris amphidromies” witk n,.=10;
a=60°, y=60°.
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y. ie. K'=k sina; k"=k cosa. Generally net flux
vectors are represented by alternating closed circu-
lations around amphidromic points with intensity
being maximal as the phase shift between crossing
waves approaches to +90° (Fig. ).

3. KELVIN WAVES

Though the Coriolis force, being inertial, does not
do any work and does not change the total tidal
wave energy content, its effect leads to significant
transform of kinematic characteristics and energy
structure of a wave.

The most common analytical solutions describing
tidal waves in presence of the Coriolis force are
given in form of the Kelvin, Sverdrup and Poincare
waves. For the Kelvin wave we have

w,=(1/2) M; [1+cos2(ct—kx)J;

(wo=(1/2) M. (n

where M, =pg a,%\/gh. Here a,=a(mB/sinh mB)-exp
(-my)-is the Kelvin wave amplitude, B is the width
of the basin, m=f/y/gh (where f is the Coriolis pa-
rameter) and a is the amplitude of “E-equivalent’
(equivalent in energy content) plane wave. In
Fig. 6 some characteristics of energy flux in Kelvin
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Fig. 6. Energy fluxes in Kelvin waves.

a) Energy vector diagram for a semi-diamal cycle;
b) Energy flux profile across the channel for Kelvin
and E-equivalent plane waves; 3) Energy flux pro-
files for interference of two opposite Kelvin waves
having equal (left) and nonequal (right) amplitudes:
d) Scheme of energy cross-transfer following the
Kelvin wave reflection in a rectangular bay.

waves are presented which are determined primarily
by energy concentration in the right (in the Nor-
thern Hemisphere) flank of an individual wave with
corresponding local intensification of the energy
flux (the w-diagram remaining rectilinear). The inte-
rference of two opposite Kelvin waves in a channel-
like basin of width B may lead to the rise of “Tay-
lor amphidromies” and to “energetic countercur-
rent” near one of channel sides if the amplitude
ratio of waves exceeds exp (—fB/gh). If a Kelvin
wave reflects in the head of a gulf, the superposition
of arising standing Poincaré waves provides the tra-
nsfer of energy across the gulf completing the cont-
rary fluxes by a “transversal link”. Note that in co-
ntrast with abovementioned “Harris amphidromies”
there is no closed energy circulations around those
of Taylor.

4. SVERDRUP AND POINCARE WAVES

For a progressive Sverdrup wave travelling in x-
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Fig. 7. Current and energy flux ellipses in Sverdrup waves
for different S. with broken curve the wave profile
is schematically shown.

direction we have

w,=(1/2) M, [1+cos2(ct—kx)I;

w,=(1/2) s M, sin2(ct—k.x); (12)

ww=(1/2) M,
{w,» =0,

where M,=p g aX1—s?) ? /gh. Here a,=a(l —s)**
is the amplitude of Sverdrupe wave, k,=k(1—s%)"?
is the wavenumber of the Sverdrup wave and s=f{/o.
As in the case of Kelvin wave, a is the amplitude
of “E-equivalent” plane wave. In Sverdrup waves
the equality of potential and kinetic energies is vio-
lated in favour of the latter and here the w-diagrams

(13)

become elliptic and depend substantially on the pa-
rameter s (Fig. 7). The longitudinal flux component
is purely active whereas the transversal component
is purely reactive. The net flux is spacely uniform
and depends inversely on s tending to zero when
s—0 (at “critical” latitudes). If the Sverdrup wave
reflects normally and totally from the shore, the

Fig. 8. Horirontal energy net fluxes for the zero, partial
and total reflection of a Sverdrup wave from the
straight coast.

(W) vector field is divided into zones with net fluxes
having contrary alongshore directions; if the reflec-
tion is not total, the net fluxes only deviate from
the normal to the shore (Fig. 8).

If the reflection of Sverdrup wave is oblique, it
results in progressive Poincar¢ wave travelling along
the coast with the alongshore flux components
being purely active and the normal to shore com-
ponents-purely reactive. If the coastline is oriented

along the x-axis, we have

w,=M, [sina(1+cos2k”y)—s cosa sin2k"y]
[1+cos2(ot—k'x)];

w,=M, [cosa sin2k"y—s sina(l+cos2k"y)]
sin2(ct—Kk'x);

(14)

{w)=M, [sina(l+cos2k”y)—s cosa sin2k"y]; a
<w> =0.

S)

The net flux is directed along the shore and mainly
with the wave. However, a specific effect takes place
in this case constituting in formation of stripe-like
alongshore zones with net flux directed opposite
to the phase velocity of Poincare wave (Nekrasov,
1987). Figs. 9 and 10 illustrate this effect and its
dependence on distance from the shore, the para-
meter s and the angle of intersection of initial Sver-
drup waves.

Taking into account the Coriolis force modifies
the tidal energy circulation in “Harris amphidro-
mies” resulting from cross-interference of standing
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Fig. 9. Current and energy flux ellipses for a Poincare
wave in a channel-like basin. Solid curve - net flux
cross-profile; broken curve-sea surface profile for
t=0.

<w>

Fig. 10. Cross-profiles of net energy flux in a Paincaré
wave for different a and s.

waves (Fig. 11). The principal effect consists in inte-
nsification of cum-sole (right, if s>0) circulation
rings with weakening of contra solem (left, if s>0)
ones. Similar results can be obtained by considering
the reflection of progressive Poincaré waves in the
head of a wide gulf-like basin. As it is shown in
Fig. 12, such a reflection leads to intensive cum-sole
energy circulation around the central “axial” am-
phidromic point accompanied by the relatively
weak contra-solem circulation around the “coastal”
amphidromies (Nekrasov, 1990). If the Poincare
wave reflection is total, one can say that the Coriolis
force makes it possible to net fluxes to arise, but
only in form not modifying the integral energy ba-
lance and tolerating nothing but closed circulations
around amphidromies.

v JAX AL
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Fig. 11. Net fluxes in “Harris amphidromies” resulting
from cross-interference of two standing Sverdrup
waves with n,=10, a=60° s=0.519 for different
y. a) y=60° b) y=128°; ¢) y=210°.
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Fig. 12. Net fluxes resulting in a channel from reflection
of Poincaré wave with a=45° and s=0.7337.
a) total reflection (r=1.0); b) partial reflection (r=
0.5)

5. ENERGY FLUX IN FORCED
TIDAL WAVES

To analyse some specific characteristics of energy
flux in forced tidal waves caused by direct action
of tide-generating force, we shall confine ourselves
to consideration of the simplest solutions for semi-
diurnal tidal movements in channels of constant
depth and width oriented along the equator or a
latitude parallel. By varying the parameters of the
channel one can imitate approximately the condi-
tions typical for seas, gulfs, straits, shelves or, lastly,
ocean basins.

The consideration of tidal energetics in basins
of mentioned type can be started on the basis of
solution obtained by H. Lamb and L. Swain (1915)
for an equatorial channel enclosed on its ends and
without friction. In this case, using the expressions
for &€ and u given in Lamb and Swain (1915), we
have for the net energy flux:

(wp=— [(pgHRo)/[4(q*— 1]} [1+(q sinda)/sindqa)
—A cos2gA-cos2Ah+ D sin2gA-sin2A] (16)

with

Fig. 13. Distribution of timely averaged densities of energy
fluxes (solid curves) and work done by M, tide-
generating force (broken curves) along the enclosed
basins with different lengths (h=3268m):

a) L=2000 km; b) L=3500 km; ¢) L=4500 km;
d) 6000 km.

A=cos2a/cos2qa.+ g sin2¢/sin2qa;
D=sin2a/sin2qo.+ q cos2a/cos2qa, (17)
where H is the amplitude of equilibrium tide, R
is the Earth’s radius, g=oR/y/gh and A is the geo-
graphical longitude. The channel has its central
point at A=0 and its closed ends at A=%qa. In
this basin, with absence of dissipation and energy
radiation, the energy budget is to be maintained
by a work p done by tide-generating force, ie. the
action of astronomical sources and sinks, is to be
balanced and must be accompanied by a net energy
flux {w) directed from the formers to the latters.
In Fig. 13 the distribution of net values {p> and
{w) are presented along the basins of different de-
pth and length showing the considerable depende-
nce of mentioned net values on the basin geometry.
If the basin length is relatively small (under the
first resonance) the eastern half of the basin repre-
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Fig. 14. Changes in astronomical source and sink posi-
tions for under-resonance and over-resonance si-

tuations.

sents the energy source and the western half is the
sink the wave motion transporting energy from east
to west (in negative direction). After passing the re-
sonance (for longer basins) the situation changes:
as a result of general inversion of the response
phase the source and the sink change their places,
and energy is now transported from west to east
(Figs. 14 and 15).

Some generalization of these results may be
achieved by introducing the “impedance” boundary
conditions at the ends of mentioned channels what
imitates partial radiation or “contour” dissipation
of energy. For western (W) and eastern (E) ends
these conditions may be written in the form:

for (W): u=—[(1—tw)/(1+1w)]-&/gh;
for (Ey u=[(1+re)/(1+1:)]&/gh,
where 1y, 1z are amplitude coefficients of reflec-

tion, generally complex. In our case only real posi-
tive values of r are used imitating coastal dissipative

(18)

losses.

Employment of Eq.(18) results in significant cha-
nges in the scheme of the energy budget by adding
to it geophysical sinks, whose existence at, say, one
of the ends leads to a “suction” of energy from
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Fig. 15. Tidal current phase distribution along the equato-
rial channel-like basins for under- and over-reso-
nant conditions corresponding to b) and c) in
Fig. 13. solid curves: enclosed basins; broken cur-
ves: energy loss at the western end; dotted curves:
energy loss at the eastern end.

the basin favouring the additional energy transfer
in the direction of the sink. This involves correspo-
nding modification of tidal kinematics, ie. the amp-
litude and phase pattern what, in turn, influences
the characteristics of astronomical sources and si-
nks. Therefore the introducing of geophysical sinks
may transform all the elements (items) of the energy
budget.
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Fig. 16. Similar to Fig. 13(b) but with some conbinations
of energy losses at both the ends of basins.

In Figs. 16 and 17 some results are presented
obtained with the boundary conditions (18) corres-
ponding to losses equal to zero (r=1), to 1/3 (r=
0.8165) and to 2/3 (r=0.5773) of the incident wave
energy admitted in various combinations for wes-
tern and eastern ends. Substantial for the resulting
energy flux is the position of a geophysical sink
with respect to “initial” (corresponding to enclosed
dissipativeless basin of same dimensions) flux direc-
tion. The sink position which originates the flux
directed in the initial sense may be called positive;
if otherwise-negative. Generally the positive sinks
intensify the energy transfer whereas the negative
sinks originate “countercurrents” in their proximity
reducing the fluxes in other parts of the basin. In
the last case a divergence of fluxes form an inner
point is possible. Such a divergence, naturally, takes
place in all cases when two sinks exist at both the
ends (Nekrasov, 1990).

The influence of coastal energy loss upon astro-
nomical items of the energy budget is also illustra-
ted by Figs. 16 and 17. In particular, it can be seen

Cafen

Fig. 17. Similar to Fig. 13(c) but with some combinations
of energy losses.

that in some cases the geophysical sinks not only
“take on themselves” some part of energy expendi-
tures but also may stimulate the energy income by
intensifying the astronomical sources whereas the
astronomical sinks generally weaken. The resulting
tidal movements in all mentioned cases may be
interpreted as progressive-standing waves whose
progressive part is reducing when approaching anti-
resonance. After each passing a next resonance the
direction of progressive part propogation changes
inversely according to the changement of the hori-
zontal flux of energy.
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