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The intent of this study is to develop an efficient calculation method which can be used to
analyze the heterogeneous time—dependent reactor problems. By using the nodal theory one
can not only reduce the calculational efforts, but accurately determine the group dependent
flux densities averaged over the entire homogeneous nodes. This method uses correction
factors(called “discontinuity factors”} in a rigorous manner to obtain the relationship between
the node-averaged flux and the surface—averaged fluxes and currents. The discontinuity
factors are calculated from the node—averaged fluxes, diffusion coefficients, and the discon-
tinuity factors of the previous time step. The test results for two benchmark problems demons-
trate the accuracy and efficiency of the method déveloped for the transient application in

which assembly-size nodes can be used.
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1. Introduction

The safe operation of a nuclear reactor requires
the fast and accurate determination of the nuclear
characteristics for steady state and transient core
conditions, and many hypothetical accident sce-
narios. The investigation of such situations re-
quires calculational tools that can be used for va-
rious transient analyses. In a recent year, Werner
[1], Finnemann[2], Sims{3), Shober(4], and
Smith[5] have solved transient problems using
ANM(Analytical Nodal Method), NEM, and Re-
sponse Matrix Method to get accurate solutions.
These methods also reduce much of execution
time compared to traditional finite—difference
method. Since their formulations were mainly de-
rived from the diffusion equations, the equiva-
lence theory can be introduced to include the
transport effects and to predict well the power
distributions without leading to large compute-
tionally efforts near the severe flux tilt regions.

The intent of this study is to develop an efficient
calculation method which can be used to analyze
the heterogeneous time—dependent reactor prob-
lems. By using the nodal theory, one can not only
reduce the calculational efforts, but accurately de-
termine the group dependent flux densities aver-
aged over the entire homogeneous nodes. The
nodal balance equations can be derived directly
from the Boltzmann transport equation. The diffi-
culty involved with nodal method, however, is in
obtaining coupling relations that relate the
node—averaged flux and the face-averaged fluxes
and currents. The method, which were suggested
by Koebke[6], later modified by Smith[7], and
applied to static fast reactor problem by Chang[8]
, does have the ability of reproducing any exact
solution. This method uses correction factors(cal-
led “discontinuity factors”) in rigorous manner to
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obtain the relationship between the node—aver-
aged flux and the surface-averaged fluxes and
currents.

In this study, the method using discontinuity
factor will be applied for transient problems to
reduce errors coming from the node homogeniza-
tion and finite—difference method. The method
uses a conventional inner and outer iteration
schemes. The computer code based on the
method is tested and applied to benchmark prob-
lems to determine its accurary and efficiency.

2. Theoretical Model

2.1. Derivation of Time-Dependent Nodal Ba-
lance Equation

The nodal balance equation, which is directly
derived by the time—dependent transport equation
with delayed neutrons, for the neutronics behavior
of the reactor can be written in standard multi-

group form
w 6 ik
199 ! 22 ijkey 3 W
—_— 1.(r,Ong dS, + Z*() t
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The notation is fairly standard, and the double
-barred ¢ ;)% and C}'* account for the
volume—averaged neutron flux and delayed neut-
ron precursor density in node (i,j,k), respectively.
The summation nil is over all six faces of the mesh
cube, the fg being outward drawn normal to
surface S,. It is assumed that all cross—sections are

constant within each node. However, since it in-
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volves the surface-averaged net currents and
volume-averaged flux, ¢§"‘ further relatioriship
between these unknowns are needed. Fick’s law
and the finite—difference approximation are accor-
dingly employed in an expression for the sur-
face—averaged net current at a common surface of
two adjacent nodes. Thus the surface—averaged
net current at x;+; between node (i,j,k) and node
(i+1.,j,k) as shown in Figure 1 can be written as,

for a group g,

- 1
J'(Xiﬂ,t) = m'[}@dy"‘h:dz J,x(xi,l,y,z,t)

1 = K
WJ‘ r{dy J h:dl iy, 2t ~¢g ®©
~ - Dk —= ‘
¢ his2
= Wik 1
% J (O W H.ydy.[h:dz %(xi,,;,y,z,t)
i+1j Kk yiir
0] = 3)
X

where the integrated term is the surface—averaged

flux at x;+1.
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Fig. 1. Notation for Specifying Two~Dimensional
Correction Factors
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The remaining five surface—averaged net cur-
rents can be expressed in analogy with equation
(3). The elimination of the surface—averaged flux
from the two expressions in equation (3), then,
yields the surface—averaged net current in terms of
known quantities and the volume—averaged fluxes.
However equation (3) can be a poor approxima-
tion for larger mesh sizes. A way of getting around
this problem is to alter equation (3) so that it is
forced to be exact. By introducing correction fac-
tors [6,7,8] into equation {3) and dividing the
surface-averaged flux by these factors, we can re-
write equation (3) as

Jh" dy Ih:dz JpxXie1,3,2,0)

iy Jsd a0 - by b g0
= _Dik(y B
D*®

hi/ 2

P = ek 1 )
hih; & - _f';‘_i Y@ I w’,dy fh: dz 0glxi1,y,2,t)

=-DitNk(y .
. hi*y 2
4

.[p{l dy Jh: dz 90, 1,,2,8)

where, fgf(t.) = —
" dy Jh: dz ¢ (X ny2,t)

[y [ dz iz
il O LS

. hom_ +
h’,dy',‘h:dz ¢g (xNhY»zyt)

£ixw, £25%w = correction factors,
A"}, ,y,2,) =homogeneous surface fluxes

on both sides of x;+;
And analogous expressions can be written for the
five other surfaces. In equation (4), #$4(x;+1,9.2,t) is
the physically real, heterogeneous flux at an arbit-
rary surface x,+; which is continuous everywhere
in the reactor core region. The fictitious homoge-
nized fluxes, ¢3°'“(xii’+1,y,z,t) at surface x;+, are
viewed as arising when homogenized diffusion
theory parameters are used throughout the nodes.
The $5°™s are thus allowed to be discontinuous
across the surface. For this reason. the correction
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factors are referred to as “discontinuity factors” = ijk < ijk

and have no particular physical significance. In —kd[(c—d-jlgigd—-)ﬂ] ®)
general, fg;t““(t)#:fg”"(t) Note that the correc-

tion factors(f’s) account for the fact that we are Equation (8) can be rearranged to obtain
assuming Fick’s law with a somewhat arbitrary - l—hAt,, ‘ G

value of Dy to be correct and for the fact that we (Edu'k)m‘: -—%d— (Edldk),,«»Bd Atn{z g ¢g ‘-'"‘} )
are making the finite—difference approximations. L+—at, g e
Equation (4) can now be solved for the sur-

face-averaged net current at x4, by eliminating where, Bl = B4

the physically real continuous surface—averaged 1+—§Atn

flux. The following relationship is thus obtained.
By using equations (6), (7), and (9) and by substi-

Jw;dy jh:dz JexXirpy,2,) tuting of equation (5) and analogous expressions
for the five other surface—averaged net currents
g k[ B, £ (0 for node (i,j,k) into equation (1), we can obtain the
Coy m following set of finite—difference equations :
Vi o not= oy
St -1 i ne1—
_‘—hf;?}itﬂ el e-gol e O ST
i ik i1 deljk
Similar expressions can be obtained for other five =-h}h [I;D%k + h2 D‘?: 5 ] gk 3 " Qif P
surfaces. On the other hand the time—difference
forms of equations (1) and (2) are obtained by Wk {h‘ ‘;x'k by ‘;xl"'k} (E5% 3, = ik - g rRtS
discretizing the continuous time domain into a ’ o 2pp X ns ‘

sequence of absolute time values t.ty,....tn,....tr % t‘,,i‘ bl {j+Lk

J+l.k % “ ik
2Duk 2Du+1,k JV [ Qy ¢guk]n+l
n+1

h’ :‘,,f bl g

A A U‘
Du,k Du- J [GY*
approximate the time derivative for each time in-

where t, and t; are the initial and final times, [
= K ik kel gijke
terval At,=t,+;—t, as ni h{h G hrigix 1} (x5, 1k

respectively. The time dependent quantities can
= ij-Lk

be symbolized by using subscript, n. We then - X Zg”"‘)ml

Tt 48 —t;""¢""‘] 1
N L 2D;JX 2 Dx;xﬂ 8! (3
pi —_ Js
iﬁi~k(t)5w (6) . [nk t},’k k1 gix-1]”
at At bl pd (k-1 ‘_f;jx 3 1K)
x Dllk DI;J( -1 - Og n+1
where FUX(t) represents # 3% or Cip*, o .
The delayed neutron precursor terms are central - Vijxlek ik 3 0 M Ine1+ Vi ZX (1-B) vEid¥ § .MJ
differenced over this time interval as g=1 n+l
= ik ik Bk S
Cq ——ucd et G0 (7) +Vm([2 I o “-*J
444 n+1
By using equations (6) and (7), the implicit form of e
G
the equation (2) can be written as A 2 =ik I
q + Ta (Cq  n+BJ AL, 21 VIRE g ik (10)
g= n+l

ijk ’
At 2"’43' L

= ijk = ijk G d=i LAty
(Ca dn1=(Cq Dl ik

—_— =y .

g'=1 n+l

Since all transient problems are assumed to start
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from a steady state condition, the initial precursor
density terms at node (i,j,k)} are calculated by the

steady state relation

. G
(Ed”'k)ﬁ-i—:[ > iy ”-“] (11)

g'=l
2.2. Boundary Conditions

For the interfaces not on the problem bound-
ary, the surface—averaged currents are continuous
across the boundary between two neighbouring
nodes. Along the exterior boundary of the reactor,
the surface-averaged flux is considered as con-
stant according to problem situations characteris-
tics.

2.3. Estimation of the Discontinuity Factors

Prior to examination of the coarse-mesh steady
state and transient solutions using the method de-
veloped in Section 2.1, the discontinuity factors
should be known in advance. As was mentioned
in Section 1, these factors can be calculated by
the fine~mesh finite~difference method, NEM,
ANM, or other methods. The discontinuity factors
are then used to get the initial coarse mesh solu-
tion for the steady state condition.

By using equation (6), the factor fg,ig’krk‘ at steady
state condition as shown in Figure 1 is given by

¢-i.i,k
T —— (12)
(1 ’Ei}’,? gx+ .
where
i

=surface-averaged flux at surface x;+; of node
(1,3,k),
Jot*=surface-averaged net current at surface ¥+,
of node (i,j,k).
Analogous calculations can be performed for
the other remaining surfaces of node (ij.k). In
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equation (12), ¢ % is a heterogenous flux at
arbitrary surface x;+; as shown in Figure 1 and the
g yrin

Once surface—averaged flux and current, and
node—averaged flux are obtained, the discontinuity
factors for the initial and coarse-mesh steady state
conditions can be determined by equation (12).

In this study the initial discontinuity factors are
calculated from the fine—mesh finite difference
method. In the method, by using equation (10) at
steady state by setting all discontinuity factors to
unity, surface-averaged flux and current, and

same as

node-averaged flux can easily be obtained using
the continuity condition of the neutron flux and
current at the node interface.

Once the initial discontinuity factors are deter-
mined, the coarse-mesh steady state and transient
core calculations, according to the method de-
veloped in Section 2.1, are continuously per-
formed based on the factors. Therefore accuracy
of the initial values greatly affects the entire calcu-

lational accuracy.

In order to update efficiently the discontinuity
factors with'time, we assume that the sur-
face—averaged flux, szg,‘g’;'k
very small time interval(At). By using Eq. (4),

does not vary within a

therefore, f,i7* for the transient is approximated as

follows
-i k
[ ngi ]n+1

[Q‘;;-k Jner= [ Tk

: hi 353,\(}
( S ijk gx+
2 Dﬂ n+l

U g o

[= ik pi Sk
Qg T oAk X+
2 D? n+1

In other remaining faces, the discontinuity fac-

(13)

tors are calculated in the same manner.

3. Application to Two-Dimensional

Reactor Problems

3.1. Benchmark Problems
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~TWIGL Reactor Problem

The TWIGL test problem[9,10] is a simplified
reactor kinetics model as shown in Figure 2. The
problem is modeled with two neutron energy
groups, one delayed precursor group, and quar-
ter—core symmetry. The reactor has a three region
core containing 400 fuel elements with widths of 8
cm. The two—group constants for the problem and
transient situations are given in Table 1. Two tran-
sients are initiated either by decreasing the
absorption cross section in region 1 of Figure 2 by
0.0035 cm™! either as a step perturbation or as a
ramp perturbation in 0.2 seconds. Each transient
is calculated for 0.5 seconds.

~LRA Problem

The LRA benchmark problem[10,11,12] is a
full-core BWR kinetics problem with two neutron
energy groups and two delayed neutron precursor
families. A superprompt critical transient from low
power is induced by the rapid withdrawal of an
asymmetric peripheral control rod. A simple Dop-
pler feedback mechanism is built—in in this prob-
lem. The feedback model is specified by two rela-

tions :
0 24 56 80
0 — x {cm)
N
3, _ 0
3 2 Y
24 N 8,=0
2 1
56
E!
N0 3
80 ~—
v %=0
y (em)

Fig. 2. One Quadrant of the Core for the Two-
—Dimensional TWIGL Benchmark
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adiabatic heatup :

%T(:,t) =al zn(?,w ¢I(7,t) + zm(?,t) ¢2(?, 1)

and Doppler feedback :

Eu(r 0= z.l(?,m[ 1+ (\/ (r,0) - »\/—’I—‘)]

where @, 7, and T, are known constants.

The reactor has 312 fuel elements, each having
a width of 15 ¢m. The core is reflected by 30 cm
of pure water. To make computations more eco-
nomical, this problem has been contracted into a
guarter—core problem, maintaining the same char-
acteristics of the original problem. Figure 3 shows
a horizontal cross section of a reactor quadrant,
consisting of 5 regions: fuel type I with rod (1),
fuel type | without rod (2), fuel type Il with rod
(3), fuel type II without rod (4), and reflector (5).
The group constants of 5 regions and transient

Table 1. Group Constants for TWIGL Problem

Dg 3
em) {(em™) {{m™Y) | {em™)

Vs, p>
Region | Group °s s 21

1 1 14 [0.01 | 0007 | 0.01
2 04 |015 |02

2 1 14 | 001 | 0.007 | 001
2 04 {015 |02

3 1 1.3 | 0.008 | 0.003 | 0.01
2 05 {006 |0.06

Transient 1
Step perturbation in region 1:
AT.»,=-0.0035 cm™! t=0
The transient is calculated for 0.5 seconds.
Transient 2
Ramp perturbation in region 1:
AZ,(1)=0.15[1-0.1166667 t] cm™?
t<0.2 seconds
0.1465 cm™!
t>0.2 seconds

The transient is calculated for 0.5 seconds.
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Fig. 3. One Quadrant of the Core for the Two
~Dimensional LRA Benchmark

Table 2. Group Constants for TWIGL Problem

. Dg 2, v 291
Region |Group (cm) (cm_gl) (cm_gl) (™Y
1 1 |1.255 |0.008252 | 0.004602 | 0.02533
2 10.211 10.1003 ]0.1091
2 1 |1.268 |0.007181|0.004609 (0.02767
2 10.1902/0.07047 |0.08675
3, R 1 [1.259 |0.008002 | 0.004663 |0.02617
2 10.2091(0.08344 |0.1021
4 1 }1.259 |0.008002 | 0.004663 |0.02617
2 10.2091|0.073324 | 0.1021
5 1 |1.257 |0.0006034] 0.0 0.04754
2 10.1592|0.01911 | 0.0
Perturbation

Control rod region (R) is given by
AZ,,=0.08344(1-0.0606184 ) cm™
for t<2.0 seconds
0.073324 ¢cm™!
for t>2.0 seconds
The transient is calculated for 3.0 seconds.

situations are shown in Table 2.

3.2. Computer Code

J. Korean Nuclear Society, Vol. 24, No. 3, September 1992

In order to perform the numerical analysis the
equivalent nodal finite—difference equation de-
veloped in Section 2 has been incorporated into a
computer program, TRANDIS(program to solve
TRANsient problems using DIScontinuity factors).
TRANDIS is written in standard FORTRAN 77. All
calculations presented in next section are per-
formed in single precision on IBM 386/PC and
CYBER 170/875. TRANDIS solves two
~dimensional, two—group problems and is capable
of handling uniform mesh spacing and rectangular
geometry. TRANDIS can also be easily extended
to three dimension and multi-group problems.

For the benchmark problems shown above, we
assume that the surface discontinuity factors at the
symmetry line with zero net current boundary
conditions are the same as in the previous time
step and the factors at the core outer line with
zero surface—averaged fluxes are equal to unity.

3.3. Numerical Results and Discussions

—TWIGL Reactor Problem

All the calculations for the TWIGL reactor prob-
lem were performed using one node per fuel ele-
ment and classified to two stages: steady state
and transient calculations. The steady state cal-
culation results include the eigenvalue and the
nodal power distributions to compare with the
references. The comparison of the eigenvalue with
the reference solution[10] at steady state is given
as follows

Reference ; 0.91318, TRANDIS ; 0.913155

The comparison of the nodal power distributions
obtained from TRANDIS with the reference[10] is
also shown in Figure 4. The absolute mean error
in the nodal power is 0.2%..The maximum rela-
tive error of 1.1% occurs at the core periphery
node, where the relative power is very low. Dur-
ing the transient, the results of the mean power
densities are summarized in Table 3 and the nodal
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Table 3. Average Power Density for the TWIGL Benchmark
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Time
(sec)

Ramp—Perturbation

Step—Perturbation

Reference?

TRANDIS®

Difference(%)

Reference®

TRANDIS

Difference®{%)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

1.000
1.131
1.316
1.577
1.972
2.082
2.090
2.098
2.105
2113
2.122

1.000
1.112
1.294
1.551
1.941
2.077
2.099
2.109
2.118
2128
2.137

1.68
1.67
1.65
1.57
024
-0.43
-0.52
-0.62
-0.71
~0.71

1.000 -
2.065
2.081
2.086
2.096
2.104
2111
2117
2.124
2132
2.141

1.000
2.031
2.066
2.085
2.097
2.108
2.117
2.126
2.136
2.145
2.154

1.65

0.72

0.14
-0.05
-0.19
-0.28
-043
-0.56
—-0.61
~0.61

a. Calculation results by fine-mesh NEM (Ref.{10])

b. Time step ; 1 msec, Flux convergence criteria ; 1074, Execution time (IBM 386/PC) ; 118 sec

c. Difference=

d. Time step ; 2.5msec, Flux convergence

(Reference—TRANDIS)

X100

Reference

1 2 3 . s . 7 . [} 10

1.258] 1,203 1.243) 2.373f 2.17¢] 1.967] 1.691] 0.647] 0.422] 0.129]

1 1.260| 1.295] 1.247] 2.372] 2.179| 1.9¢a] 1.689] 0.se8] 0.421f 0.133
-0.16 |-0.16 {-0.32 | 0.00 |-0.24 |-0.05 | 0.22 ]-0.16 | 0.24 | 0.72
1.021] 1.2sef z.3m0 2061 1.9a] 1.663] 0.635] o.a14f 0.13¢

2 1.3221 1.262f 2.378) 2163 1.9¢3] 1.661f 0.63¢| 0.a13] 0.138
.0.08 {-0.2¢ | 0.08 |-0.00 |-0.20} 0.22 ) -0.38 | 0.2¢ ] 0.74

1.198) 2.3%0| 2.123| 1.883) 1.602| 0.¢09} ©.396| 0.120

3 1.200| 2.351 2.123| 1.884] 1.600| 0.810f 0.395] 0.129
-0.25 |-0.06 | 0.00 |-0.05 | 0.13 ]-0.1¢ | 0.25 | 0.77

2.187] 2.033| 1.779] 1.500] o.séa| 0.368] 0.121

. 2.106] 2.035| 1.780] 1.e98| o.sés| 0.367} o0.120
0.05 |-0.10 {-0.06 | 0.3 ] 000 | 0.27 | 0.0

1.870 1.614| 1.3%0| o.s09| 0.329{ o.108

s 1.07¢0{ 1.6 2.2¢8f o0.509] 0.328] 0.207
-0.05 }-0.06 | 0.15| 0.00 | 0.30 | 0.9

1.300| 1.24af 0.432] 0.279{ 0.091

3 1.301] 1.246} 0.432] 0.279} 0.0n
90.07 0.17 9.00 6.00 0.00

Reference ---~-- 0.940} 0.343| 0.220] 0.072

7 TRANDIS ~---~-- 0.94sf 0.343{ 0.220| ©.072
$ Difference ~-- | 0.32] 0.00 | 0.00 | 0.00

0.260) 0.157] ©.0%1

[ 0.260{ 0.156¢| 0.0%1
0.00 0.64 0.00

0.093 0.030,

s 0.092) 0.030
1.08 [ 0.00

9.010]

10 0.010]
0.00

Fig. 4. Node~Averaged Power Distribution for

TWIGL at Steady State

power distributions at 0.1 and 0.5 seconds are
shown in Figure 5, respectively. The maximum

criteria ; 107%, Execution time (IBM 386/PC); 52 sec

1 H 3 ] s . 7 . ’ 10
1.203] 1.278| 1.230{ 2351 z.57] 1.951] 1.678] 0.603] o.ar9) 0.138
1 1.245] 1.200 1.234] 2.350] 2.140 1.95) 1.677] 0.844 0.419} 0.137
-0.36 [-0.16 |-0.33 | 0.04 |-0.14 |-0.10 | 0.06 |-0.26 | 0.00 | 0.73
1.307 | 1.247| 2.361] 2.147] 1.930] 1.654] 0.632] 0.411] 0.13s
2 1309 1.250| 2.360] 2.1e9] 1.931] 1.652] 0.633] 0.e11] 0.234
-0.35 [-0.24 } 0.04 [-0.09 {-0.08 | 0.12 [-0.16 | 0.00 | 0.74
1.a09) 2.341( 2.219] 1.082] 1.601| 0.609| 0.395] 0.129
3 1.193] 2.341| 2.118| 1.mez} 1.599] 0.609( 0.395} o0.129,
-0.34 { 0.00 | 0.05 | @.00 | 0.13 | 0.00 | 0.00 | 0.00
2.201f 2.05¢( 1.s01 1.%18] 0.571] 6.369{ 0.321
‘ 2.202] z.056| 1.902] 1.517| o.5sm| o.3¢8| 0.120
-0.05 |-0.16 |-0.06 | 0.07 | 0.00 | 0.27 | 0.e3
1,099 1.643f 21374} 0.524] 0.3 0.108
4 1.099] 1500} 1.392f 0.513] 0.330] 0.107
0.00 [ 0.00 | 0.15] 0.20 | 0.30 | 0.93
1.409| 1.272{ 0.437| 0.202) 0.092
6 1.408| 1.170] 0.437| o0.231] 0.091
9.07 [ 0.17 ] 0.00 | 0.36 | 1.09
Reference ---~-- 0.988 ©0.348] 0.222] 0.072
? TRANDIS ~---«-. 0.966| ©0.347( 0.222] 0.072
% Difterence -~-- | 0.21 | 0.29 | 0.00 | 1.37
0.26) 0.158] 0.052
8 0.263 0.158f 0.0%51
0.00 0.00 1.92
0.094| 0.031
® 0.0931| o.030
106 | 3.23
0.010
10 0.010
0.00

. : P
Fig. 5a. Node-Averaged Power Distribution for

TWIGL with Ramp—Perturbation at 0.1

secC.

error in the mean power density is about 1.68%
in the ramp perturbation and about 1.65% in the
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Fig. 5b. Node—Averaged Power Distribution for
TWIGL with Ramp-Pertubation at 0.5

secC.

step perturbation. In addition the maximum error
in the assemblywise power distribution is less than
0.4% in the inner and 3.2% in the outer cores
where the relative powers are very low. These
results indicate that the TRANDIS solution is accu-
rate. The TWIGL reactor problem demonstrates
that the nodal method with equivalent finite—dif-
ference discontinuity factors can obtain accurate
transient solutions with coarse spatial and temper-
al meshes.
~LRA Benchmark Problem

All the calculations for LRA were performed
using one node per fuel element (15 cmX15 cm)
and classified to two stages as TWIGL problem. A
comparison of the nodal static power distributions
with the reference(11] is given in Figure 6. The
maximum difference in nodal power is less than
2.0%. Figure 7 compares the mean powers for
the reference solution and the TRANDIS over the
interval 0<t<3.0 seconds. This figure shows that
TRANDIS predict the transient behaviors accur-
ately.
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Fig. 7. Average Power Densities vs. Time for LRA
Benchmark

A summary of transient results based on several
different methods is given in Table 4. It shows that
TRANDIS calculations with coarse spatial and
temperal meshes and matrix updating with sur-
facé—averaged discontinuity factors are accurate
and very computatiohélly efficient. TRANDIS solu-
tion slightly overpredicts peak powers and temper-
atures. The time to the first power peak is slightly
delayed compared to other methods. The execu-
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Table 4. Comparison of Results for LRA 2D Test Problem
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1

Wemer™ | Finnemann' | Sims®! |Shober® |  Smith™ Christe— | TRANDIS |  Refere-
(CUBBOX) | (IQSBOX) (QUANDRY) | nsen™ nce["]
Initial 0.9933 0.99631 - 0.99655 0.99641 09919 | 099637 | 0.99636
Eigenvalue
Number of 1200 522 1300 1000 1000 - 680 2600
Time Steps
CPU Time (sec) 180 255 1014 210 307 26473 138(*) 1661
(Computer) | IBM360/91 | CYBER 175 | IBM370 | IBM370 IBM370 Burroughs | CYBER | IBM370
/168 /168 /168 B7800 | 170/875 /195
Time to first 1421 1455 1432 | 1426 1435 1.500 1.482 1.436
peak (sec)
Power at first 5734 5451 5760 | 5552 5473 7447 5724 5411
peak (MW) |
Time to second 20 20 20 20 20 20 20 20
peak (sec) , '
Power at second] ~830 ~800 840 815 797 1098 828 784
peak (MW)
Average Temp. 1070 1127 1142 1127 1108 - 1085 10.87
at 3.0 sec (K}
Maximum Temp. 2925 2989 3163 3112 3029 - 3058 2948
at 3.0 sec (K)
Power at ~60 ~100 - | 970 975 741 | 145 | 92
3.0 sec (MW)

(*) Computing time in IBM386/PC is 397 seconds.

tion time for TRANDIS compares well with those
of CUBBOX, IQSBOX, QUANDRY and so on.

A comparison of the nodal transient power dis-
tributions with the reference case is not shown in
this paper since it is not convenient to compare
each other due to the differences of the mean
power densities at each time.

4. Conclusions

The test problem results shown in the study
demonstrate that the new method using the dis-
continuity factors equivalent to the finite—differ-
ence method for the transient problems, which is
developed in Section 2, is shown to be accurate

and highly efficient. It is found that if LWR’s can
be homogenized into assembly-sized nodes, this
new method can be expected to vyield assem-
bly-averaged powers accurate to within approx-
imately two percent, static reactor eigenvalues
accurate to within about 0.002 percent, and aver-
age power densities versus time to give very simi-
lar values to the references in trend and magni-
tude. This method is also shown to be more com-
putationally efficient than several different
methods of current interest.

Prior to the application of this method on test
problems, it is necessary to guess accurate initial
values of node-averaged and surface—averaged
fluxes through the fine~-mesh calculation at a
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steady state condition. Therefore, the study to get
not only accurately but efficiently the initial values
can be performed using several methods such as
ANM, NEM, or the finite-difference method with
one quadrant assembly—sized(or finer} nodes.

It is desirable for reducing much of execution
time to adopt the temporal integration scheme for
the use of larger time steps and to develop an
acceleration scheme which is more computational-
ly efficient than the conventional two—group itera-
tive scheme.
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