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HYPERSPACE CONTRACTIBILITY
OF TYPE sin(1)-CONTINUA

B.S.Baik, K.Hur, P.K.LiM AND C.J.RHEE*®

1. Preliminary

Let X be a metric continuum with a metric d. Denoted by 2% and
C(X) the hyperspaces of all nonempty closed subsets and subcontinua
of X respectively and endow each with the Hausdorff metric H. A
continuous map ¢ on C(X) into the closed unit interval I is called a
whitney map [12] if it satisfies the following conditions: 1. p(z) = 0 for
eachz € X,2. f A,Be€ C(X),AC B,and A # B, then pu(A) < u(B),
and 3. u(X) = 1. For convenience, we shall fix one such u throughout.
For each point z € X, let T(z) be the set of all elements of C(X) that
contain z. Then T is a function on X into 2¢X). An element A € T(z)
is said to be admissible at z in X if for each € > 0 there is a § > 0 such
that for each y € X, d(z,y) < 4, there is an element B € T(y) such
that H(A,B) < e. Let A(z) be the set of all elements of T'(z) which
are admissible at  in X. Then A4 : X — 2¢(X) is a function [6].

LEMMA 1.1.[6]. If B € A(¢), C € A(z), and € € BN C then
BUC € A(z).

A metric continuum X is said to be T-admissible if, for each (z,t) €
X x I, the following condition is met: for each A € A(x) N u~*(t) and
t' € [t,1], there is an element B € A(z) N p~!(¢') such that A C B.
It was observed in [8] that T-admissibility is a necessary condition for
the contractibility of the hyperspaces of X.

A subset § of C(X) is monotone-connected if, for each pair A and
B of elements of § with A C B, there is an arc a : I — § joining
A = a(0) and B = a(1) such that a(s) C a(t) whenever s < t. If
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AB € C(X)and A C B, welet T(A,B) = {C € C(B): A C C}.
Then T'(A, B) is monotone connected [3].

Let M be a subset of X and B € C(X) such that M C B. A fiber
function on M into C(B) is a set-valued function F : M — C(B) such
that {z}, B € F(z) for each z € M. A fiber function F : M — C(B)
is monotone-connected if F(z) is monotone-connected for each z € M.
A monotone-connected, lower semicontinuous fiber function a : M —
C(B) (in the subspace topology) is called a y-map if a(z) C A(z) for
eachz € M. Let M = {z € X : T(z) # A(z)}. The set M is called the
M-set of X. The points of the complement of M are called k-points
of X. It was shown [11] that if M = @ then C(X) is contractible. For
M # 0 let M be the closure of M in X. Then we have the following.

THEOREM 1.2.[8]. For any T-admissible metric continuum X with
nonempty M-set M, C(X ) is contractible if and only if there e;asts a
y-map o : M — C(X).

2. Contractibility of C(X) of type sin(1)-continua

A continuous map f : {0,1) — [0, 1] is said to be piecewise linear over
a sequence V in [0,1) converging to 0 if the restriction map f|[v,?']
of f is linear for each consecutive pair v,v' of V. And a piecewise
linear map over V is called sawtooth if each v € V is a local extreme
point of the map. Let X be the compactification space of the graph
of a sawtooth map f : [0,1) — [0,1] over V with the unit interval as
remainder. We reserve V = {(v, f(v)) : v € V'} for X and call elements
of V local maximal or minimal points of X.

In [1] Awartani proved that, for each continuous map g of [0,1)
onto [0, 1], there is a sawtooth map f : [0,1) — [0,1] such that the
compactification spaces in [0,1] x [0,1] of the graphs of f and g are
homeomorphic. Henceforth, we consider only those spaces which are
the compactification of graphs of sawtooth maps.

Let X denote the compactification of the graph Y of a sawtooth map
with the unit interval I x 0 = I as its remainder. Then I is non-locally
connected because the graph Y is forced to oscillate as it approaches
to I and the space X is locally connected at each point of Y. Hence
each point Y is a k-point of X and thus if X has a nonempty M-set
then it must lie in I. Therefore all derived sets being connected are
intervals lying in I. We investigate these object thoroughly.
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Let m; : [0,1] x [0,1] be the projection maps, i = 1,2,. f p,g €7,
then we write p < ¢ if and only if m1(p) < 71(g), and the closed arc
in Y joining p and q is denoted by [p,q]. If a,b € T we write a < b
if and only if m;(a) < w2(b) and the closed interval in I joining a and
b is denoted by (a,b) and the half-open interval opened at a by (a, b).
Furthermore if ¢ is an number and p € I, p + € we mean 73(p) + €.

Let p,g € Y and p < q. The closed interval [p, ] is called a wedge
(respectively spike) if the lowest (highest) points of [p,q] are interior
points. If [p, ¢] is a wedge we write [p, ¢]w and if it is a spike we write
[p, qs-

Let ¢ € I. Then e is called essential if it satisfies the following
conditions: I -

(i) there exists a sequence {[pn,gn]w} of wedges (or {[p,qn]s}
spikes) in Y and a positive number € such that limn—.co[pn,gnlw
(e,e+ €)(limpoo[ph,qn] = (e — €,¢)) and limy oo P = liMa—oo gn
e+ e(lim, oo pl, = limp_oo g, = € — €).

(ii) e is a limit point of a sequence in I satisfying the condition (i).

Let E be the set of all essential points. Since Y is the graph of a
sawtooth map (linear over V), the highest (lowest) points of a spike
(wedge) occurs at the point of V. Thus each point e € E is the limit
point of a sequence in V of points local maximuum or of points of local
minimuum.

Let 0 < €1 < €2 < 1, and let U(es) = {(z,y) € E? : y > &1} and
U(ez) = {(z,y) € E? : y < €3}. Then U(e;) N X is an open set, : = 1,2
and each component of it is an open arc. An arc component C in
U(e1) N X lying in Y is called an arc of type M if both end points of
C (the closure of C) lie on the horizontal line y = €. If C is an arc
of type M then C contains its maximal points in its interior. An arc
component C in U(e2)NX lying in Y is called an arc of type W if both
end points of C lie on y = €2, and hence C contains its minimal points
in its interior. Thus if C is an arc of type M (or W) then C is a spike
(wedge). Finally if C is an arc component of U(e;) N U(ez) N X lying
in Y such that the closed arc C has one end point on y = ¢; and the
other on y = €3, then C is called an arc of type N.

Let (a,b) be a subinterval of I,e > 0, and § > 0. Then U =
[0,6) x (a —€,b+€)N X is an open set in X containing {a,b), and U is
the union of at most countable number of arc components. If {C»} is
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a sequence of components of U N'Y, then we assign the indices of the
sequence according to the natural order relation of the first coordinate
of point of each component. Thus if z € Cryy and y € Cp then

mi(z) < mi(y).

LEMMA 2.1. Let € € I. e is an essential point if and only if e is
the limit point of a sequence {wn} of lowest interior points of arcs
[Pn, gn]w of type W or the limit point of a sequence {m,} of highest
interior points of arcs [pn,qn]s of type M.

Hence we divide the set E = EUE, where E = {e € E : e =
limp, oo mn}, E = {e € E : ¢ = limp—oown}. Let (0,0) = 0 and
(0,1) = 1. Since the unit interval [ is the remainder in the compacti-
fication of Y, 0 € £ and T € E. It may be that ENE # 0.

LEMMA 2.2. Let (a;,b;) be a closed interval in I, i = 1,2. Then
H((a1,b1), (a2, b2)) = max{|a1 — a2}, |b1 — bal}.

LEMMA 2.3. Let (a,b) be a closed subinterval in I and let C be an
arc component in U = [0,¢€) x (¢ — ¢,b+ €¢)N X. Then H(C,{a,b)) <e
if and only if H(m,(C),(a,b)) <e.

Let T : X — C(X) be the total fiber map. Since the space X is
locally connected at each point of Y, point £ € Y is a k-point. Hence
each element of T(z) is admissible at z so that we have T(z) = A(z).
If z € I then some elements of T(z) may not be admissible at z.

PROPOSITION 2.4. Let S ={A € C(X): AD I}. Then S C A()
for each z € I.

Proof. Let B € S. Suppose B\f =0. Let € > 0. Let U =[0,¢/2) x
[0,1] N X be an open set containing I. Let 0 < § < ¢/2, and y a
point of the é-neighborhood V of z in X. Then U contains only one
component X with the following property: C is open in X, C D I
and V C C. Hence 72(C) = I and H(C,I) < € by (2.3). Suppose
B\I # 0. Let z € B\I. Then choose 0 < § < =(z)/2. Then if V
is the §-neighborhood of z, then V' € B. Hence for each y € V we
have y € B. Therefore H(B,B) = 0. Let z € B € C(X). Define
T(z,B)={C € C(B):z € C}.
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PROPOSITION 2.5. Let (a,b) € T(z,I), and (a,b) # I. Then
(a,b) € A(z) if and only if, for each € > 0, there is § > 0 such that if C
is a componet of the open set U = [0,¢/2) x (a—¢€/2,b+¢/2)NX which
intersects the §-neighborhood V of ¢ in X, then H({a,b),72(C)) < .

Proof. Suppose (a,b) is admissible at z in X. Let ¢ > 0. Then
there is 0 < é < €/2 such that each point y in the é-neighborhood V
of z, there is an element B € T(y) such that H({(a,b), B) < €/4. Let
x1,r2 € B such that my(z1) > m2(2z) and 7y(z2) < m2(z) for all z € B.
If mo(x1) > b+€/4 then H({(a,b),B) > ¢/4. If m3(x2) < a—e/4, then the
distance from (a, b) to B would be greater than or equal to €/4. Neither
of the cases is possible. Hence a — €/4 < wa(z2) < ma(z1) < b+ €/4.
(*)

Now let w € B. Since (a,b) is compact there is an element ¢ € (a, b)
such that d(w. (a, b)) = d(w,c) > m(w). Since d(w, (a,b)) < €/4, we
have 71{(w) < €/4) (*+). Combining (*) and (**), we conclude that
B C U. Let C be the component in U containing y € V. Then CD>B.

Therefore my(B) C 'm2(C) and mp(C) C (a—€/2,b+€/2). Therefore we

have

H(m2(C),(a,b)) < H(m2(C),(a — ¢/2,b+ ¢/2))
+ H({e —€/2,b+ €/2),(a,b)) < e

Conversely, we may suppose that for each € > 0 there is § > 0 such that
if C i1s a component of U = [0,€/4) x (a — €¢/4,b+ ¢/4) N X intersecting
the é-neighborhood V of z in X, then

H({a,b),m(C)) < ¢/2.

If y € I such that d(y,z) < 6§ < ¢/4, then B = (a — €/4,b + €/4) is
the closure of the components of U (assuming either a — ¢/4 # 0 or
b+¢/4 # 1) containing y and H({(a,b),B) < ¢/2. fy € YNV, let C be
the component of U containing y. Since a —e/4#0or b+e¢/4#1,C
mush lie in Y. Then for each m € m2(C), the horizontal line intersects
a point at w of C. Thus d(m,C) < m1(w) < €/4. Similarly for each
w € C, we have d(w, 72(C)) < €/4. Therefore H(m3(C),C) < e/4. And
hence H((a,b),C) < H({a,b),n2(C)) + H(m2(C),C) < e. Therefore

(a,b) is admissible at z in X.
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PROPOSITION 2.6. If (z,b) is a subcontinuum of I with the end
points ¢ < b such that (z,b) € A(z), then T(z,{z,b)) C A(z). Sim-
ilarly if (a,z) C I such that (a,z) € A(z), then T(z,(a,z)) C A(z).
Hence if {a,b) C I, a < z < b, such that (a,z), (z,b) € A(z) then
T(z,(a,b)) C A(z).

Proof. We prove first that T(0,1) ¢ A(0). Let (0,d) € T(0,1). I
d =1, then (0,1) = I € A(D) by (2.4). So we may assume that d < 1.
_ Let € > 0 be a number such that e < 3 min{d,1 — d}. Since I € A(D),

there exists 0 < § < €/2 such that if y is a point of the é-neighborhood
V of 0 then the component C of the open set U = [0,¢/2) x [0,1] N X
containing y satisfies I C C and H(f,_C'_) < e

Now let Uy = [0,¢/2) x [0,d+¢/2)N X and let C; be the component
of U; containing y. Then U; C U and C; C C. ¥y € VNI, then
C; = (0,d + ¢/2) so that H(Cy, (0,d+ ¢/2)) < e.

Suppose y € VNY. Since C contains a maximal element z, ma(z) =
1> d+€/2, and it also contains y with 0 < me(y) < d + €¢/2, where
the horizontal line y = d + €¢/2 separates C. Hence the end points
of the arc C; must lie on the line y = d + ¢/2. I w is a minimal
point of Cy, then 0 < ma(w) < m2(y). Thus m2(C) = (m2(w),d + €/2).
Hence H(m(C1),(0,d)) < e. We have (0,d) € A(D) by (2.5). Thus we
conclude that T(0, 1) c A(D).

Similarly one can show that T(T,I) ¢ A(T).

Now suppose 0 < £ < b < 1 and (z,b) € A(x). We consider the
admissibility of (z,d) at £ in X for d < b. Let € > 0 be a number
such that 3 min{(b — d), z,(d — z)}. Since {z,b) € A(z), there exists
0 < 6 < €/2 such that if y is a point of the §-neighborhood V of
¢ and C is the component of U = [0,¢/2) x (z — ¢/2,b+ ¢/2) N X
containing y, then H({z,b),72(C)) < e. Now let C; be the component
of U1[0,€/2) x (z — €/2,d + €/2) N X containing the point y. Then
UycUand C; CcC.

Since C contains a point z such that d + /2 < m2(z) and ma(y) <
d + €/2, the horizontal line y = d + ¢/2 separates C. S the arc C;
containing y must have at least one end point lying on the line. Let z
be a minimal point of C;. If 2’ is a minimal point of C, then z —¢/2 <
m2(z") < m2(z) < ma(y). Hence m2(Cy) = (ma(z),d + €/2). Since
d(z, 72(y)) < & < ¢/2, H(n2(C1), (z,d)) = H((ma(2), d-+ ¢/2), (2, d)) =
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max{|m2(z) — z|,|d + €/2 — d|} < €/2 < €. Therefore (z,d) € A(z) by
(2.5). We thus conclude that T(z, (z,b)) C A(z).

The proof of the second assertion is similar to the first one. For the
third assertion, we observe that if (a,z) and (z, b) are admissible at =
in X and a < r < b then their union is also admissible at r in X by

(1.1).

REMARK. The end points of [ are k-points. To see it, let A € T(0).
Then A € T(0,(0,1)), if A C I. Hence A € A(D) by (2.6). ¥ A D I,
then A € A(0) by (2.4). Similar argument can apply to elements of
T(1).

A nonempty proper subcontinuum K of a metric space Z is an R*-
continuum of Z [2] if there exists an open set U containing K and two
sequences {Cp} and {C3} of components of U such that (lim,—ec Cp)N
(limp_o C2) = K.

In [2] it is proven that if a metric continuum Z contain an R?-
continuum then C(Z) is not contractible.

For the space X with the graph Y of a sawtooth map, no sub-
continuum of Y is an R?-continuum of X. Hence if X has an R?-
subcontinuum, it must be a subcontinuum of I or a subcontinuum
containing I.Butif Be CX), B> I, then each open set containing
B has a unique open component containing B properly so that B can
not be an R*-continuum. Suppose (0,b) is a subcontinuum of I and
b€ 1. Let U be an open set in X containing (0, b). We show that there
exists € > 0 such that if {C,} is any sequence of components of U such
that (0,5) C limp—oo Cn, then (0,5 + €) C limp—co Chn.

Let {Cn} be a sequence of components of U such that (0,5) C
limp, .o Cn. Then, since U is open, there exists ¢ > 0 such that
U' = [0,e) x [0,b+€)NX C U with b+ ¢ < 1. Then the horizon-
tal line y = b + ¢ separates C,, for almost all n. Since (0,b + €) € A(0)
by the remark above and U' C U, there is a sequence {C}} of arc
components of U’ of type W each of whose end points lie on the line
y = b+ ¢ such that —C'—’k C Cp, and limp o 61,5 = (0,5 + ¢). Therefore
(0.5 + €) C C,. This proves that (0,5) can not be an R?-continuum.

Similar argument applies for showing that {(a,1), a # 1, is not an
R?-continuum.

THEOREM 2.7. A subcontinuum (a,b) of I,a # 0,b # 1, is an
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R?-continuum of X if and only if there exist ¢ > 0, two essential
points e; € E and e3 € E, e < e2, and two sequences {C'l} and
{C2} of components of U = [0,¢) x (a — €,b+ €) N X of types W
and M respectively such that a = e;,b = ez, and (limp—eo Ch) N
(hmn—>oo C;‘i) = (61,62).

Proof. Suppose {a,b) is an R?-continuum of X. Let U be an open
set containing (a,b) and let {C}} and {C2} be two sequences of com-
ponents of U such that (lim,_,o, C1) N (limp—eo C2) = {a,b). We may
assume without loss of generality that C1,CZ C Y for all n and we let
C' = liMpoo CL and C? = lim,,_.o, C2.

First we show that the R?-continuum (a, b} is properly contained in
C!. Suppose C' = (a,b). Then there exists € > 0 such that U(e) =
[0, €] x[a—¢,b+€]NX is contained in U. Furthermore there is a positive
integer k such that Ci C U(§) = [0,b+¢/2) x (a —¢/2,b+¢/2)NX
for all n > k. So we have C} C U(£) C U(e) C U for n > k. Sine
each C} is a component of U, the end points of 23'—1, must lie on T\U.
On the other hand, for each n > k, C} C U(%) so that _C'—,l, c U(%).
But (U\U)NU($) = ¢. This is contradiction. Therefore C* # (a,b).
Similar argument applies to show that C? # (a,b).

Let ' € C'\(q,b) and ¥ € C*\(a,b). Suppose &' < a we show that
b > b (the argument for o' > b implies ' < a is similar). ¥ ¥ < b,
then (b',b) C C2. Since a’ < a, we also have (a',b) C C*. Combining
those two, we have (a’,b) N (¥,8) C C! N C?%. But this is impossible.
Therefore b > b.

Let us assume that o’ < a for each o’ € C\(a,d) and b < b’ for each

' € C?\{a,b). Let ap € C*\(q,b) and b; € C*\(a,b) be fixed. Choose
€ > 0 such that ag <a—e<aand b < b+ € < by, and

Ur=100,&) x(a—eb—e)NX CU.

Then the condition a' < a for all ' € C*\(a,b) implies that there is
a subsequence {C1.} of {Cl} such that if z; is a maximal point of
_,1, (ie. mo(zi) = ma(z) for all z € El ,) then ma(z;) < b+e. Since
ag < a— € < a there exists a positive mteger k such that each CL,

- intersects the line y = a — e for ¢ > k.
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Now let A; be the arc component of Uy containing the point z;, >
k. Then A; C C}. for each i > k so that z; is a maximal point of
A;. It is easily seen that each A; intersects the line y = a —e. And
hence z; is an interior point of A;. This means that each A; is an arc
of type M with its maximal point z; in its interior and whose both end
points lie on y = a — €. It is clear that lim; .o Ch, = (a — ¢,b), and
lim; oo z; = b. Hence b € E.

Similar argument can be applied by using the condition that b < &'
for each &' € C?\(a, b) to show that there is a subsequence {B;} of {C1}
of type W with lowest point y; € B; such that lim; .o, B; = (a, b+ €)
and lim; oo ¥i = a, a € E. Thus we have lim;_, oo B; N im;_, o0 A; =
(a,b) such that a € E and b € E. Converse is obvious.

COROLLARY 2.8. Ife € ENE, then {e} is an R*-continuum of X.

COROLLARY 2.9. Let e; € E and e € E and ; <

there are points z,y € I \E which satisfy the following:
) r<e1<ea<y
(i1) (a) (z,e2) € A(z) but (z,z1) ¢ A(z) for some 2z, such that
e2 < z1 <y and (ez, 1) NE =0, and
(b) (e1,y) € A(y) but (22,y) ¢ A(y) for some z3 such that
z < z2 < e and (z3,e1)NE = .

Then (e1, e2) is an R%-continuum of X.

e2. Suppose

Proof. We shall find an open set U and two sequences {C,} and
{D,} of arc components of U of types M and W respectively such
that imp_.oo Cn N limp—oo Dn = (e1,€2). Since {z,z1) ¢ A(z), there
exists €; > 0 such that for each 6, = %, there exists z,,d(z,,z) <
L such that H((z,z1),T(zs)) > €. Similarly there exist e > 0
and yn,d(yn,y) < L such that H((22,y),T(yn)) > €2. Let e = § -
min{e, e2,d(z1,E),d(22,E)}, and let U = [0,¢) x (z — e,y + ) N X.

Let P = [0,€) X [e2+€,2z1]NX. Since (e, z1)NE = § we may assume
without loss of generality that P does not contain any point v € V.

Let C;, be the component of U containing z, for each n =1,2,....
Then by the condition (i) (a) we have (z,e2) € A(z) implies each Cj,
contains an element A, € T(z,) such that H({(z,e2), An) < € and
(z,21) ¢ A(z) implies H({z, e2), Bn) > € for each B, € T(zy).
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Consider the open set Uy = [0,€) X (z — ¢,e2 +€) N X. For each n
with % < ¢, let C}, be the arc component of Uy such that z, € C,. We
may assume without loss of generality that C, N Cp, = @ for m # n.
Then C, C Cj, for each n.

Let m, be a maximal point of C,. We will show that m, is an
interior point of C,. Suppose m, lies on the line y = €3 + e. Then
V N P = § implies that m, ¢ V. This means that m,, is not a point of
local maximuum. Because PNV = §, the component C’, must intersect
the line y = 2; at a point z. This would imply that C} contains the
subcontinuum [z, z] € T(z,) such that H((z, z1), [zx,2]) < €, whichis
a contradiction. Thus we conclude that m,, is below the line ¥y = e +¢,
so that m, is a point of Cr,. Hence C,, is an arc of type M. Therefore
the end points of Cp, must lie on the liney =z —e.

Since H(Cp,{(z,e2)) < € for almost all n and {m,} is a sequence of
maximal vertices of C},’s, we may assume that m, — e2. Then it is
easy to verify that im, .o, = (z,€2).

In similar manner, one can find a sequence {D,} of component of
U of type W whose end points lie on y = y + € and the sequence {w,}
of minimal points of D, converging to e; such that lim, oo Dr =
{e1,y + €). Therefore by (2.7), {e1,e2) is an R?-continuum.

If ENE # 0, then the set E of essential points of X contains an
R?*-continuum by (2.8) and hence C(X) is not contractible [2]. In
order to avoid some unnecessary technical consideration, we assume
that ENE = §.

Furthermore, we assume that F is finite and we give the natural
order on E.

PROPOSITION 2.10. Suppose (a,b) is a subinterval of I such that
{(a,b) NE = 0. Then T(z,{a,b)) C A(z) for each = € {a,b). Moreover
if a and b are two consecutive elements of E then T(z, (a,b)) C A(z)
for eacha < z < b.

Proof. Let € > 0 be such that e < min{*3%, H({a, b))}, where H is
the Hausdorff metric for 2X. Let U = [0,¢/2) x (a — ¢/2,b+¢/2) N X.
Since (a—€/2,b+¢€/2)NE = B, all but finite number of arc components
A, of U have the property that one end point of A, liesony = a—¢/2
and the other lies on y = b 4 ¢/2. Therefore each A, is an arc of type
N for almost all n such that a maximal point of A, lies on the line
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y = b+€/2 and a minimal point of A, lies on the line y = a—¢/2. Thus
if § < ¢/2 and d(y,z) < 6,z € {(a,b), then H((a,b),A,) < e for y € An.
Therefore (a,b) € A(z). By similar argument one can show that if
(@', b') is a subcontinuum of (a,b) and @' < z < V', then (d', V') € A(z).

For the second part, let an,b, € {(a,b) and a, < z < b, and a, — a
and b, — b. Then by compactness of A(z), (an,bn) € A(z), n =
1,2..., we have (a,b) € A(z). Therefore T(z,(a,b)) C A(z) for each
a<z<<hb

PROPOSITION 2.11. Let e1,e2 and e3 be three consecutive elements
of E such that e; < e3 < e3.
(i) Suppose ey € E. Then
(a) T(ez,(e2,e2)) C A(es) and hence T(z,({e1,e3)) C A(z) for all
e; <1< eq.
(b) for any a < ez and e < r < e3 we have (a,z) ¢ A(z).

(i1) Suppose e; € E. Then

(a) T(e2,{€1,e2)) C Alez) and hence T(z,(e1,e3)) C A(z) for all
e2 <1 < eg,
(b) for any b > ez and e; < z < ey we ahve (z,b) ¢ A(z).

Proof. (i). (a). Let B € T(e3, (e2,€3)). Then B = (e3,y) for some
y,e2 < y < e3. Assume that e < y < e3. Let ¢ > 0. Choose
¢ = min{§, ¥522 £2322}  Then the closed interval (e2 — €',y + €') in
I contains only one element of E, namely e;. Let U = [0,€') % (e2 —
€',y + €¢')NX be an open set containing B. If U has an infinite number
of arc components. Cp, each of which has its maximal element, say
z, € Cy, in its interior then the sequence {z,} has a subsequence
{xn;} which converges to an element e € E. This would mean that
e1 < e < e3 which is impossible. So let us assume that, for convenience,
U does not contain any arc component which has its maximal point
its interior. Similar argument applies to deduce to have U containing
no arc component having its minimal point in its interior lying above
or on the line y = e3 + e. Thus each component of U is either an arc
of type W whose minimal point lies below the line y = e; + ¢’ and
whose end points lie on the line y = y + ¢’ or an arc of type N whose
one end point lies on the line y = y + ¢ and the other one on the line
Yy =e€3 - €.
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Let 6§ < € and y € X such that d(y,e;) < 6. Let C be a com-
ponent of U and y € C. If C is of type W with its minimal point
m, then e; — € < m2(m) < ez + €. And hence H((eg,y),W2(Z')) =
H((e2,y), (ma(m),y + €)) < e. If C is an arc of type N, then m2(C) =
(e2 — €,y + €) and so H((es2,y),C) < € by (2.3). This proves that
Bc A(ez).

If y = e3, then the compactness of A(ez) provides (e3, e3) € A(ez).

For the second part of (a), let e1 < £ < ea. Then by (2.10) we
have T(z, {e1,e2)) C A(z). Now suppose B € T(z, (e1, es)) such that
B = (b,c) = (b,e2) U {e2,c) where e; < b <z < ez <c¢ < e3. Then
(b,e2) € A(z) by (2.10) and (e2,¢) € A(z) by the first part of (a).
Hence by (1.1), we have B € A(z).

(b). Let a < ez and e < & < e3.

Let € > 0 such that ¢ < 3 min{(ez — a),(z — e2),(es — z)}. Let
U =1[0,¢) x (a — ¢,z + ¢) N X. Since e; is the only essential point
between e; and x + € and e; € E, there exists a sequence {C,} of
arc components of U of type W such that lim,_eo Cr = (2,2 + €).
Thus if d(y,z) < § < €/2, and y € Cy, then H({ez, z)72(Cr)) < ¢ for
almost all n. This implies that H({a,z),72(Cr)) > 2¢ for almost all
n. Therefore {a,z) ¢ A(z). Argument for part (i) is similar to that of

(i).

COROLLARY 2.12. Suppose €1 < ez < --- < e, are n consecutive
elements of E.

(i) Fei € E fori =1,2,...,n, then T(z, (e2,en)) C A(z), &1 £
Tz < es.

(ii) Ife; € E fori = 1,2,...,n, then T(z,{(e1,en_1)) C A(z),
€n-1 T < €q.

PROPOSITION 2.13. The space X has nonempty M-set if and only
if the set E of essential points has more than two elements.

Proof. If E contains only two elements, they must be the end points
of I sothat 0 € E and T € E. Thus T(z,I) C A(z) for each z € I.
Hence by the remark above z € I is a k-point of X. This means that
X has the empty M-set. Conversely, suppose e € E which is not an
end point of I. Suppose e € E. Let z € I such that e < z and (e, z)
contain no essential point other than e. Then (a,z) ¢ A(z) for a < e,
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by part (i) of (2.11). Hence z is not a k-point. If e € E then choose
T < e so that (z,e) contains no essential point other than e. Then
(z,b) ¢ A(z) for e < b by (2.11). Hence z is not a k-point of X.

In either case X has points z which are not k-points. Thus X has
its nonempty M-set.

REMARK. Let z € [ and A € T(z). Then either A CTor AD 1. If
A D I, then A € A(z) by (2.4). Hence we have that a point x € I is not
a k-point of X if and only if there is C € T(z,I) such that C ¢ A(z).

PROPOSITION 2.14. Suppose e; < ez are two consecutive essential
points of X. Suppose there is a point yo, €1 < yo < ez, such that yo is a
point of the M-set M of X. Then the open interval (e1,e2) is entirely
contained in M.

Proof. In view of the remark above, let (bg,b:) € T(yo, f) such that
(bo, b1) ¢ A(yo).

Let (bo,b1) = (bo,yo) U (yo,b1). Then at least one of these subin-
tervals is not admissible at yo. Suppose (bo,y0) ¢ A(yo). Then
T(yo,(e1,e2)) C A(yo) by (2.10) and by < yo imply by < e1. This
means that for each z,e; < z < yp, {(bo,z) ¢ A(z). Because (bp,z) €
A(z) would imply (bo,z) U (z,y0) € A(z), and (z,y0) € A(z). Hence
each z,e; < r < yo. is an element of the M-set M of X. Now
suppose yp < ¥ < cz. We show that 2 € M by showing (b, z) ¢
A(x). Since €¢; < yo < 7 < e; and no other essential point is be-
tween e; and ez, and (bo,y0) ¢ A(yo), we choose € > 0 such that
¢ < 2 min{(ez — z),(z — yo)} and which satisfies the following condi-
tions: the open set Uy = [0,¢/2) x (yo — €/2,z + €/2) N U does not
intersect the set V = {v € V : v is a local extreme point}, and for
every 0 < ép < €/2,6n, — 0, there is yn € Y, d(yn,y0) < 6n, and a
component Cy in Uz = [0, €/2) x (by — €/2,y0 +€/2) NY containing yn
such that H({bo, yo), 72( (C)) > e. Let pp € Crn be a maximal point of
C, and let z, € C, be a minimal point of C,. Then |yo — m2(yn)| <
0n < €/2 and ma(yn) < m2(pa) < yo +€/2 imply |yo — m2(pa)| < €/2.
Also H((bo,yo),72(Cn)) = H({bo,yo), (m2(zn), 72(pn)})) = max{|bo —
72(zn)|s Jyo — m2(pn)]} > €. Therefore we have |by — 72(zn)| > €. This
means that z, is above the line of y = by + ¢/2. Hence z,, € V. That
18 z, is a minimal point lying in the interior of 6,1 Therefore -C",, is
an arc of type W whose both end points lie on the line y = yo + €/2.
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Now let Uz = [0,€¢/2) x (bo — ¢/2,2 + €/2)N X. Then Us; is an open set
and contains Uz. Let C} be the component of Us containing C,,. We
note that the intersection of the line y = yo + ¢/2 and U; contains at
most finite number of elements of V; otherwise yo + €/2 would be an
essential point. So we assume that (U; NCL) NV = ¢, for each n. If
C}, has a point z such that 72(z) < yo + €/2, then C], would contain
an arc joining z to one of the end point of C,, which lies on the line
y = yo +€/2. This would mean that C}, contains a local maximal point
v € V which is above the line y = yo+¢/2. This is impossible. Thus we
must conclude that 6:, is an arc of type W whose both end points lie on
y =z + ¢/2. Since {C, } has converging subsequence, we may assume
that {U’n} converges to a closed interval in I. Thus d(z,_én) — 0. Since
72(C) = (ma(zn), 2 -+¢/2), H((bo, ), m3(C’)) = H((bo, 2), (ma(zn), 2+
€/2)) = max{|bp — 73(2s)|,€/2} = |bo — 72(25)| > €. This proves that
(bo,z) ¢ A(z). Hence z € M.

COROLLARY 2.15. Suppose e; < eg are two consecutive essential
points of X. If the open interval (e1, e2) contains a k-point then every
point of (e1,e2) is a k-point.

COROLLARY 2.16. If M is the M-set of X, then the components of
M are nondegenerate.

Proof. Let E be the set of essential points of X. Suppose z € M\E.
Then the component of M containing z is nondegenerate by (2.14).
Suppose z € M N E. Since the end points of I are k-points by the
remark after (2.6), we assume that z is not an end point of I Let
e1,e2 € E such that e; < 2 < ez and {e1,e2) N E = {e1,2,e2}. K
z € E, we consider the closed interval {ej,z). let z < b < e3. Then
for each e; < z < z, (z,b) ¢ A(z) by (b) of part (ii) of (2.11). Hence
z € M. Thus {e;,z) C M. If z € E, then we consider (z,ez) and a
point e; < a < z. Then for each z < z < ez, {(a,z) ¢ A(z) by (b) of
part (i) of (2.11). Hence z € M and (z,e2) C M.

PROPOSITION 2.17. Let Mo be a component of the M-set M of X.
Then there exist essential points a,b € E with a € E and b € E such
that M4 = {a,b).

Proof. Since M, is connected, let a,b € I such that M, = (a,b).
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Since the lower end point 0 € E is a k-point, we may assume that
a#0.

Suppose a ¢ E. Then there are elements e;,e2 € E such that
e1 < a < ez and (e;,e2) N E = {e1,e2}. Then (e1,e2) N My # ¢.
Hence (e1,e2) C M by (2.14). Since M, is a component of M, we have
(e1,e2) C M,. But this would mean that M, must contain elements
y € (ey,a). This is a contradiction. Hence the point a must be an
essential point. But a € E implies that a € M by (2.11). Therefore
a € M,.

Now suppose a € E. Let e1 € E such that e1 < a are two consecutive
elements of E. Let ¢ < 2 < a < a’. Then (z,d') ¢ A(z) by (b) of
part (ii) of(2.11). Therefore each point of (e, a) is a point of M. This
implies that (e;,a) U M, is a connected subset of M which contradicts
the fact that M, is a component of M. Therefore the point a must be
an element of E. R

Since the upper end point 1 of [ is an essential point belong to E
which is also a k-point, we may assume that b < 1. Then an argument
similar to the above can be applied to get b € E N M.

COROLLARY 2.18. (i) If M, is a component of M and (e, e2) = Mo
such that e; # 0,1,7 = 1,2. Then M, is closed.

(ii) If M, and Mp are two distinct components of M, then Mq N
Mz =0.

We define the collection M,, of the nt* derived sets as follows:

Let Mo = {Mq : M, is a component of {z € X : T(z) # A(z)}}.
Suppose M, is defined and M, # 0. Then we define Mp4 = {TV—,,, :
N is a component of {z € Ng : T(z,Ng) # A(z)NC(Ng),Ng € My}

PROPOSITION 2.19. Let N € M; for some k > 0. Let (a,b) = N
such that a € E and b € E, andlet M = {z € N : T(z,N) #
A(z)NC(N)}. Then m # 0 if and only if N containis more than two
essential points.

__ Proof. The proof is indentical to that of (2.13) if one replace I by
N and k-point z by z satisfying T(z, N) = A(z) N C(N).

PROPOSITION 2.20. Let N € M for some k > 0. Let (a,b) = N
such that a € E and b € E, and let

M= {zx € N:T(z,N) # A(z) nC(N)}.
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(1). Suppose e1 < ez are two consecutive essential points of X lying
in N such that there is a point yo,e; < yo < € such that yo € M.
Then the open interval (e1, e2) is entirely contained in M.

(2). M # 0 then the components of M are nondegenerate.

(3). If My is a components of M, then there exist essential points
a € E and b € E such that M, = (a,b). And furthermore if M, and
Mg are two distinct components of M then Mo N Mg = 0.

The proofs of (1), (2), and (3) are identical to those of (2.14), (2.16)
and (2.17).

PROPOSITION 2.21. Let N € My, for some k > 0. Let M = {z €
N :T(z,N) # A(z)NC(N)} and let ey < €3 < -+- < eqt1 be the set
of essential points lying in N such that {eg,ent+1) = N. Then

(i) if there is a point = € (eq,e1) such that = € M, then there is
e; € ENN,1<j <n such that T(a, (z,€;)) = A(z) N C({(z, e;)) and
(z,b) ¢ A(z) for any b,ej < b < ep+1. Similarly

(ii) if there is a point z € (eq,€n+1) N M, then there is an element
e: € ENN, 1 <i < n, such that T(z, (es, z)) = A(z) N C({ei, z)) and
(a,z) ¢ A(z) for any a,eq < a < €.

Proof. Since the proof of (ii) is similar to that of (i), we prove
only (i). Let D = {c € N : T(z,{z,c)) = A(z) N C({z,c))}. Then
T(z,{z,e1)) = A(z) N C({z,e1)) by (2.6) implies that D # @. Let
d = max D. Suppose {c,} is a sequence in D such that ¢, — d. Then
(z,cn) € A(z) for each n. So by compactness of A(z),(z,d) € A(z).

Hen < d < eng1, then T(d, (d, ens1)) = A()NC((d, en+1}) by (2.6).
This together with T'(z, (z,d)) = A(z)NC((z,d)) imply T(z, (z, ent1))
= A(z) N C({x,ens1)) by (1.1). This means that T(z, (eo, nt1)) =
A(z)NC({eo,en+1)), which contradicts the fact that z € M. Therefore
ej < d < ejy forsomel <j <n Hej <d< ejyy, then choose a
point b such that d < b < ej41. Then (d,b) € A(d), so that the
conditions (z,d) € A(z) and (d, b) € A(d) yield (z,b) € A(z) by (1.1).
And hence T(z, (z,b)) = A(z) N C({(z, b)) which contradicts the choice
of d. So we must assume that d is an essential point, say d = e;.
If e; € E then (ej,c) € A(ej), for ej < ¢ < €41, by (2.11) so that
(z,¢) € A(z). This means that T(z, (z,c)) = A(z) N C({z, ¢)), which

is a contradiction again. Thus e; must be an element of E.
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PROPOSITION 2.22. Let (a,b) be a closed interval in I. Let eg <
e1 < -+ < eny1 be the set of all essential points lying in {(a,b). Let
€, < ZTp < €41-

(1) If T(zo,(x0,b)) # A(zo) N C({z0,bd)), then there exists e; €
EnN(a,b),eir1 < e; such that

(a) T(zo, (1"0’ 6]')) = A(‘TO) n C((‘TO’ ej))v
(b) (zo,b') ¢ A(zo) fore; < b' <b,
(¢) (a) and (b) imply that T(z,{ei,ej)) = A(z) N C({ei,ej5)) for
any ,e; < z < e;41 and (z,b') ¢ A(z),e; < b’ < b. Similarly
(ii) if T(zo, (a,z0)) # A(zo) N C({a, o)), then there exists ex €
E N {a,b), er < e;, such that

(a) T(zo,{ex,70)) = A(x0) N C((Ck,.’l'o)),

(b) (a',z0) & A(zo) fora < d' < ek.

(¢) T(z,{ex.ei+1) = A(x) N C({ex,€it+1)),ei < = < eip1 and
(a',2) ¢ A(z) fora < a' < ex,€; < T < €;41.

Proof. We only give proof of (i). The proof (ii) is similar.

(a) and (b). Let d = max{c € (a,b) : T(z0,{z0,¢)) = A(zo) N
C({xo,c))}. Then by the same proof as that of (i) of (2.21), d=¢; €
EN{a,b),eit1 < e; and (zo,b') ¢ A(zo) for ej < b’ < b.

(c) First assume that zo < = < ei+1. Let € > 0 be chosen so that
€ < —;-min{(eiﬂ — z),(zo — €;)}. Since e; and e;41 are consecutive
pair, we may assume without loss of generality that the open set Uy =
[0,€) x (z0 —€,7 + €)N X does not intersect the set V of local extrema.

Since (19, €;) € A(xo) and (z0,b') ¢ A(zo) for €; < b’ the set {An}
of arc components of Uy = [0,€) x (zg — €, €; + €) N X must satisfy the
followings: H(Ap, (o — e, e; + €)) < ¢, all but finite number of Apn’s
are arcs of type N or W, and (zo,b') ¢ A(zo) implies that {A,} has a
subsequence {A,,} of arcs of type M such that the end points of each
A, lie on the line y = z¢ — ¢, the maximal points z,, of An, lie below
the line y = ¢; + ¢, and A, — (z0 — €, ¢;), and if z,, is a minimal
interior point of A,,, then z,, lies above the line y = = + ¢ for almost
all ¢.

Now let B; be an arc component of Uy = [0,€) X (z —¢,ej+€)N X.
Since U C Uz, Bj C Ay, for some n;. Let y; € Bj such that d(y;,z) <
€, and let C; be the unique arc in an joining y; to a maximal point
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of an . Since one end point of B; must lie on y = ¢ — € and there is
no local extreme in Uy, we see that B; O Cj. Thus H((z,e;),B;j) < e.
This implies that '

T(z, (z,e;)) = A(z) N C((=,¢;))-

If e; < ¢ < =y, then (z,z0) € A(z) by (2.10). So that (z,zo} U
(zo,e;) = (z,e;) € A(z) by (1.1). Therefore T{(z, (ei,€;)) = A(z) N
C({ei,e;)). Now suppose thereis b', e; < b’ < bsuch that (z, ') € A(x)
for some z,e; < z < ei+1. Applying the same reasoning as above,
(z,b) € A(z) would imply (z¢,b') € A(zo) which is a contradiction.
Thus the proposition is proved.

PROPOSITION 2.23. Suppose (e;,e;) is an R%continuum of X. Then
there are two essential points a and b, a < e; < ej < b such that the
closed interval (a,b) is contained in some element N, of M, for each
n=0,1,2,....

Proof. Since e; and e; are not the end points of I, let a,b € E such
that a < ¢; < e; < band (a,e;) N E = {a,¢;} and (ej,b) N E = {e;, b}.

First we show that (e;,e;) is entirely contained in the M-set M of
X. Let = € (ei,e;). Since (e;,e;) is an R?-continuum, there exists
€ < 1 min(e; ~ a),(e; — €i),(b — e;)} such that the open set U =
[0,€/2)x(ei—€/2,ej+€/2)NX contains two sequences {A,} and {B,} of
arc components of type M and W respectively such that lim,_,., A, =
(ei — €/2,¢€;) and limp—oo Bn = (e;, € + €/2) by (2.7). Furthermore
both end points of each A, lie on the line y = e; — ¢/2 for almost
all n, and both end points of each B, lie on the line y = ¢j + /2
for almost all n. Let U; = [0,¢/2) % (a — €/2,e; + ¢/2) N X. Then
(a,z) C Uy and U C U;. Since end points of B, lie on the line
y=e;+¢/2and U C Uy, Byn’s are components of U. Let y € B, and
d(z,y) < €/2 and let =, be the lowest point of B, such that d(e;,z,) <
e/2. I A is a subcontinuum containing y and H({a,z),4) < €/2,
then A C U;. Since B, is a component of U; as well and y € By,
A C B,. If @' is a lowest point of A then m3(z5) < w2(a') and hence
ja = ma(@)] > |o — ma(za)] > Se. Thus by (3.2) ((a,2),4) > Le.
This contradicts the asuumption that H({a,z), A) < ¢/2. So z € M.
Therefore T(z, (a, b)) # A(z) N C({a, b)), for z € (es,€;).
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Now let = € (a,e;). Choose ¢ = §min{e,(z — a)}. We take the
sequence {A,} of arc components of U of type M. Let z, € An
be a maximal interior point of A, which converges to e;. Consider
the open set U; = [0,¢/2) x (z — €',e; + ¢/2) N X. Since there is no
essential point in (z—¢€, e; —€/2)), we may assume that the components
Cpn of Uz containing A, has both of its end points lie on the line
y = ¢ — €. Then such C, is an arc of type M having z. as its
maximal interior point. Let Us = [0,¢/2) x (z — €/,b+ ¢/2)NX. Then
Uz D U; ane each Cp is a components of Us. By the same argument
applied above, we see now that (a,b) ¢ A(z) N C((a,b)). Therefore
T(z,(a,b)) # A(z) N C({a,b)),z € (a,e;). Similarly one can show
_ that for each z € (e;,b),T(z,(a, b)) # A(z) N .C(a,b)). Therefore we
conclude that T(z, (a,b)) # A(z) N C({a,b)) for each a < z < b.

Now let N, € M, such that {a,b) C N, and let M = {z € N,p:
T(z,N,) # A(z) N C(N,)}. The established condition T(z(a,b)) #
A(z)NC({a,b)) for each a < = < b implies that the open interval (a,b)
is contained in M. Hence, if N is the component of M containing

(a,b), then (a,b) C N € Mut1.

PROPOSITION 2.24. Suppose X does not contain any R2—cont1'n11_um.
Let Ny € M; and N € M;_; such that Ny C N. Supposez € N, €
A(z). Then T(N,,N)={A€ C(N): AD N1} C A(=).

Proof. Let (a1, b)) = N; and {a,b) = N with a,a; € E and b, b, €
. E. Let e; be the element of E which is immediate predecessor of
ay, let ¢; € EN N be the immediate successor of b;. Then we have
a<e;<ar<b <e<h

There are three cases to consider: a = a;,b=b;ora < a; < b <b.
We prove for the third case and leave the other cases for the reader.

Let € > 0 be chosen such that ¢ < 3 min{(a; — e;),(e; — b1)}. Let
U=1[0,%) x(a1 — ¢,b1 +€) N X. Then by (2.5) there exists § > 0 such
that if C is a components of U which intersects the é-neighborhood O
of z, then H({a;,b),72(C)) < € and hence by (2.3) H({a1,5),C) < e.

Let {Cn} be the set of all arc component of U, each of which in-
tersects ©. This set can not contain an infinite sequence of arcs of
type M at the same time containing an infinite number of arcs of
type W. Otherwise N would have an R?-continuum. So we suppose
that {C.} contains a subsequence {Cp;} of arcs of type M. Then
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the end points of Cp, must lie on the line y = a1 — e. Let z; be
a maximal point of -6,,,. which converges to b;. Choose z so that
a1 —€< zy < ay and let y = b1 + %. Since N, is a derived set
of N, by (2.20), T(z,N) = A(z) N C(N). Hence {z,y) € A(z). But
H((z,y), Ba;) 2 H({(z,y), (a — €, m2(z:))) = +5¢ for any subcontinuum
B,, C Cy,. This means that {z1,y) can not be approximated by a
sequence {By,} of subcontinua, By; C Cy,, which contradicts the ad-
missibility of (z,y) at z. So we may assume that {C.} is the set of
arc components of U of type N, each of which has one end point ly-
ing on y = a; — € and the other one on the line y = b + ¢. Now let
A€ T(—]\?l,—ﬁ) such that A C (a1,—€,b1 + €). Let z; and 23 be the
lowest and highest point of A respectively. Then, since each C, is an
arc with one end point on y = a; — € and the other one on y = b; +¢,
there are zn,y, € Cn such ny(z,) = 72(21) and w2(yn) = m2(22). Let
B, be the arc in Cp joining z, and y,. Then B, — A. Therefore
A € A(z).

Now let D € T(N1,N). Assume that D\(ei,e;) # 0. Let A €
T(N1,N) such that A C (a1 —¢, b1 +€) and A C D and A\(a1,b) # 0.
Let z; € A\(ai, b1). Then T(z;, N) = A(z1)NC(IV) so that A € A(z1)
and D € A(z,). Since A € A(z) by above, z; € AND implies D € A(x)
by (1.1). This proves the proposition.

Let us call a consecutive pair e;,eiyr; with e; < eit1 of essential
points of X open (or closed) if ¢; € E and €i+1 € E(e; € Eandejy; €
E).

PROPOSITION 2.25. Suppose eg < €1 < --+ < ey is the set of all
essential pointsin N € M,. If N does not contain any open consecutive
pair of essential points, then it contains a unique closed consecutive pair
er < ext1 such thate; € Efor0<i<kande; € E foreachk <i<n.

Proof. Since N € M,, we have N = (eo, en) with eg € Eande, ¢ E
by (2.20).

Let k =mix{j:e; e NNE}. Then ez € E and ¢; € Eforall j < k.

If there is 7 < k such that e; € E, let m = mix{i : &; € NNE,i < k}.
Then e, € E and em < er. Thus emy; € E, m+1 < k. This
would mean that e, and €43 form an open consecutive pair which
contradicts the hypothesis. Therefore a; € E implies i > k. Hence
er+1 € F and e} and er+; form a unique closed consecutive pair.
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Let us denote the cardinality of EN A by |E N A}.

PROPOSITION 2.26. Suppose X does not contain any R%continuum.
Suppose N € M; which does not contain open consecutive pair of
essential points. Then for each component N, of {t € N : T(z, N) #
A(x) N C(N)}, we have [No N E| < [N N E| and N4 does not contain

any open consecutive pair.

Proof. We assume that N contains more than two essential points.
Otherwise N would have empty derived set. Let eg < €3 < -+ < en
be the set of all essential points in N. Then N = (€0, €en) wWith €g € E
and €, € E by (2.20).

Since N does not contain open consecutive pair of essential points,
let ex € E and ex4; € E be the unique closed consecutive pair provided
by (2.25). Let eg < ¢ < ¢; and ep1 < y < €. Let 7 and j be the
smallest and largest indices provided by (2.21) and (2.22) respectively
such that T(x, (eg,¢e;)) = A(xr) N C((eo,¢;)) and (z,b) ¢ A(z) for
¢; < b and T(y, (e;,en)) = Aly) N C({cs, ¢n)) and {a,y) ¢ Ay)a < e;.
Then by (2.12) and (2.25) we have : < k and j > k + 1. Hence by
(2.25) again e; € E and ej € E. Suppose e; # eo and e; # e,. Then
by (2.9) (ei,e;) is an R?-continuum. Since N does not contain any
R?-continuum, we must have either ¢; = eq or €; = €n.

Suppose €; = €. Then T(y, (eo,en)) = A(y) N C({eo,en)) for each
€n-1 <Yy < €n. Thus Ny N{€en—_1,€n) = ¢. Therefore ¢, ¢ N,. Hence
IN.NE| < [NNnE|.

If ¢; = e, the argument is the same. The second part of the propo-
sition 1s obvious. Thus we proved the proposition.

COROLLARY 2.27. Let (a,b) be an interval and let eg < --- < ep
be the set of all essential points in {(a,b) such that a < eg and en < b.
Suppose (eg, €,) does not contain any R®-continuum, and contains no
open consecutive pair of essential elements. Let a < z1 < ey and
¢n < z2 < b. Then either T(z1.(z1,22)) = A(z1) N C({z1,22)) or
T(:g, <21,:2>) = .4(22) N C((:l, 22>).

Proof. Let g < x <€y and €,_1 <y < €,. Then by (2.25) g € E
and e, € E. And by (2.26), either T(z, (ep,en)) = A(z) N C({eo, €n))
or T(y,{co,en)) = A(y) NC({eo,€n)). Since eg € E, (21,z) € A(z;) by
(2.11). Similarly e, € E implies (y, z2) € A(z2). Combining these with
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above, we have T'(z1,{z1,ex)) = A(21)NC({z1, €n)) or T(22, (€0, 22)) =
A(z2) N C({eg, 22)). Since (eo,€n) is not an R?-continuum, we must
have either T(z1,(z1,22)) = A(21) N C({z1,22)) or T(z2,(z1,22)) =
A(z2) N C({z1, 22)).

Let N € M; for some :. Let ¢ < e; < --- < en be the set of
essential points in N = (eg, e,). Suppose N contains open consecutive
pairs of essential points. Let e(i,0) < e(i, 1) be the i open consecutive
pair in N such that e(;,0) € E and e(i,1) € E. We have linear
ordering e(7,0) < e(z,1) < e(z +1,0) < e(¢ + 1,1),2 = 1,2,.... K
N contains k number of open consecutive pairs,we let, for convenience,
eo = €(0,1) € E, e, = ¢(k+1,0) € E. Then there are (k + 1) number
of intervals P; = (e(i,1),e(i + 1,0)) in N, each of which contains no
open consecutive pair, for ¢ = 0,1,...,%, and hence each P; contains
a unique closed consecutive pair, denoted by e(z, V) < e(,A) between
e(i, 1) and e(¢ + 1,0). Thus, for each P;,i =0,1,...,k, we have

e(i,1) <e(i,V) < e(i,A) < e(z+1,0).

Let Uy be the open interval (eg,e1) and Ui+i be the open interval
(én—1,€n). And for eachi =1,2,...,k, let U; = (e(i,0),¢e(z,1)) be the
open interval between the i** open consecutive pair. We fix a point
z; € U; for each i = 0,1,2,...,k + 1. Then each P; is contained in
the interior of the closed interval (z;, zi+1), so that we have the natural
ordering of P; with the assigned index 1.

PROPOSITION 2.28. Suppose X does not contain any R?-continuum.
Suppose N € M; such that N contains open consecutive pairs of es-
sential points. Then, for each components N; of the set {z € N :
T(z,N) # A(z) N C(N)}, we have [N1 N E| < [NN E].

Proof. Let {Py, Pi,...,Pr+1}, z; € U; be the same as defined above
for N. We patch up inductively consecutive elements of {P;} so that
at the end each derived set N7 of N contains at least one less essential
point than N. For each consecutive pair P; and P;;; with containing
intervals (z;, zi11) and (ziy1, ziy2) respectively, i = 1,2,...,k, we have
the following conditions by (2.27).

L (i) T(zi, (zi, zig1)) = A(z:) N C({2i, zig1)) Or

(1) T(zig1, (2, zi41)) = A(2i31) 0 C((21, zit1))-

IL (i) T(zit1, (2i41, 2i42)) = A(zi41) N C({zi41, 2i42)) or
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(i) T(zi+2,(zi+1, 2i42)) = A(zi42) O C((zit1, zig2))-

Then we have the following four cases to consider:

Case I I (i) and II (i).

Let A € T(zi,(zi,zi4+2)). Then either A C (2i, zit1) or A = (2, zi+1)
U(zi41,b) for some b € (ziy1,ziy2). Since (zi,ziy1) € A(z) and
(zi+1,b) € A(zi41), by (1.1) we have A = (2;,b) € A(z;). Therefore we
have T'(z;, (zi, zi42)) C A(2i).

Case 2. I (ii) and II (ii).

In this case we have T(zit2,(2i,2i+2)) C A(zi42). The proof is
similar to that of Case 1.

Case 3. I (ii) and II (ii).

Since T(2i41,(2i, zi+1)) C A(2zit1) and T(zi41,(zi+1, zi+2)) C A(zi+1),
we see immediately that T(z;41, (2, zit2)) C A(2ig1).

Case 4. I (i) and II (ii). .

For T(zi,{zi, zi41)) C A(zi), we extend the set (z;,zi4+1) according
to (2.22) to (2i,¢),zi+1 < ¢ < zi42, such that ¢ is a largest element to
satisfy T(zi+1,(zi+1,¢)) C A(zi+1). Then T(zi,¢)) C A(z;). Similarly
we extend the set (ziy1,zi+2) to {(d, zi+2), zi < d < zi41 such that d
is the smallest element for which T(zi41,(d,zi+1)) C A(zi+1). Then
we have T(zit2,(d, zi+2)) C A(ziy2). If d # z; and ¢ # zi42, then
d € E and ¢ € E and (d,c) would be an R?-continuum, so we must
have either d = z; or ¢ = zi42. That is T(zi,(zi, zi+2)) C A(z:) or
T(zi42,(zi, zi+2)) C A(zi+2). So we conclude that, for each consecutive
pair P;, P;4+1, we have reduced to three cases as follow:

P1: (1) T(zi,{zi, zi+2)) C A(zi) or

(i) T(zi+2, (2i> zi+2)) C A(zit2) or

(i) T(zit1, (2, zi2)) C A(2i41)-

Now we assume that for each consecutive m-tuple P;, Piyq,...,
P, -1, with the interval (z;, zi4m), we have

Pm : (1) T(zi,(ziy zi4m)) C A(zi), or

(1) T(zi+m, (31'» 3:’+m)) C A(zit+m), or

(ii1) T(zj,(zis zigm)) C A(zj), i < j < i+ m.

We attach the interval (ziym, zi4m+1) containing Pjy, to the inter-
val of Py, with the following given conditions.

(@) T(zi4m, (Zitm, Zi4m+1)) C A(zitm) oOr

(b) T(zitm+1,(zi4m+1)) C AlZigm+1)-

There are six cases to be considered:
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(i) and (a) imply T(2i, (2i, zi+m+1)) C A(zi).

(i) and (b) imply T(Zitm+1, (2i, Zitm+1)) C A(Zitm+1)-

(i) and (a) imply T(Zi+m, (zi, Zi+m+1) C A(Zitm)-

(ii) and (a) with T(zj,(zi, zitm)) C A(z;) imply that T(zj, (2,
Zigm)) C A(z;)- Combine this with (a), we have T(zj,(zj, Zzi4+m+1)) C
A(z;)-

Therefore T'(zj,{zj, zi+m+1)) C A(z;).

(1) and (b). There is a largest element ¢ in (2i4m, zitm+1) such that
T(zi,(zi,c}) C A(zi). Also there is a smallest element d in (2i, zitm)
such that T(z,+m+1,(d z,+m+1)) C A(zitm+1). ¥ d # z; and ¢ #
Ziym+1, then d € E and ¢ € E such that (d,c) would be an R
continuum. Thus we conclude that either T'(zi, (2i, Zitm+1)) C A(2:)
or T(zitm+1, (2i, Zitm+1)) C A(Zitm+1).-

(i) and (b). .Since T(zj,(zi,zi+m)) C A(z;) implies T(z;,(z;,
zit+m)) C A(zj), there is a largest element ¢ in (ziym, Zi+m+1) such
that T(zj,(zj,¢)) C A(zj). Also there is an element d € (zi,zitm)
such that T(zitm41,(d, zigm+1)) C A(zi+m+1). But if d < zj, then
T(zj,(20,21) C A(z;) and T(zirmar, (dzisms1) would imply
T(Zitm+1, {2is Zitm+1)) C A(Zitm+1). I d is a smallest element in
(zj, ziym) such that T(Ziym+1,({d, Zitm+1)) C A(Zigm+1), then ¢ =
ziym+1. Otherwise (d, ¢) would be an R2-continuum. Thus we have ei-
ther T(z;, (zi,zitm+1)) CA(z;) of T(Zitm+1, {Zi) Zitm+1)) CA(Zizm+1).
Thus, for each consecutive (m + 1)-truple P;, Piy1,...,Piym with the
interval (z;, zi+m+1), at least one of the following must be true:

P = (1) T(zi, (26, zigm+1)) C A(2i)

(1) T(zi+m+1, (26, Zitm+1)) C A(Zigm+1)

(iii) T(zj, (zi, zi4m+1)) C A(z;), for some j, i < j <i+m-+1.

Now suppose N = (€0, en+1) € M; contains k number of open
consecutive pair of essential points. Let m = k and ¢ = 0 in Ppr41. Let
M= {z e N:T(z,N) # A(z) " C(N)}. Let Ny be a component of
M.

Case a. T(Zo, (Zo,Zk+1)) C A(Zo).

We apply (2.6) to get T(z,(eg,e1)) C A(z),es < = < €, and
T(y, (en—1,€n)) C A(y) for en—1 < y < €,. So we apply (1.1) to
get T(z,N) C A(z), = € Up. Therefore Uy C N\M. Hence ep ¢ Ny.

Case b. T(Zk.H, (Z(), Zk+1>) C A(Zk+1).

Argument is the same as (i). e, € N1.
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Case c. T(zj,(z0,2k41)) C A(zj) for some 0 < j <k + 1.

In this case we have T(z, (e(4,0),e(j,1))) C A(z), for z € U;. So
that T(z, (e(4,0),e(j,1)) C A(z), for = € U;. Thus T(z,N) C A(z) for
each z € U;. Therefore e(j,0),e(j,1) ¢ N;.

In any event we have [N; N E| < [N N E]J.

THEOREM 2.29. Suppose X has the finite set of essential points.
Then C(X) is contractible if and only if X does not contain any R?-
continuum.

Proof. If X contain an R2-continuum, then C(X) is not contractible
[2].

Suppose X does not contain an R?-continuum. If X has the empty
M:-set, then X has property k and ehce C(X) is contractible [11]. Let
us assume that X has nonempty M-set M. Since FE is finite, the end
points of each element of M; are elements of E and the elements of M;
are pairwise disjoint by (2.20) and each M; is finite. Furthermore, by
successive application of (2.26) and (2.28), there is an integer n such
that M, # 0 and M,y = 0.

First we prove that if N € M; and T(z,N) = A(z) N C(N) for
each ¢ € N, then the set-valued map ay : N — C(N) defined by
an(r)=T(z,N), x € N, is a y-map.

Clearly {2z}, N € an(z) for each # € N. The monotone-connected-
ness of an(z) follows from [3]. Now let ¢ > 0 and A € an(z). Let
6 =5,and y € N with d(z,y) < 6. Since N is a closed arc, the arc B
having z and y as its end points lies in N. Then by the hypothesis and
(1.1) we have AUB € T(y,N) C A(y). Also H(A,AU B) < ¢. This
proves that ay is lower semicontinuous at z. Hence ay is a y-map.

We define a set-valued map a, on the union of the elements of M
whose restriction on each element of M, is a y-map and extend it
inductively to a set-valued map ag on the M-set M of X into 2€(M)
whose restriction on each element M; of My is a y-map into 2C(M:)

Since M, # @ and M,4; = 0, each element N of M, satisfies
the condition that T(z,N) = A(z) N C(N), for each z € N. Let
M, = {N1,N2,...,N;}. We define the set-valued map a, as follows:
for each t = 1,2,...,k, let an(z) = T(z,N) for each £ € N. Then ay
is a y-map on each N;. Since the set M, is finite and the elements of
M, are disjoint and closed, the lower semicontinuity of a, on each N;
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provides the lower semicontinuity of a, on UX_; N;.

Let K € Mn_;. If K is an element such that T(z, K) = A(z)NC(K)
for each z € K, then define an_1(z) = ak(z), foreach z € K. f K
is an element such that T(z,K) # A(z) N C(K) for some z € K, let
{Ny,N2,...,N} be the set of elements-of M,, such that N; C K for
t=1,2,...,k and define ‘

() {an(a:)UP(N,',K) fzeN;,, 1 =1,2,...,k
an_ r)=
! T(z,K) if 7 € K\ U5, N;

I z € K such that ap_1(z) = ax(z), then clearly anp_; : K — C(K)
is a y-map. K z € N;, and an—1(z) = aa(z) U P(N;, K), then the
monotone-connectedness of an(z) with N; as its a maximal element
along with the monotone-connectedness P(N;, K) by [3] with N; as
its minimal element provides the monotone-connectedness of a,_1(z).
Also P(N;, K) C A(z) for each z € N; by (2.24).

Since ay is lower semicontinuous at eac z € N; and P(N;, K) is a
constant factor of a,_1(z) at each = € N;, we see that ap,_; : N; —
C(K) is a y-map. Suppose that = is a limit point of K\ Uf=1 Nj; such
that z € N; for some i. Let € > 0 and A € ap_1(z). Then the lower
semicontinuity of a,_; at z € N; (ap—1 restricted on N;) implies that
there exists 6; > 0 such that if y € N;, d(z,y) < 61, then there exists
an element B € a,_1(y) such that H(A, B) < e. Let 62 > 0 such that
62 < § and suppose y € K\ Uj—’___,- N; and d(z,y) < 62. Let B be an
arc in K having 2 and y as its end points. Then H(A,AU B) < e.
Also y € K\ Ule N; implies that AU B € A(y) N C(K). Therefore
if 6 = min{é1,62} and y is a point of the é-neighborhood of z in K,
then there exists an element C' € a,_1(y) such that H(A4,C) < e. This
proves the lower semicontinuity of a,_; at z. The lower semicontinuity
of an_1 at each point of the open set K \U;-‘=1 N; in K is rather obvious.

Now we assume that, for 0 < i < n, we have a lower semicon-
tinuous set-valued map a; on the union of elements of M; such that
a; restricted on each N € M; is a y-map from N into C(N). Let
K € M;_;. If K is such that T(z,K) = A(z)NC(K) for each z € N,
and let a;_1(z) = ak(z) for each z € K. Then a;_; is a y-map on K.
IfT(z,K) # A(z)NC(K) for some z € K, let {N1,Na,...,Ni} be the
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set of all elements of M; such that N; C K, i =1,2,...,k and define

( ) {a,'(.’l:)UP(N,',I{) if z € N;, i=1,2,...,k
Qi = . .
e T(z, K) if z € K\ Uk, N;

Then the argument showing a;_; to be a y-map on K is identical with
that of a,_;.

Since «;_; restricted on each K € M;_; is a y-map of K into
C(K) and elements of M;_; are closed and disjoint, a;—; is lower
semicontinuous on the union of the elements of M;_;.

Let ¢ = 1. Then we have a set-valued map ap on the union of
elements of My such that ag restried on each element M; € Mo is a
~-map on M; into C(3M;).

For each M; € Mo, let T(M;,I) = {C € C(I): M; C C}. Then by
applying the same technique as in (2.24), we see that T(M;, I) C A(z)
for each z € M;. We now define a y-map on the M-set M of X into
C(I) by F(z) = ap(z)UT(M;,I)if £ € M;. Then F is a y-map.

For the T-admissibility of X, let us first define a set T([,X) =
{C € C(X) : I c C}. Then T(I,X) is monotone-connected [3]
and T(I,X) C A(z) for each z € I by (2.4). So, for z € M, we
have a monotone-connected set F(z) U T(I,X) C A(z). Therefore
p(F(z)UT(I,X)) = [0,1]. f 2 € X\M, then z is a k-point of X.
So that T(z,X) = A(z). The monotone-connectedness of T'(z, X ) and
{z}, X € T(z,X) imply that u(T(z,X)) = [0,1]. Therefore X is
T-admissible. Hence by (1.2) we conclude that C(X) is contractible.
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