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FUZZY NORMAL SUBGROUPS

IN FUZZY SUBGROUPS

D.S. MALIK, JOHN N. MORDESON AND P.S. NAIR

O. Introduction

The theory of fuzzy sets was inspired by Zadeh [10]. Subsequently,
Rosenfeld introduced the concept of a fuzzy subgroup of a group [9J.
Fuzzy cosets and fuzzy nonnal subgroups of a group G have been stud­
ied in [3, 5, 8]. In [4J, the ring of cosets of a fuzzy ideal was constructed.
Let A and B be fuzzy subgroups of G such that B ~ A. The purpose
of this paper is to introduce the notion of fuzzy cosets and fuzzy nor­
mality of B in A. These ideas differ from those in [3, 5, 8] since there
A = ba, the characteristic fllllction of G. If B is fuzzy normal in A,
then the set of all fuzzy cosets of B in A forms a semigroup under a
suitable operation. Structure properties of AIB and A are determined.

Throughout this paper G denotes a group and L denotes a com­
pletely distributive lattice. A fuzzy subgroup A of G is a fuzzy
subset of G (a function of G into L) such that Vx, y E G, A(xy-l) ~
inf{A(x),A(y)}. We let e denote the identity of G and 0,1 the least
element, the greatest element of L respectively. IT X and Y are fuzzy
subsets of G, we say that X ~ Y if and only if Vx E G, X(x) ~ Y(x).
For any x E G, t E L, we let Xt denote the fuzzy subset of G defined
by Vy E G, Xt(Y) = 0 if y =f x and Xt(Y) = tif Y = x. We call Xt a
fuzzy singleton. B and A always denote fuzzy subgroups of G such
that B ~ A. If t E L, we let B t = {x E G IB(x) ~ t}. It follows easily
that if t E Im( B), then B t is a subgroup of G. B t is called a level
subgroup of G [1]. We let B* = BB(e)' For any fuzzy subgroup A of
G we assume that A(e) > O. N denotes the set of positive integers.

1. Fuzzy cosets and quotient semigroups

We introduce the concept of fuzzy cosets of B in A.
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DEFINITION 1.1. Let X and Y be fuzzy subsets of G. Define the
fuzzy subset XoY of G byVx E G, (XoY)(x) = sup{inf{X(y), Y(znl
x = yz}.

DEFINITION 1.2. Let Xt ~ A. Then the fuzzy subset Xt oB (Boxt)
is called a fuzzy left (right) coset of B in A with representative Xt·

The notions in [3, 5, 8} deal with A = Sa and fuzzy cosets Xt 0 B
with t = l.

PROPOSITION 1.3. Let Xt ~ A. Then Vz E G, (Xt 0 B)(z) =
inf{t, B(x-1zn and (B 0 Xt)(z) = inf{t, B(zx-1n.

Proof. (Xt 0 B)(z) = sup{inf{xt(u), B(v)lz = uv} = inf{t, B(x-1zn
since the supremum is attained when x = u. Similarly, (B 0 Xt)(z) =
inf{t, B(zx-1n.

PROPOSITION 1.4. Let Xt, Ys ~ A. Then
(i) Xt 0 B = Ys 0 B if and only if inf{t,B(e)} = inf{s,B(y-1x)}

and inf{s, B(en = inf{t, B(x-Iy)} ;
(ii) B 0 Xt = Boys if and only if inf{t,B(e)} = inf{s,B(xy-l)}

and inf{s,B(e)} = inf{t,B(yx-1)}.

Pro.of. (i). Xt 0 B = Ys 0 B if and only if Vz E G, (Xt 0 B)(z) =
(Ys 0 B)(z) if and only ifVz E G, inf{t,B(x-1z)} = inf{s,B(y-1zn·
Suppose that Xt 0 B = Ys 0 B. Then letting z = x and then z =
y, we obtain inf{t,B(en = inf{s,B(y-1xn and inf{t,B(x-1y)} =
inf{s,B(e)}. Conversely, suppose that the conditions concerning the
infimum hold. Let z E G. Then (Xt 0 B)(z) = inf{t,B(x-1zn =
inf{t, B(X-Iyy-Izn ~ inf{t, inf{B(x-1y), B(y-Iz)}} = inf{inf{t,
B(x-Iy)},B(y-Iz)} = inf{inf{s,B(e)}, B(y-1z)} = inf{s,inf{B(e),
B(y-l z)}} = inf{s, B(y-l z)} = (Ys 0 B)(z). Similarly Xt 0 B <;;, Ys 0 B.
Thus Xt 0 B = Ys 0 B.

(ii). The proof is similar to that of (i).

COROLLARY 1.5. Let Xt, Yt ~ A. If B(y-l x) = B(e), then Xt 0 B =
Yt 0 B.

Proof. Since B(x-1y) = B(y-Ix) = B(e), inf{t,B(e)} = inf{t,
B(x-1y)} = inf{t,B(y-1x)}. Hence by Proposition 1.4(i), Xt 0 B =
Yt oB.
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PROPOSITION 1.6. Let Xt, Yt ~ A. Then the following conditions
are equivalent.

(i) Xt ° B = Yt °Bj
(ii) (y-Ix)toB=etoBj

(iii) (x-IY)t oB = et 0 B.

Proof. By Proposition 1.4, XtoB = YtoB if and only ifinf{t, B(e)} =
inf{t,B(y-Ix)} and inf{t,B(e)} = inf{t,B(x-Iy)}. The latter condi­
tions are equivalent to (ii) and (iii).

PROPOSITION 1.7. Let x,y E G and s,t E [O,A(e)]. Suppose that
B(e) = A(e). Then

(i) Xt 0 B = Ys 0 B if and only if t = inf{s,B(y-Ix)}, s =
inf{t,B(x-IY)}j

(ii) Xt 0 B = Yt 0 B if and only if(y-Ix}t ~ Bj
(iii) Xt °B = Ys 0 B if and only ift = s ~ B(x-Iy);
(iv) Xt 0 B = Xs 0 B if and only ilt = s.

Proof. (i). By Proposition 1.4, Xt 0 B = Ys 0 B if and only if t =
inf{s,B(y-Ix)} ands =inf{t,B(x-Iy)}.

(ii). By (i), Xt 0 B = Yt 0 B if and only if t = inf{t,B(y-Ix)},
t = inf{t,B(x-Iy)} if and only if B(y-Ix) ~ t, B(x-Iy) ~ t.

(iii). By (i) and the fact that B(y-Ix) = B(x-Iy), Xt 0 B = Ys °B
if and only if t = s ~ B(x-Iy).

(iv). The result here is immediate from (iii).

The proof of the next result is immediate from Proposition 1.7(iii).

COROLLARY 1.8. Let s,t E [O,A(e)]. Suppose that B(e) = A(e). If
t =1= s, then {Xt oB IXt ~ A} n {ys 0 B IYs ~ A} = <p.

DEFINITION 1.9. B is said to be fuzzy normal in A if and only if
VXt ~ A, Xt 0 B = B 0 Xt.

PROPOSITION 1.10. Let Xt, Ys ~ A. IfB is fuzzy normal in A, then
(Xt 0 B) 0 (Ys 0 B) = (xY)r 0 B where r = inf{t,s}.

Proof. 0 is associative and BoB = B, [5, p.134], [6, p.32J.



4 D.S. Malik, John N. Mordeson and P.S. Nair

THEOREM 1.11. Let AIB = {xtoB IXt ~ A, x E G}. Suppose that
B is fuzzy. normal in A. Then (AIB, 0) is a semigroup with identity.
IfB(e) = A(e), then AIB is completely regular, i.e. AIB is a union of
(disjoint) groups.

Proof. IT Xt 0 B, Ys 0 BE AIB, then clearly (xY)r oB E AIB where
r = inf{t,s}. Clearly eA(e) is the identity of AIB. By [5, p.134}, 0 is
associative. For fixed t E [0, A(e)}, let (AIB)(t) = {Xt 0 B IXt ~ A, x E
G}. Then (AIB)(t) is closed under 0, et 0 B is the identity of (AIB)(t),
and (x-l)t 0 B is the inverse of Xt 0 B. Hence (AIB)(t) is a group.
Clearly AIB = UtE[O,A(e)](AIB)(t).

EXAMPLE 1.12. Let G = {e,a,b,e} be the Kleinfour-group. Define
the fuzzy subsets A and B of G by A(e) = A(a) = 1, A(b) = A(e) = ~

and B(e) = B(a) = 1, B(b) = B(e) = t. Then A and B are fuzzy
subgroups of G such that B ~ A and B is fuzzy normal in A. Now
el 0 B is the identity of AIB, but eJ! 0 B does not have an inverse.
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Hence AIB is not a group.

2. Structure of quotient semigroups of fuzzy subgroups

We investigate the structure of AIB.

THEOREM 2.1. B is fuzzy normal in A if and only ifVt E [0, B(e)},
B t is normal in At-

Proof. Suppose that B is fuzzy normal in A. Let t E [0, B(e)]. Let
x E At and b E Bt. Then Xt 0 B = B 0 Xt. Hence (Xt 0 B)(bx) = (B 0

xt)(bx). Thus inf{t,B(x-1bx)} = inf{t,B(bxx-l )} = inf{t,B(b)} = t.
Hence B(x-lbx) 2: t. Thus x-1bx E Bt. Conversely, suppose that B t
is normal in At Vt E [O,B(e)}. Let Xt ~ A and z E G. Suppose that
t ~ B(e). Since B t is normal in At, X-I Z E Bt if and only if zx-l E Bt.
Now (Xt 0 B)(z) = inf{t, B(x-l z)} and (B 0 Xt)(z) = inf{t, B(zx-l )}.
If x-I Z E B t , then (Xt 0 B)(z) = (B 0 Xt)(z). Suppose that x-I z ft
B t- Then zx-l ft B t and t > 0. Thus (Xt 0 B)(z) = B(x-lz) and
(B 0 Xt)(z) = B(zx-l ). It sufficies to show that B(x-l z) = B(zx-l ).
Let B(x-1z) = m < t and B(zx-l ) = n < t. Now x-1z E Bm and
x E At ~ Am. Since Bm is normal in Am and x EArn' zx-l E Bm.
Thus B(zx-l ) = n 2: m. Similarly m 2: n and so m = n. Now suppose



Fuzzy normal subgroups in fuzzy subgroups 5

that t > B(e). Then (Xt 0 B)(z) = inf{t,B(x-1z)} = B(x-1z) and
similarly (B 0 Xt)( z) = B( z:r- l

). Since B(x- 1 z) < t and B( zx- 1
) < t,

B( .2,-1::;) = B( Z.2:- 1 ) as previously shown. Thus XtoB = Boxt VXt <;;; A.
Hence B is fuzzy normal in A.

PROPOSITION 2.2. Suppose that 0::; t::; B(e), X s <;;; A, and t::; s.
Then (x s 0 B)t = xBt and (B 0 xs)t = Btx.

Proof. Y E (.2· s 0 B)t if and only if (x s 0 B)(y) 2 t if and only if
inf{8, B(.r-1y)} 2 t if and only if B(x- 1 y) 2 t if and only if x- 1 y E B t

if and only if y E rBt .

THEOREIII 2.3. Let t E [O,B(e)]. Suppose that B is fuzzy normal
in.4. Then At!B t ~ (.4/ B)(t).

Proof. By Theorem 2.1, B t is normal in At. Define the mapping
f : At ---t (A/B)(t) by "Ix EAt, f(x) = Xt 0 B. Then clearly f is a
homomorphism of At onto (.1/ B)(t). Now x E Ker f if and only if
f(.I') = Ct 0 B if and only if .rt 0 B = et 0 B if and only if Xt <;;; B (by
Proposition 1.7(ii)) if and only if x E Bt. Hence Ker f = Bt.

If B is fuzzy normal in A and B( e) = A( e), then structure properties
of A/B can be determined from those of At/Bt , t E [O,A(e)], since
A.jB = UtE[O.A(e)](A/B)(t) by Theorem 1.12 and (A/Blt) ~ At/Bt by
Theorem 2.3.

For the remainder of the section we assume that G is commutative
and L = [0,1]. Then B is fuzzy normal in A. We say that A is
bounded over B if :311 E N such that VXt <;;; A, (Xtt <;;; B. Then it
can be shown easily that A is bounded over B if and only if At!B t is
uniformly bounded "It E [0, A(e)]. Hence if A is bounded over B, then
At / B t is a direct product of cyclic groups "It E [0, A( e)] by [2, Theorem
17.2. p.88].

As another example, suppose that C is a fuzzy subgroup of G such
that C <;;; A and A. = B 0 C, the fuzzy direct product of B and
C. i.e. A = B 0 C and "Ix E G, (B n C)(x) = °[7, Definition 4.1].
Then A. t = B t c: C t "It E (0,.4(e)] by [7, Corollary 4.7.]. Thus A/B ~

(U tE (O •.4(d]Cr> U {eo 0 B}. Wc now give some conditions for B to be a
fuzzy direct factor of A.

Let F( A) denote the set of all fuzzy subgroups C of G such that
C <;;; A and C(f) = A(e). Let C* = {x E GIC(x) > O}. Then C* is a
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subgroup of G if L = [0,1].
We say that B is compatible in A if and only if A(e) = B(e) and

Vs, t E (0, A(e)], s ::; t, As = AtBs and At n B s = Bt.
In [7, Example 4.3], it is shown that if B is divisible, i.e. VXt ~ B

with t > °and Vn E N 3Yt ~ B such that (Yt)n = Xt [7, Definition
2.1], then it need not be the case that B is a fuzzy direct factor of A.
However in Corollary 2.6, we show that if B is compatible in A and B
is divisible, then B is a fuzzy direct factor of A. Thus compatibility
is a straightening factor which allows results in the crisp case to be
carried over to the fuzzy case.

THEOREM 2.4. The following conditions are equivalent

(i) A(e) = B(e) and there 3 subgroup H of G such that Vt E
(0, A(e)], At = B t 0 H;

(ii) 3C E F(A) such that A = B 0 C and C* = C*;
(iii) B is compatible in A and 3C E F(A) such that A* = B* 0C*.

Proof. (i) =::::;. (ii). Define the fuzzy subset C of G by C(x) = A(e)
if x E H and C(x) = °otherwise. Then C is a fuzzy subgroup of G
and C* = H = C*. Now H ~ A* and so C ~ A. Since C* = C*, Ct =
C* = C* Vt E (0, A(e)]. Hence At = B t 0 CNt E (O,A(e)]. Thus
A = B 0 C by [7, Corollary 4.7].

(ii) =::::;. (iii). Now A(e) = B(e) = C(e) and At = B t 0 CNt E
(O,A(e)] by [7, Corollary 4.7]. Also C* = Ct = C*Vt E (O,A(e)].
Hence A* = B* 0 C*. In fact, At = B t 0 C*Vt E (O,A(e)]. Now
B t ~ At nBs = (Bt 18)Ct ) nBs = Bt for s::; t. Thus B t nAt for s::; t.
Also As = B s ® C* ~BsBtC* = BsAt ~ As. Hence As = AtBs.

(iii) =::::;. (i).Sinc~~'*~ A* ~dA(e)= U(e), U''' = (;~: Vs E
(O,A(e)], As = A*Bs = C* 18)Bs ~ C* 18)B*. Thus A* ~ C* 18)B*.
Hence A* = C* 18) B*. By [7, Theorem 4.2], it suffices to show that
A = BoC. Since C* = C* and A(e) = C(e), Im(C) = {O,A(e)}. Thus
Im(B) n Im(C) ~ {O, A(e)}. Hence A = B 0 C by [7, Theorem 4.5].

If A and B are fuzzy subgroups of G such that B ~ A, we say that
B is pure in A of and only if VXt ~ B with t > 0, Vn E N, VYt ~ A,
(Yt)n = Xt implies that 3bt ~ B such that (bt)n = Xt [7, Definition 3.1].

COROLLARY 2.5. Suppose that B is compatible and pure in A

(i) If A*/B* is a direct product of cyclic groups, then B is afuzzy
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direct factor of A;
(ii) If B is bounded, then B is a fuzzy direct factor of A.
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Proof. (i). Since B is pure in A, B* is pure in A* [7, Proposition
3.2]. Hence 3 a subgroup H of A* such that A* = B*0H, [2, Theorem
28.2, p.120]. Since B is compatible in A, At = Bt @HVt E (O,A(e)].
The desired result now follows from Theorem 2.4.

(ii). B .. is pure in A.. and B .. is bounded. Hence 3 subgroup H of
A .. such that A .. = B .. @H, [2, Theorem 27.5, p.llS]. Then remainder
of the proof is as in the proof of (i).

COROLLARY 2.6. Suppose that B is compatible in A. If B is divis­
ible, then B is a direct factor of A.

Proof. By [7, Proposition 2.2], B .. is divisible. Hence 3 a subgroup
H of A .. such that A.. = B .. 0 H. The remainder of the proof is as in
the proof of Corollary 2.5(i).

In the above Corollaries, we have that At = B t @ C..Vt E (0, A(e)].
Hence (A / B) \ {eo 0 B} is isomorphic to an uncountable number of
groups each isomorphic to C... In Corollary 2.5(i), C.. is a direct prod­
uct of cyclic groups. We also have that A = B 0 C where C(x) =
A(e)Vx E C ...
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