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Abstract

Series system reliability analysis of non-reactive contaminant transport is performed in a two
dimensional horizontal domain with two different limit state functions: (1) concentration threshold
and (2) exposure time threshold. The transient source transport model is combined with the system
rel’i‘é%’ﬁity model to evaluate the probability that a specified maximum concentration at a node of
interest would be exceeded or that a moderate concentration would exceed some exposure limit
over a given period of time.

The results give probabilities of exceedence greater than probability of each component and they
tend to be dominanted by the component with larger probability. Transverse dispersivity turns
out to be an important parameter in addition to hydraulic conductivity in a two-dimensional contami-
nant transport model with transient source. System sensitivity is found to reflect the corresponding
sensitivity of both components, with the component with larger probability having a greater influence.
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1. Introduction

In the companion paper, the first and the se-
cond order reliability has been treated in the
component reliability context which deals with
only one limit state function. In this paper, a pro-
blem of evaluating the system probability that the
concentration at a certain point will exceed either
a given maximum concentration or some other
moderate lower concentration for a given period
of time, which have potential in toxicity and expo-
sure risk assessment, is considered.

System reliability methods were first developed
in structural engineering to evaluate the probabi-
lity of failure of structural systems. First order
reliability bounds have been used to solve the
series system reliability problem by Ditlevsen®
and Madsen et al.? Efficient Monte Carlo simula-
tion techniques, e.g. directional simulation and
importance sampling, have been used to solve the
general system problem.®*® Some applications of
system reliability analysis cap be found in geote-
chnical engineering, for example, Luckman® for
slope stability analysis and Kim™ for earth retai-
ning structures. However, it was first time by Jang
et al® that the system reliability is used to grou-
ndwater flow and contaminant transport in satura-
ted sandy soils.

The formulation of limit state functions and the
system reliability theory are introduced briefly to
the extent to understand these analyses and the
system reliability analyses are performed using
two-dimensional contaminant transport model with
transient source. The first order reliability bound
method and the directional simulation method are
used to solve the general system reliability analy-
sis of contaminant transport problems.

2. Formulation of Limit State Functions

In the case of contaminant transport with a tra-
nsient source, concentration may exceed the thre-
shold concentration only for a finite period of
time. In this type of problem the “failure” event
is defined as exceeding the threshold at any time
during the specified interval and the limit state

function, g1(X), is formulated as:
g(X) = C—maxpas, C(x,y.t) (D

in which maxs«s, C(x y,t) denotes the maximum
concentration that is reached during the interval
0<t<t at location(x, y) and t, denotes the period
of time of interest. The gradient of the limit state
function is then obtained at the time of maximum
concentration in the form:

0&X) _ 9 maxoes,Clxy ) @
an axl

— a C(XZ, Y, tCmmc)
aXi

in which tcgay is the time when maximum concent-
ration is reached at the location of interest. The
maximum concentration is found using quadratic
interpolation of the time history of concentrations
at the point of interest and the probability is com-
puted when the maximum concentration is rea-
ched at the location of interest. The formulation
given by equation (2) assumes that there is only
a single peak in the concentration profile and this
concept can be extended to a plume with mul-
tiple peaks by considering the largest peak or
treating each peak as a component of a system.

Another formulation of the limit state function
considers the duration of exceedence of a speci-
fied concentration threshold, ie. exposure time.
The limit state function, g«(X), then has the
form

X)) = Ti—Tesce(xy,0) 3

in which Tcoce is the time interval during which
the concentration at the location (x,y) exceeds the
threshold C. and T, is the allowable exposure
time. The exposure interval, T, is thus a function
of the location (x,v) and the total elapsed time,
t as well as the basic random variables. The pro-

blem in this paper becomes a system reliability
problem, since “failure” in this case is defined
as a condition when either the threshold concent-
ration or a given duration is exceeded.
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3. System Reliability Theory

In general terms in a system reliability problem
the failure domain is given by

F = Ui cox g(X<0] @

where g( - ) is the i-th limit state function and
Cy denotes the k-th cut set of the system. A cut
set is a set of limit states whose joint exceedence
constitutes the failure of the system, for example,
a set of nodes at which threshold concentration
is simultaneously exceeded. All the cut sets of
a system are summed up as a union in equation
(4). In a special case, when each cut set has only
one element for each k, such as considered he-
rein, the system is called a series system. The
probability integral is then given by

o - [ fi0)dx )
¥

For a given system which has a set of random
variables, X, and a set failure mode with limit
state function g(X) i = 1,---, m, a failure probabi-
lity for a series system is defined by

For a simple case with two modes of failure,

Py, = PLas(X)<0 U gX)<0]
:Pl + Pz"“P]z

(7

where Py = P[g(X)<0] k =1, 2 are the indivi-
dual probabilities of failure and P;;=P[g(X)<0ng
A(X)<0] is the joint probability of failure of mode
1 and 2. Fig. 1 illustrates a limit state surface
in the two-dimensional standard normal space by
coordinated u; and u.. It also shows, two failure
modes and the corresponding first order tangen-
tial planes at the respective design point and u
represents the input random variables in the
transformed space.

The bimodel bounds on Py, are represented
by the individual failure mode and the joint failure
mode as suggested by Ditlevsen.!
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Fig. 1. Representation of limit state surface for two
failure modes in standard space.

k
<P+ Zz{Pi-maxN Pyl ®
By including bimodal effects, these bounds are
usually quite narrow. The bounds depend on the
ordering of the failure probabilities and the best
results are usually obtained if the modes are
numbered in order of decreasing value of Pi.%?
Thus P, in equation (8) is the probability of the
most likely mode of failure.

The first order approximation of joint probabi-
lity for failure modes i and j can be represented
by an intergral.”’

P, = &(~B)O(—B) + [ ‘o~ ~Bo)do @

in which ®(— ;) and ®(— ;) are individual failure
modes, p; is the correlation coefficient between
two failure modes and ¢*( - ) is the probability
density function for a bivariate normal vector. The
correlation coefficient py is given by:

(10)

Py = aiT

where a; and @ are the unit normal vectors at
the design points of the two failure modes direc-
ted toward the failure region and p; is a scalar
product of &; and a;. Referring to Fig. 1, it follows
that

Py = COS Vj an
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This relation has a simple geometric meaning, i.e.
failure modes exhibiting zero correlation have li-
mit state surface at right angles to one another,
while, those which have perfect correlation have
parallel limit state surfaces.

Finally, the generalized reliability index for the
system is given by®

Bsys - ¢Al(l'Psys) (12)

The reliability bounds are based on the first
order approximation and simulation methods may
be needed if a more exact estimate of the proba-
bility of exceedence is desired. The zero-one indi-
cator based Monte Carlo method is used herien
for verification of the reliability analysis"'? and
the directional simulation which is a semi-analyti-
cal, conditional simulation method is used for refi-
ning the results of the first order bimodal bound
method. In the directional simulation method the
probability of failure is computed by conditioning
on a simulated direction in the standard space®!
in the form:

Po= | Put@ida)da 13)

a n

where A is a unit directional vector having a uni-
form distribution over the n-dimensional unit
sphere € in standard space, Py, r.a(a) is the pro-
bability of failure of the system given that the
outcome of the variables in the standard space
lies on a vector from the origin in direction a
and fa(a) is the constant density of A on the unit
sphere.

Assume that rii = 1, 2,---, I) are the positive
roots of the limit state function Gi(ra) =0 and
define an indicator function associated with direc-
tion a as follows:

I(ra) = { 0 if ra [uwNjcox Gra)<0)] (14)

1 otherwise
Here I(ra)=0 defines the system failure and I(ra)
=1 denotes the system survival for outcome u
=ra in the standard normal space. The conditio-
nal probability of failure in direction a is represe-
nted by Bjerager!”
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!
Pysiala) = 1— Z 100.5(r; + i+ 1)a] (15)
i=0

[ 3rie D) — % 20D

where r=0 and r.1= o, %2 is the Chi square dis-
tribution of R?=UTU and U is a set of random
variables with n degrees of freedom in the stan-
dard space. By performing N simulations of the
unit vector A, the mean of the probability of ex-
ceedence is estimated as an average of the sample
values Pgsia.

4. Problem Formulation

An interesting and useful application of the re-
liability analysis is considering two possible failure
modes: (1) exceedence of a threshold concentra-
tion and/or (2) exceedence of a threshold concent-
ration over a certain period of time. Thus, the
problem posed here is to estimate the probability
that either the concentration exceeds 0.35 C, du-
ring the first 150 days following the release of
a contaminant or the concentration exceeds 0.2
C, at the location of interest over a period of more
than 75 days during the first 150 days following
the contaminant release. Transient source with
duration of 20 days is assumed. The finite ele-
ment mesh is shown in Fig. 2 together with the
source and the node of interest.

In this case the hydraulic conductivity is model-
led as a random field, while dispersivities are
treated as simple random variables. Thus, the mo-
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Fig. 2. Finite element mesh for system reliability
application

PN RNl Eope



del consist of 268 random variables which inclu-
des 240 hydraulic conductivities, two random va-
riable dispersivities, and 26 boundary heads. The
limit state functions are formulated as follows:

g1(X) = 0.35 C,—maxe<150 C(50, 30, t) (16a)
gX) = 75— Tcsozc, (50, 30, 150) (16b)

where maxy¢<i50 C(50, 30, t) is the maximum con-
centration that can be reached at the location (50,
30) during the time of interval 0 to 150 days and
Tcso2c, represents the time during which the con-
centration exceeds 0.2 C, at the location (50, 30)
up to 150 days.

The distance between the source node and the
node of interest is 30 m and the characteristics
of the soil are given by px = 3m/day, ox = 0.3
m/day; po=3m, o, = 03m; and per = 1.5m,
oqr = 0.15 m. The mean values of boundary heads
are 4.6 and 0.6 m at the upgradient and the down-

gradient boundaries, respectively, with negligible
standard deviation, giving a mean flow velocity
of 0.4 m/day. Distribution of K is assumed lognor-
mal and distributions of the other variables are
normal. The correlation length used in this analy-
sis is 20m and the porosity is a constant value
of 0.3.

5. Component Analysis Results

The component analysis is an essential step
performing a system reliability analysis if FORM
/SORM analyses are used. The contours of design
point values of parameters and sensitivities are
obtained from the first-order reliability analysis.

The concentration contours at the design point
for the two limit state functions are compared
with the mean concentration contours in Fig. 3.
In the concentration threshold case the two profi-
les overlap around the node of interest and the
design point concentration profile has significantly
higher peak concentration than that of the mean
concentration (Fig. 3a). The deterministic estimate
of the maximum concentration reached during the
assigned time interval of 150 days is 0.305 C, at
t—=84.49 days, while the maximum concentration
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Fig. 3. Comparison of design point concentration
profile with deterministic mean concentra-
tion profile

at the design point is reached at t=7940 days
which is about 5 days earlier.

The design point concentration profiles for the
exposure time analysis are shown in Fig. 3b. The
mean time interval during which the concentra-
tion reached or exceeded 0.2 C, begins at t=57.03
days after the start of the contaminant leakage
and lasts 65.62 days. At the design point the time
interval starts at t==59.05 days and lasts over 75
days. The dashed line indicates the deterministic
mean value concentration profile at the last time
step and the solid line is the design point concen-
tration profile at t=135 days at which time the
concentration becomes less than 0.2 C, As can
be seen, the design point concentration plume
moves less than the mean profile and it is less
dispersed in the transverse direction.

Fig. 4a shows contours of K at the design point
for the concentration threshold analysis. Design
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Fig. 4. Contours of K at the design point Fig. 5. Local sensitivity of B to px
60 )]
point values of K are generally higher than the 50 |
mean of hydraulic conductivity, pk, in the entire B
flow domain and higher K values are located
along the contaminant transport path. In contrast,
the contours of K at the design point for exposure
time threshold analysis (Fig. 4b) show smaller va- B
lues of K than pg in the entire flow domain. 0 i
The local sensitivities of B to ux and ox are o "O arves 3'3 Sven pra—— o 8‘0 . 9{0 o
shown in Fig. 5 and 6. In the concentration thre-
shold example, local sensitivity of B to K is high 6 (al concentration threshold
along the contaminant travel path (Fig. 5a). High -
sensitivity shown adjacent to the axis of the con- 5 i
taminant travel path indicates importance of tran- 40
sverse dispersion. Fig. 5b shows the local sensiti- © i
vity of B to px in the exposure time threshold L
analysis. Positive sensitivity obtained in the whole 20
domain except in the area adjacent to the source 10 _
shows that when K values increase, B increases. -
Highest negative sensitivity of K is distributed T ' 1o l 3‘0 l A|o | sIo l eyc I 7|o ‘ s‘o l s:lo 100
adjacent to the center of the contaminant travel (b) exposure threshold
path, because transverse dispersion coefficient has Fig. 6. Local sensitivity of B to o«
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a significant influence on the probability of excee-
dence and K smaller than px leads to lesser tran-
sverse dispersion.

The local sensitivity of B to ok is high along
the contaminant travel path for the concentration
threshold case(Fig. 6a). Negative sensitivity indi-
cates that an increase in oy results in a decrease
in B, which means that reducing the uncertainly
in the hydraulic conductivity will lead to a reduc-

Table 1. Results of Component Reliability Analy-

sis
Case Model B P
Concentration FORM 3.1576 0.000795
target =0.35 (tol=0.001)
Co SORM 3.1848 0.000724
Monte Carlo| 3.2038 0.000678*
(c.0.v.=(.5)
Duration time| FORM 2.6355 0.004200
target =75 (tol==0.001)
days SORM 2.7501 0.003414
Monte Carlo N.A.

SORM = Point fit. SORM with Tvedt’s exact integral;
tol=tolerance in FORM analysis; *6000 simulations

Table 2. Results of System Reliability Analysis

First order bounds of $ 258<B<2.58
bimodal bounds of P, |0.00494<P,<0.00494
bounds P12 0.3813
Directional
simulation
first order B 2.5996
| 0.00466
C.oV. 0.0900
second order B 2.6659
Pys 0.00384
C.OV. 0.1026
Monte Carlo B 2.6267
Simulation | 0.00431
C.0.V. 0.1995

pi2: correlation coeffcient of two failure modes;
c.o.v.==coeffcient of variation of Py, in Monte Carlo
analysis.
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tion in the probability of exceedence, as would
be expected. In the exposure time analysis nega-
tive sensitivity of B to ok is high near the node
of interest and adjacent to the axis of the conta-
minant travel path, indicating that transverse dis-
persivity and hydraulic conductivity are important
parameter in this analysis.

The results of the component reliability analysis
are shown in Table 1. The FORM analysis for
concentration threshold case converged to P= 7.95
(107% after 7 iteration with tolerance 0.001. The
solution required 1883 g-function calls and CPU
time was 223 min on Cray X-MP. The number
of g-function calls for the SORM analysis was
about the same as for the FORM analysis and
the CPU time was 23.8 min. The solution of Monte
Carlo simulation did not converge to a reliable
value after 6,000 simulations. In the exposure time
threshold case, the FORM solution converged to
tolerance 0.001 after 5 iterations and 1345 g-func-
tion calls, and 179 min CPU time were needed.
The CPU time for SORM analysis was 31.3 min.

6. System Analysis Results

Determining the probability of the union oi the
two failure events, known as series system analy-
sis, is the next step in this analysis. First- order
bimodal reliability bounds and directional simula-
tion with first- and second-order limit state surfa-
ces are performed and the results were compared
with those of Monte Carlo simulation (Table 2).
All three methods give P, of the system greater
than the P of the individual components. Accor-
ding to the results of the first-order bimodal relia-
bility bounds, the upper and lower bounds are
practically identical, which is often the case if P,
is small. The correlation coefficient between the
two failure modes is 0.3813.

Py obtained from the directional simulation
with the first order limit state surface is slightly
higher than that obtained with the second order
limit state surface. The results of the Monte Carlo
simulation are closer to those of the directional
simulation, although P, of Monte Carlo simula-
tion has not converged to a value with sufficiently
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small c.o.v. The results of Monte Carlo simulation
were obtained after 6,000 simulation of both limit
state functions and the total CPU time spent was
138.6 min on a Cray X-MP which is greater than
total CPU time spent for the FORM and SORM
analysis of the two limit state functions(36.4 min).
The CPU time spent for the directional simulation
methods with the first and the second-order limit
state surface is negligible(less than or equal to
1min) compared to that of FORM and SORM,
because analytical solutions for finding the roots
of the limit state surface are available.

The contours of local sensitivity of By, to distri-
bution parameters px and ox can be obtained
using the first order bimodal bounds (Fig. 7 and
8). Contours of sensitivity of B to both distribu-
tion parameters obtained at the upper bound of
the bimodal bounds reflect the corresponding sen-
sitivities of both components. However, the influe-
nce of the component which has a larger probabi-
lity of exceeding the threshold, i.e. the exposure
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time limit state in this analysis, is more signifi-
cant.

7. Conclusions

Series system reliability methodology is presen-
ted and an example reliability analysis is perfor-
med using a transient source transport model in
a horizontal two dimensional domain. Two limit
state functions, (1) concentration threshold and
(2) duration time threshold, are used in this anal-
ysis. For concentration threshold analysis, trans-
verse dispersivity turns out to be an important
parameter in addition to hydraulic conductivity.
This is because dispersion, especially in the trans-
verse direction apparently plays a major role when
threshold concentration is greater than the maxi-
mum concentration obtained from a mean value
solution. This trend is similar for duration time
threshold case. Sensitivities of hydraulic conducti-
vities iocated adjacent to the axis of the plume
and near the node of interest are high because
of the significance of transverse dispersion. The
results of the series system reliability analysis
give probabilities of exceedence greater than those
of each component and they tend to be dominated
by the component with larger probability. System
sensitivity is found to reflect the corresponding
sensitivity of both components, with the compo-
nent with larger probability having a greater inf-
luence.
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