1. Introduction

In the general theory of relativity, the space-time universe is considered as a collection of all events which has a four dimensional differentiable manifold structure. In the theory of singularities, black holes, etc. causal structure of the space-time plays the important roles. Moreover, the uncertainties involved in the measurement which is implied by the quantum uncertainty principle are taken into account by the causality structures—Woodhause causality axiom [13].

The various causality structures have been developed and investigated their relations as well [1, 3, 5, 7, 11, 12, 13] in the recent developments concerning the relations among the various causality structure. Levichev [7] partially showed their relations for the homogeneous case.

As a model of the space-time, the homogeneous Lorentzian manifold is very restricted one, but it is physically and mathematically effective up to Lie group manifolds and Lie algebra.

In this paper we take a space-time as the homogeneous 4-dimensional Lorentzian manifold with the signature \((- + + +)\), and show more detailed relations of the causal structures and some properties of the causalities.

2. Preliminaries and main results

The Lorentzian manifold \(M\) is a paracompact Hausdorff manifold with one negative signature, and the homogeneous space-time \(M\) is a 4-dimensional Lorentzian manifold such that the group \(G\) of all isometric motions of \(M\) is transitive on it. We assume that \(M\) is connected, non-compact, and \(G\) acts leftly on \(M\). It clearly preserves time orientation. The notations one;

Partially supported by KOSEF.
Let us fix the point 0 in M and $f(0) = x$ for f in G. Then

$$f(I_0^+) = I_x^+, f(I_0^-) = I_x^-, f(J_0^+) = J_x^+, \text{ and } f(J_0^-) = J_x^- [7].$$

If G is a simply transitive subgroup of the group on M, we may identify it with M and the point 0 with the identity of the Lie group M. Levichev [7] showed that $J_0^+, J_0^-, I_0^+ \text{ and } I_0^-$ are subsemigroup (I_0^+ and I_0^- may not contain the identity), $J_0^- = (J_0^+)^-$, $I_0^- = (I_0^+)^-$, $J_x^+ = x \cdot J_0^+$, $J_x^- = x \cdot J_0^-$, $I_x^+ = x \cdot I_0^+$ and $I_x^- = x \cdot I_0^-$ for all x in M.

We also know that $A_0^+ = \uparrow I_0^-$ and $A_0^- = \downarrow I_0^+$ [1].

Thus, by the above properties, the following can be easily proved:

Proposition 1.

$$f(A_0^+) = A_x^+, f(A_0^-) = A_x^-.$$

$$f(I_0^+) = I_x^+, f(I_0^-) = I_x^-, f(J_0^+) = J_x^+, f(J_0^-) = J_x^-$$

$$f(\uparrow I_0^-) = \uparrow I_x^-, f(\downarrow I_0^+) = \downarrow I_x^+, f(J_0^+(0)) = J_x^+(x), f(J_0^-(0)) = J_x^-(x)$$

for all x in M and f in G.

As like the uncertainty principle, the fact that a physical experiment can never be made sure to have performed at a precise event of the space-time, it leads to think of an event as the limit of a converging sequence of neighborhoods.

Thus Woodhouse [13] gives an axiom;

an event x almost causally precedes another event y, denoted by xAy, if for all $x \in I_x^-$, $I_y^+ \subset I_x^+$; or equivalently, if for all $z \in I_y^+, I_x^- \subset I_z^-$. Thus axiom can be able to analyze reasonably causal influence under the uncertainty principle.

Let $A_x^+ = \{y \in M \mid xAy\}$ and $A_x^- = \{y \in M \mid yAx\}$. Woodhouse gives the principle of causality for a space-time such that if for any x, y in M, xAy and yAx, then it must be $x = y$.

$$I_x^+(I_x^-); \text{ chronological future(past) set at } x$$

$$J_x^+(J_x^-); \text{ casual future(past) set at } x$$

$$\uparrow I_x^-(\downarrow I_x^+); \text{ chronological common future(past) set of } I_x^+(I_x^-)$$

$$J_s^+(x)(J_s^-(x)); \text{ Seifert casual future(past) set at } x$$

$$A_x^+(A_x^-); \text{ almost casual future(past) set at } x$$

$$\overline{A}(A^o); \text{ closure(interior) of } A$$

The definitions and the terminologies are referred to [2, 4, 8, 9, 10].
We say it Woodhause causality. Thus we have following property under our space-time.

PROPOSITION 2. $x \cdot A^+_0 = A^+_x$ for all x in M.

Proof. Let $xm \in x \cdot A^+_0$ and $m \in A^+_0$. Then, for all $q \in I^+_q$, $I^+_m \subset I^+_q$. That is, every neighborhood N_0 of 0 contains events which chronologically precedes some events in any neighborhood N_m of m.

Pick an event p in I^+_m and q in I^+_0, and let chronological future curves α, β such that $\alpha(0) = m, \alpha(1) = p, \beta(0) = q$ and $\beta(1) = p = \alpha(1)$. Consider chronological future curves $\gamma(t) = x\alpha(t)$ and $\eta(t) = x\beta(t)$. Then

$$\gamma(0) = x\alpha(0) = xm, \quad \gamma(1) = x\alpha(1) = xp,$$
$$\eta(0) = x\beta(0) = xq, \quad \eta(1) = x\beta(1) = xp = \gamma(1),$$
and $xq \in xI^+_0 = I^+_x$.

This shows $xm \in A^+_x$. That is, $xA^+_0 \subset A^+_x$.

Conversely, let $m \in A^+_x$ and $q \in I^+_0$. Since $I^+_x = xI^+_0, q = xq_1$, for some q_1 in I^+_0.

Thus there exist chronological future (timelike geodesic) curves α, β such that $\alpha(0) = m, \alpha(1) = p, \beta(0) = q = xq_1$, and $\beta(1) = p = \alpha(1)$.

If s is an event in A^+_0, then for q_1 in I^+_0 and p_1 in I^+_x, there exist chronological future (timelike geodesic) curves α_1, β_1, such that

$$\alpha_1(0) = s, \alpha_1(1) = p_1, \beta_1(0) = q_1 \text{ and } \beta_1(1) = p_1 = \alpha_1(1).$$

Let $\gamma(t) = x\alpha_1(t)$, and $\delta(t) = x\beta_1(t)$. Thus by the uniqueness of timelike geodesic from xq_1, $\beta = \delta$. Therefore $\beta(1) = \alpha(1)$. That is, $p = \beta(1) = \delta(1) = xp_1$ and $\alpha(1) = p = xp_1 = \delta(1) = \alpha_1(1) = \gamma(1) \in I^+_m$. Since I^+_m is open and $\gamma(1) = \alpha(1) \in I^+_m$, $\alpha = \gamma$ by the same reason. Thus $m = \alpha(0) = \gamma(0) = xs \in xA^+_0$. This shows $A^+_x \subset xA^+_0$. The proof is complete.

The causalities of space-time were developed in the various ways and the relations of there were partially showed in many situation [1, 3, 7, 11, 12, 13] as follows;

(1) globally hyperbolic \implies (2) causally simple \implies (3) causally continuous \implies (4) stably causal \implies (5) woodhause causal \implies (6)
strongly causal \implies (7) distinguishing \implies (8) future distinguishing
\implies (9) past distinguishing \implies (10) causal \implies (11) chronological \implies (12) non-compact.

The converse relations of these also have partially been showed under
the reflectingness or other cases [1, 5, 7, 11].

The followings were showed in [1, 7].

Proposition A. If a homogeneous space-time is future(past) distinguishing then it is past(future) distinguishing.

Proposition B. If a space-time is reflecting, then (4)-(9) are equivalent.

Proposition C. In a homogeneous space-time (3)-(9) are equivalent.

We say that \(J^+_K \) and \(J^-_K \) are causal future and past of the set \(K \) [4].

Proposition 3. If \(M \) is a homogeneous space-time, and \(J^+_0 (J^-_0) \) is closed, then \(M \) is causally simple.

Proof. Let \(K \) be a compact subset of \(M \). Then, since \(M \) is homogeneous, \(K J^+_0 \) is closed in \(M \).

By proposition 1,

\[
K J^+_0 = \{ k J^+_0 \mid k \in K \} = \{ J^+_k \mid k \in K \} = \bigcup_{k \in K} J^+_k = J^+_K.
\]

Similarly, \(J^-_K \) is closed. This completes the proof.

Proposition 4. If a null geodesically complete or naturally reductive, homogeneous space-time satisfies the generic condition, and the nonnegative Ricci tensor for all null vectors, then (3)-(11) are equivalent.

Proof. It can be proved from Proposition A,B,C, and Proposition 6.4.6 [4]. In the case of a naturally reductive Homogeneous space-time, the space-time is complete. Thus it can be showed by the same method.

Let \(F \) be a function which assigns to each \(x \) in \(M \) an open set \(F(x) \) in \(M \). \(F \) is called inner continuous if for any \(x \) and compact set \(K \subset F(x) \),
there is a neighborhood \(U \) of \(x \) such that \(K \subset F(z) \) for all \(z \) in \(U \). \(F \)
is outer continuous if for any \(x \) and any compact set \(K \subset M - F(x) \),
there is a neighborhood \(U \) of \(x \) such that \(K \subset M - F(z) \) for all \(z \) in \(U \).
DEFINITION. Let F be a function which assigns to each x in M on closed set $F(x)$ in M. F is C-outer continuous if for any x and any compact set $K \subset M - F(x)$, there is a neighborhood U of x such that $K \subset M - F(z)$ for all z in U.

Clearly, there is no relation between these kinds of continuities in general.

The several causal sets as set-function have partially been showed the inner or outer continuity of the sets under the different situations [5, 6].

Our space-time M may be assumed homogeneous one.

PROPOSITION 5. $\uparrow I^-(\downarrow I^+)$ is inner continuous.

Proof. It suffices to show the case of $\uparrow I^-$ at 0 by Proposition 1. We know that $\uparrow I^-$ is open. Suppose K is a compact subset of $\uparrow I^-$. Since K is closed, there exists an open subset V such that $K \subset V \subset \uparrow I_0^-$. Let $U = \{f \in G \mid f(K) \subset V\}$. Then U is an open neighborhood of the identity of G, and may be $U = U^{-1}$. Thus $f(K) \subset \uparrow I_0^-$ for all f in U. $V \subset f(\uparrow I_0^-)$ for all f in U, and $K \subset f(\uparrow I_0^-)$ for all f in U.

Let $W = \{f(0) \mid f \in U\}$. Then W is an open neighborhood of 0, and $K \subset \uparrow I_x^-$ for all x in W by Proposition 1 and the above. This shows that $\uparrow I^-$ is continuous. Similarly $\downarrow I^+$ is inner continuous.

PROPOSITION 6. $A^+(A^-)$ is C-outer continuous.

Proof. It suffices to show the case of A^+ at 0 by Proposition 1. We know that A_0^+ is closed. Let K be a compact subset of $M - A^+_0$. Then there exists an open subset U such that $K \subset U \subset M - A^+_0$.

By the homogeneity of M, there exists an open subset V of G such that $f(K) \subset U$ for all f in V, and V may be equal to V^{-1}. Clearly V is a neighborhood of the identity of G.

Thus, $K \subset M - \cup_{f \in V} f(A)$ if and only if $\cup_{f \in V} f(K) \subset M - A$.

Let $W = \{f(0) \mid f \in V\}$. Then W is an open subset of M containing 0, and $K \subset M - A_0^+$ for each x in W. This shows that A^+ is C-outer continuous. Similarly A^- is C-outer continuous.

PROPOSITION 7. $I^+(I^-)$ is outer continuous.

Proof. It can similarly be proved.
References

Department of Mathematics
Yeung-nam University
214-1, Daedong, Gyungsan,
Kyunpook, Korea