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Abstract

This paper presents a p-version finite element approach for modeling the stress distribution
around a circular hole in a finite strip subjected to membrane and flexural behaviors. Also, same
problem with a crack emanating from a perforated tension strip was solved by virtual crack exten-
sion method. The p-version of the finite element method based on integrals of Legendre polynomials
is shown to perform very well for modeling geometries with very steep stress gradients in the
vicinity of a circular cutout. Here, the transfinite mapping technique for circular boundaries was
used to avoid the discretization errors. The numerical results from the proposed scheme have
a good comparison with those by Nisida, Howland, Newman etc. and the conventional finite element

approach.
1. Introduction thus sources of fatigue cracks. As fastner holes
are generally used to connect major structural co-
In the aerospace and machine structures, fast- mponents, they are often subjected to repeated

ner{rivet) holes are inherent stress raisers and load spectra. Load transfer occurs between the
- rivet and the bore of fastner hole generating a
AL AU EAAG typical elasti 3 tion stress concentration
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stress fields. As a result of these high stress con-
centrations, the critical assesment of any crack
emanating from these circular holes is therefore
of prime importance. In this study, the stress con-
centration factors of fastner holes subjected to
membrane or flexural behaviors and the stress
intensity factors of crack tip emanating from fast-
ner holes have been widely investigated. Finite
element techniques that are used to compute st-
resses and displacements in the vicinity of fastner
holes are divided into two categories. In the first
approach, the solution is then approximated over
the given domain by interpolation functions which
are piecewise polynomials on convex subdomaing
and which are globally in C", n 2 0, where n de-
pends upon the partial differential equation. The
degrees of the approximating piecewise polyno-
mials are fixed (usually at some low number such
as 1 or 2) and the accuracy of the approximation
1s increased by allowing h, the maximum diameter
of the finite elements, 10 go to zero. We refer
to this approach as the h-version of the finite ele-
ment method. The h-version has been studied ex-
tensively and asymptotic error bounds as h-—>(
are well known for its rate of convergence. Howe-
ver, in the second approach, the accuracy is inc-
reased by allowing the degree p of the piecewise
polynomials to go to infinity. We call this approach
the p-version of the finite element method. In a
number of cases the given domain has reentrant
corners or sudden changes occur in the boundary
conditions. In the neighborhood of such points,
the exact solution is of the form."
a>0 (1)
ufr, 0) is the displacement vector, r and 0 are
polar coordinates centered on the point, a is dete-
rmined from the condition that the solution must
satisfy the Navier-Lame’ equations and the boun-
dary conditions on the edges that meet at the
corner. It is noted that G(r, 0) represents the
smooth part of the solution and the first term
the singular part. Thus, singular behavior may oc-
cur when some part of boundaries are not smooth.
The sources of singularities may be classified un-
der three headings?

(1) Geometric : reentrant corners, cracks, cutouts
with sharp corners,discontinui-
ties in curvature and thickness,
presence of stiffeners, mixed
boundaries, etc.

(2) Loading :  concentrated sources over the
surface and at the edges, line
sources over the surface, and
sudden changes in the intensity
of external sources, etc.

(3) Material : sudden changes in material pro-
perties, as in the case of lamina-
ted materials, incompressible

materials, etc.

In this paper, we shall investigate the stress
distribution due to the geometric sources in the
neighborhood of a circular hole (with/without cra-
cks) in a finite strip subjected to membrane forces
and uniformly distributed bending moments. As
the stress gradients in the vicinity of a singular
point are very steep, the p-version of the finite
element method on the basis of Integrals of Lege-
ndre polynomials is expected to perform very well
for modeling geometries with circular cutouts®,
In the p-version, as we aware of it, the size of
the element is usually large and hence the proba-
bility of distortions is more. So, the transfinite
mapping for circular boundaries is adopted to
avoid the discretization errors.

2. Transfinite Mapping Technique

In this study, we are faced with a nonpolygonal
domain due to a circular hole. The eraly approa-
ches in finite element modeling required that the
boundary, o2, of £ be approximated by a polygo-
nal arc. The Babuska paradox” describes an error
associated with modeling a curved boundary by
straight-sided elements. To avoid this error, it is
necessary to find the mapping function which will
exactly map the standard element to the sides
of the real element including the four corner no-
des by making use of the exact geometric parame-
ters of the curved boundary. In this paper, an
attempt has been made to generate a curved bou-
ndary by using a transfinite mapping technique
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Fig. 1. Domain L in the s-t plane

proposed by Gordon and Hall.” Let f be a conti-
nuous function of two independent variables with
domain L ; [0,h] x [0,h] in the s-t plane as shown
in Fig. 1. By a projector P, we mean a linear ope-
rator from the linear space T of all continuous
bivariate function f, with domain L, onto a subs-
pace of functions. For example, if the operator
P. is defined by the formula:

PLf]=(1~s/h) - (0,0)+(s/h) - f(ht) (2)
It can be expresses by the general form as fol-
lows:

PI= 2 f(s, 0+ Ofs) @)

where 07 5,<8< <8, =h and

D)= T1 (s—s)/ IT (s~ s), 0<i<m 4)

are the fundamental functions for Lagrange poly-
nomial interpolations. For completeness and later
reference, we display the analogous formula for
P

PI= X (s, ) " () )
J
where 0=t ,<t;<---<t,=h and
wO= T (t—t) I -1, 0<j<n (6)

There is a wav to compound the projectors P,
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and P, by using Boolean sum.

P P=P,+P—P, - P, N

3. P-convergence Approximations in Frac-
ture Mechanics

The rate of h-convergence for problems invol-
ving singularities has been first examined by Tong
et al® and Johnson et al®. However, a considera-
ble amount of numerical experience has been co-
mpiled in the last ten year”® It has been fouhd
that the exact value of the strain energy U is de-
termined by extrapolation. The procedure is based
on the theorem which establishes the rate of con-
vergence for the p-version and the corresponding
mverse theorem as follows® :

Uu~ up)=U(w) — Wu,)< _1\%%‘; (8)
P

in which U is the strain energy; u is the exact
solution; u, is the finite element solution by the
p-version, using uniform p-distribution; k is a con-
stant, which depends on the domain, the loading,
the mesh, and :
after the boundary conditions were enforced; a

Np is the number of degrees

is the smoothness index of the exact solution u
which can be determined by the solid angles at
the corners of the domain, the boundary condi-
tions and Poisson's ratio. When N is sufficiently
large so that the less or equal sign in Eq.(8) can
be replaced by an equals sign, we say that the
approximation is in the asymptotic range. U(u) can
be determined by extrapolation™ :

Ulu,) - N2~ Ulu, ) - N,
N’p.iu _____ Np ‘24:

Ulwy= (9
In this way, the exact value of the strain energy
can be computed with high precision(four or five
significant digits) without knowing the exact solu-
tion u. Evidently, the extrapolation formula vields
good estimates even at low p-values, say p=5.
4. Computation of Stress Intensity Fac-
tors

The finite element method has been used by



a number of investigators to determine elastic st-
ress intensity factors for cracked bodies. The cha-
racteristic elastic square root singularity has been
represented by the use of virtual crack extension
method in this work. This method is one of the
energy methods in which the stress intensity fac-
tors are obtained from the measurement of the
energy release rate, that is, the energy difference
between succesive crack tip positions along a
mesh. In the virtual crack extension method, the
energy release rate G is computed from both dis-
placement field before the crack extension and
the change of stiffnes during the extension, as
described in equation

G=— S:g: L T a—glag— fub+{u)? %-;J---(m)
where IT is the total potential energy, a is the
crack length, {u} is the displacement vector before
crack extension, [K] is the stiffness of the finite
element array, and [f] is the load vector. If we
consider a virtual increase Aa in crack length with
no change in external mechanical or thermal
loads, G is given by

6= a0 gy an

However, since the quantity G is very sensitive
to the crack length increment Aa, the sensitivity
test was investigated between G and Aa in Fig
2. From this figure Aa was adopted by 10 7a and
Poisson’s ratio was 0.3. It is noted that the linea-
rity of the strain energy release rate versus the
reciprocal of the number of degrees of freedom
is very strong as shown in Fig. 3. To illustrate
this, we computed estimetes of G by means of
linear extrapolation. When three succesive finite
solutions are in asmptotic range, one can get the
extrapolation formula using Eq.(9) as follows:

- G N,
LOG -(—’f*———;E --------- LOG —2:t

Gex o ‘Jp 1 Np . .

G.—G = N =Q (12)
LOG —x_ el LOG —2-2

Gey ™ Gy 2 N,

where Np, Npy, Np; and Gp, Gy, Gp, are the deg-
rees of freedom and energy release rate with res-
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pect p, p-1, p-Z respectively. From Eq.(12), the
exact energy release rate G,, has been estimated.

5. Numerical Results

5.1 Problem 1 : Membrane Behavior

Let us consider the well-known problem of a
circular hole in a rectangular panel subjected to
uniaxial tension. Because of the transfinite map-
ping to represent the circular boundary, the mini-
mal meshes are needed. A typical h-version mesh
by NASTRAN software and a p-version mesh in
this study are shown in Fig. 4. Of interest 1s the
maximum stress. Firstly, the variation of the st-
ress concentration factor(K-factor) is investigated
with respect to L/b ratio. It is known that K-factor
is independent to L/b ratio since K=2.829 when
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Fig. 5. Maximum stress at the point A

L/b=3, K=2822 when L/b=4 and K=2822
when L/b=6. In this study, p-version model with
L/b=6 is fixed to compare with the empirical so-
lutions. Secondly, the maximum stresses at the
point A are computed corresponding to the diffe-
rent polynomial orders when r/b=0.2 shown in
Fig. 5. The maximum stress of the point A obtai-
ned by p-version is bounded by 5% relative error
in comparison with Howland’'s® when p-level ex-
ceeds p=4. It is known that the relative error
in energy norm is under 1 % shown in Table
1 and that there is a strong linearity between Log
N and Log || e]le.

Using the same three-element mesh with p=3$,
the stress concentration factors(K) were computed
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Table 1. Relative Error in Energy Norm

Membrane Behavior | Flexural Behavior
P-level | NDF  |lellg(%) | NDF |lel|e(%)
4 68 2.88 109 9.19
5 94 1.89 154 5.97
6 132 1.27 208 431
7 173 0.84 271 3.02
8 220 0.58 343 2.19
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Fig. 6. Stress concentration factor with respect to
r/b ratio

for a widely range of r/b ratios. The p-version
models give an excellent agreement with the solu-
tions of Howland which are valid for the range
of r/b=01 to 05 and the experimental results
by Nisida, Froch et al.? based on photoelastic app-
roaches, which are shown in Fig6. However, the
NASTRAN 334-element model fails to get an ac-
ceptable solution. The stress concentration factor
(K) is defined by.

Cmax

K= (13)

Gnom

where o,,m 1S nominal stress in the narrowest sec-
tion such as :

= P e
2(b—r) - t

Gnom (14‘)
P and t represent the applied axial force and thic-
kness of section. Also, b and r are defined in Fig.
4. In general, K is close to 3.0 as r/b ratio goes
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to zero and when r/b = 1, K = 2.0. Nisida” pro-
posed the following formula which can be valid
between r/b=0.2 and 0.8.

K=2+(B%L)3 (15)

5.2 Problem 2 : Flexural Behavior

The rectangular panels with a circular hole sub-
jected uniformly distributed bending moments are
shown in Fig. 7. The stress concentration is inf-
luenced by both r/b and Z2r/t. Reissner presented
the solution of infinite plates(r/b=0) that includes
the transverse shear deformation effects with res-
pect to thickness(2r/t ratio). On the basis of Reiss-
ner solution, Nisida proposed the approximation
of stress concentration factors that can be applied
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Fig. 7. P-version model of finite strips with circular
hole under uniform bending
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to the finite plate through the photoelastic experi-
ments that follows;

1 b—r

K=1+2Kineo= 1) {14( ==} (16)
where Kp-o represents the stress concentration
factors by Reissner. In this paper, the solutions
of 3-element p-version model with p=8 are com-
pared with those of Nisida. The stress concentra-
tion factor is calculated by EqJ13), and opom is
defined by;

3M

Cnom — ~7 "

(b—r) - t? an

The stress concentration factors(K) with respect
to 2r/t are plotted in Fig. 8. The p-version model
with p=8 is close to Nisida's approximation when
thickness is relatively large, however, the p-ver-
sion solutions begin to show some amount of nu-
merical errors as thickness is decreased.

5.3 Problem 3 : Fracture Behavior

The p-version model for a crack emanating from
a circular hole in rectangular plate under tension
is shown in Fig9. The stress intensity factor K
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Fig. 9. P-version model for a crack emanating from
a circular hole in rectangular plate under
tension
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Table 2. Convergence Characteristics of F-factor

when r/b=0

P-level NDF F-factor
1 13 0.75333
2 34 0.95754
3 55 0.98271
4 84 1.00930
5 121 1.03077
6 166 1.04230
7 219 1.04973
8 280 1.05475
© ® 1.075

is a function of a/b, r/b, and h/b where a is a
half crack length; b is a half width of plate; r
is a radius of circular hole; and h is a half length
of plate. The influence of these parameters have
been studied. Newman'® carried out an assesment
of the exact field based on boundary collocation
method. It is seen that 4-element p-version model
(p=8, h/b=2.0) gives good agreements with New-
man’s corresponding to r/b=0.0, 0.25 and 0.5 res-
pectively. Due to the strong linearity, one can ob-
tain the estimated exact value by extrapolation
formula of Eq.(12) that is shown Fig. 3. The stress
intensity factors are calculated by virtual crack
extension method. The convergence characteris-
tics of correction factors(F-factors) as p-level is
increased are shown in Table 2 when r/b=0.0
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which means centrally cracked panel problem.
The F-factor with NDF=co was obtained by ext-
rapolation method based on Eq.(12).

6. Conclusions

The solutions of 3-element p-version model
with p=8 based on transfinite mapping technique
are found to be successful in the case of memb-
rane behavior problem for the wide ranges of r/b
ratios. It is concluded that 3-element p-version
model(p=8) has an excellent comparison with re-
sults by Nisida, Howland etc. However, the solu-
tions of flexural behavior problem with same p-
version model are smaller than those of Nisida
under 10 % relative error as the ratio of r/b and
2r/t varies. In the fracture behavior problem un-
der axial tension, 4-element p-version model{p=38,
h/b=2.0) gives an excellent agreement with New-
man’s. As a result, p-version of the finite element
computations using Legendre’ polynomial is suita-
ble for modeling the problems of stress concentra-
tion. All solutions are obtained by research pur-
pose program P-FAP(P-version Fracture Analysis
Program).
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