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HYPERSPACE CONTRACTIBILITY

OF TYPE sin(~)-CONTINUA

B.S.BAIK, K.HuR, P.K.LIM AND C.J.RHEE*

1. Preliminary

Let X be a metric continuum with a metric d. Denoted by 2x and
C(X) the hyperspaces of all nonempty closed subsets and subcontinua
of X respectively and endow each with the Hausdorff metric H. A
continuous map J.l on C(X) into the closed unit interval I is called a
whitney map [12] if it satisfies the following conditions: 1. J.l( x) = 0 for
each x EX, 2. if A, B E C(X), A c B, and A =1= B, then J.l(A) < J.l(B),
and 3. J.l(X) = 1. For convenience, we shall fix one such J.l throughout.
For each point x EX, let T(x) be the set of all elements of C (X) that
contain x. Then T is a function on X into 2C(X). An element A E T( x)
is said to be admissible at x in X if for each E > 0 there is a fJ > 0 such
that for each y E X, d(x, y) < fJ, there is an element B E T(y) such
that H(A,B) < E. Let A(x) be the set of all elements of T(x) which
are admissible at x in X. Then A : X ----t 2C (X) is a function [6].

LEMMA 1.1.[6]. If B E A(O, C E A(x), and ~ E B n C then
B U C E .4(x).

A metric continuum X is said to be T -admissible if, for each (x, t) E
X x I, the following condition is met: for each A E A(x) n J.l-1(t) and
t' E It, 1], there is an element B E A(x) n J.l-1(t') such that A c B.
It was observed in [8] that T-admissibility is a necessary condition for
the contractibility of the hyperspaces of X.

A subset S of C(X) is monotone-connected if, for each pair A and
B of elements of S with A CB, there is an arc Q : I ----t S joining
A = 0'(0) and B = 0'(1) such that 0'(8) C O'(t) whenever 8 ::; t. If
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A,B E C(X) and A C B, we let T(A,B) = {C E C(B): A cC}.
Then T(A, B) is monotone connected [3].

Let M be a subset of X and B E C(X) such that M c B. A fiber
function on M into C(B) is a set-valued function F: M -+ C(B) such
that {x}, BE F(x) for each x E M. A fiber function F: M -+ C(B)
is monotone-connected if F(x) is monotone-connected for each x EM.
A monotone-connected, lower semicontinuous fiber function a : M -+

C(B) (in the subspace topology) is called a ;-map if a(x) C A(x) for
each x E M. Let M = {x EX: T(x) =f:. A(xn. The set M is called the
M -set of X. The points of the complement of M are called·k-points
of X. It was shown [11] that if M = 0 then C(X) is contractible. For
M =f:. 0 let M be the closure of M in X. Then we have the following.

THEOREM 1.2.[8]. For any T-admissible metric continuum X with
nonempty M-set M, C(X) is contractible if and only if there exists a

,-map a: M -+ C(X).

2. Contractibility of C(X) of type sine~)-continua

A continuous map f : [0,1) -+ [0,1] is said to be piecewise linear over
a sequence V in [0,1) converging to °if the restriction map f I [v, v']
of f is linear for each consecutive pair v, v' of V. And a piecewise
linear map over V is called sawtooth if each v E V is a local extreme
point of the map. Let X be the compactification space of the graph
of a sawtooth map f : [0, 1) -+ [0, 1] over V with the unit interval as
remainder. We reserve V = {(v, f( v» : v E V} for X and call elements
of V loc.al maximal or minimal points of X.

In [1] Awartani proved that, for each continuous map 9 of [0,1)
onto [0,1], there is a sawtooth map f : [0,1) -+ [0,1] such that the
compactification spaces in [0,11 X [0,11 of the graphs of f and 9 are
homeomorphic. Henceforth, we consider only those spaces which are
the compactification of graphs of sawtooth maps.

Let X denote the compactification of the graph Y of a sawtooth map
with the unit interval I x °= j as its remainder. Then j is non-locally
connected because the graph Y is forced to oscillate as it approaches
to 1 and the space X is locally connected at each point of Y. Hence
each point Y is a k-point of X and thus if X has a nonempty M-set
then it must lie in 1. Therefore all derived sets being connected are
intervals lying in 1. We investigate these object thoroughly.
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Let 'If'j : [0,1] x [0,1] be the projection maps, i = 1,2,. H p,q E Y,
then we write p :::; q if and only if 1Tl(P) :::; 'If'l(q), and the closed arc
in Y joining p and q is denoted by [p, q]. H a, b E i we write a :::; b
if and only if 'If'z (a) :::; 1TZ (b) and the closed interval in i joining a and
b is denoted by (a, b) and the half-open interval opened at a by (a, b).
Furthermore if e is an number and p E i, p + e we mean 1TZ(P) + e.

Let p, q E Y and p :::; q. The closed interval [p, q] is called a wedge
(respectively spike) if the lowest (highest) points of fp, q] are interior
points. H [p, q] is a wedge we write [p, q]w and if it is a spike we write
[p, q]s.

!Jet e E i. Then e is. called essential if it satisfies the following
condItions: .. .-. ..-... .

(i) there exists a sequence {[Pn,qn]w} of wedges (or {[P~,q~]s} of
spikes) in Y and a positive number e such that limn.....oo[pn,qn]w =
(e, e + e)(limn.....oo[p~, q~] = (e - e, e)) and limn.....ooPn = limn.....oo qn =
e + e(limn .....oo P~ = limn .....oo q~ = e - e).

(ii) e is a limit point of a sequence in i satisfying the condition (i).
Let E be the set of all essential points. Since Y is the graph of a

sawtooth map (linear over V), the highest (lowest) points of a spike
(wedge) occurs at the point of V. Thus each point e E E is the limit
point of a sequence in V of points local maximuum or of points of local
minimuum.

Let 0 ::; el < e2 ::; 1, and let U(eI) = {(x, y) E E Z : y > et} and
U(ez) = {(x,y) E EZ : y < ez}. Then U(ednX is an open set, i = 1,2
and each component of it is an open arc. An arc component C in
U( el) n X lying in Y is called an arc of type M if both end points of
C (the closure of C) lie on the horizontal line y = el. H C is an arc
of type M then C contains its maximal points in its interior. An arc
component C in U (ez )nX lying in Y is called an arc of type W if both
end points of C lie on y = ez, and hence C contains its minimal points
in its interior. Thus if C is an arc of type M (or W) then C is a spike
(wedge). Finally if C is an arc component of U(el) n U(ez) n X lying
in Y such that the closed arc C has one end point on y = el and the
other on y = ez, then C is called an arc of type N.

Let (a, b) be a subinterval of i, e > 0, and h > 0. Then U =
[0, h) x (a - e, b+ e) n X is an open set in X containing (a, b), and U is
the union of at most countable number of arc components. H {Cn } is
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a sequence of components of U n Y, then we assign the indices of the
sequence according to the natural order relation of the first coordinate
of point of each component. Thus if x E Gn+1 and y E Gn then
'lr1(X) < 'lr1(Y).

LEMMA 2.1. Let e E 1. e is an essential point if and only if e is
the limit point of a sequence {wn } of lowest interior points of arcs
[pn, qn1w of type W or the limit point of a sequence {mn} of highest
interior points of arcs [Pn, qn]s of type M.

Hence we divide the set E = E u E, where E = {e E E : e =
limn--+oomn}, E = {e E E : e = limn_oown}. Let (0,0) = 0 and
(0,1) = T. Since the unit interval i is the remainder in the compacti
fication of Y, 0 E E and 1 E E. It may be that En E =1= 0.

LEMMA 2.2. Let (ai, bi) be a closed interval in i, i = 1,2. Then
H( (aI, b1 ), (a2, bz)) = max{lal - a21, Ib1 - b21}.

LEMMA 2.3. Let (a, b) be a closed subinterval in i and let G be an
arc component in U = [0, E) X(a - E,b+ E) n X. Then H(G,(a,b)) < E
if and only if H( 'lr2, (G), (a, b)) < E.

Let T : X -7 G(X) be the total fiber map. Since the space X is
locally connected at each point of Y, point x E Y is a k-point. Hence
each element of T( x) is admissible at x so that we have T(x) = A(x).
If x E i then some elements of T(x) may not be admissible at x.

PROPOSITION 2.4. Let S = {A E C(X) : A :) I}. Then S c A(x)
for each x E 1.

Proof. Let B E S. Suppose B\l = 0. Let E> 0. Let U = [0, E/2) x
[0,1] n X be an open set containing i. Let °< 6 < E/2, and Y a
point of the 6-neighborhood V of x in X. Then U contains only one
component X with the following property: C is open in X, C :) i
and V c C. Hence 'lrz(C) = i and H(C, i) < E by (2.3). Suppose
B\i =1= 0. Let Z E B\l. Then choose °< b < 'lrl(z)/2. Then if V
is the 6-neighborhood of x, then V c B. Hence for each y E V we
have y E B. Therefore H(B, B) = 0. Let x E B E G(X). Define
T(x,B) = {G E G(B): x E Cl.
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PROPOSITION 2.5. Let (a, b) E T(x, i), and (a, b) =1= i. Tben
(a, b) E A( x) if and only if, for eacb f. > 0, tbere is 8 > 0 sucb tbat if C
is a componet of tile open set U = [0, f./2) x (a - f./2, b+f./2)nX whicb
intersects tbe 8-neigbborbood V oEx in X, tben H((a,b),7r2(C)) < f..

Proof. Suppose (a, b) is admissible at x in X. Let f. > O. Then
there is 0 < b < f./2 such that each point y in the 8-neighborhood V
of x, there is an element B E T(y) such that H((a,b},B) < f./4. Let
Xl, .L2 E B such that 7l"2(XI) ~ 7l"2(X) and 7l"2(X2) ~ 7l"2(X) for all X E B.
If 7l"2(Xl) ~ b+f/4 then H( (a, b), B) ~ f./4. If 7r2(X2) ~ a-f./4, then the
distance from (0, b) to B would be greater than or equal to f./4. Neither
of the cases is possible. Hence a - f./4 < 7l"2(X2) ~ 7l"2(Xl) < b + f./4.
(*)

Now let wEB. Since (a, b) is compact there is an element c E (a, b)
such that d(w.(o,b)) = d(w,c) ~ 7l"1(W). Since d(w,(a,b)) < f./4, we
have 7l"dw) < f./4) (**). Combining (*) and (**), we conclude that
B C U. Let C be the component in U containing yE V. Then C => B.
Therefore 7l"2(B) C 7r2(C) and 7r2(C) C (a - f./2, b+ f./2). Therefore we
have

H(7r2( C), (a, b)) ~ H( 7r2( C), (a - f./2, b+ f./2))

+ H( (a - e/2, b+ f./2), (a, b}) < f..

Conversely, we may suppose that for each f. > 0 there is 8 > 0 such that
if C is a component of U = [0, f./4) x (a - f./4, b+ f./4) nX intersecting
the 8-neighborhood V of x in X, then

H((a,b),7r2(C)) < f./2.

If y E i such that d(y, x) < 8 < f./4, then B = (a - f./4, b+ f./4) is
the closure of the components of U (assuming either a - f./4 =1= 0 or
b+f./4 =1= I) containing y and H( (a, b), B) < f./2. If yE YnV, let Cbe
the component of U containing y. Since a - f./4 =1= 0 or b + f/4 =1= I, C
mush lie in Y. Then for each 171 E 7r2 (C), the horizontal line intersects
a point at w of C. Thus d( 171, C) ~ 7r1 (w) ~ f./4. Similarly for each
w E C, we have d( w, 7r2(C)) < f./4. Therefore H( 7r2(C), C) ~ f./4. And
hence H((a,b),C) ~ H((a,b),7r2(C)) + H(7r2(C),C) < f.. Therefore
(a, b) is admissible at x in X.
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PROPOSITION 2.6. IT (x, b) is a subcontinuum of i with the end
points x ~ b such that (x, b) E A(x), then T(x, (x, b) C A(x). Sim
ilarly if (a, x) C i such that (a, x) E A(x), then T(x, (a, x) C A(x).
Hence if (a, b) C i, a ~ x ~ b, such that (a,x), (x, b) E A(x) then
T(x, (a, b) C A(x).

Proof. We prove first that T(O, i) c A(O). Let (0, d) E T(O, i). IT
d::;: 1, then (0, T) ::;: i E A(O) by (2.4). So we may assume that d < l.
Let 10 > °be a number such that 10 < ! minid, 1 - d}. Since j E A(O),
there exists °< 8 < 10/2 such that if y is a point of the 8-neighborhood
V of°then the component C of the open set U ::;: [0,10/2) x [0,1] n X
containing y satisfies i cC and H(i, C) < 10.

Now let Ul ::;: [0,10/2) x [0, d +10/2) n X and let Cl be the component
of Ul containing y. Then Ul C U and Cl C C. IT y E V n i, then
Cl ::;: (O,d + 10/2) so that H(Cl , (O,d+ 10/2) < 10.

Suppose yE VnY. Since C contains a maximal element z, 7r2(Z)::;:
1 > d + 10/2, and it also contains y with 0 ~ 7r2(Y) < d + 10/2, where
the horizontal line y ::;: d + 10/2 separates C. Hence the end points
of the arc Cl must lie on the line y ::;: d + 10/2. IT w is a minimal
point of Cl, then 0:::; 7r2(W) ~ 7r2(Y)' Thus 7r2(C)::;: (7r2(w),d+€/2).
Hence H(7r2(CI), (0, d) < 10. We have (0, d) E A(O) by (2.5). Thus we
conclude that T(O,i) C A(O).

Similarly one can show that T(T, i) c A(T).
Now suppose 0 < x < b ~ 1 and (x, b) E A(x). We consider the

admissibility of (x, d) at x in X for d < b. Let 10 > 0 be a number
such that !min{(b-d),x,(d-x)}. Since (x, b) E A(x), there exists
o < 8 < 10/2 such that if y is a point of the 8-neighborhood V of
x and C is the component of U ::;: [0,10/2) x (x - 10/2, b+ 10/2) n X
containing y, then H((x,b),7r2(C)) < 10. Now let Cl be the component
of Ul[O, 10/2) x (x - 10/2, d + 10/2) n X containing the point y. Then
Ul C U and Cl C C.

Since C contains a point z such that d + 10/2 < 7r2(Z) and 7r2(Y) <
d + 10/2, the horizontal line y ::;: d + 10/2 separates C. S the arc Cl
containing y must have at least one end point lying on the line. Let z
be a minimal point of Cl. If Z' is a minimal point of C, then x - 10/2 ~
7r2(Z') ~ 7r2(Z) ~ 7r2(Y)' Hence 7r2(CI) ::;: (7r2(z),d + 10/2). Since
d(x, 7r2(Y)) < 8 < 10/2, H(7r2(Cl), (x, d) ::;: H( (7r2(Z), d+ 10/2), (x, d) ::;:
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max{I1l"2(Z) - :rl, Id + f/2 - dl} :::; f/2 < f. Therefore (x,d) E A(x) by
(2.5). We thus conclude that T(x, (x,b)) c A(x).

The proof of the second assertion is similar to the first one. For the
third assertion, we observe that if (a, x) and (x, b) are admissible at x
in X and a < x < b then their union is also admissible at x in X by
(1.1).

REMARK. The end points of i are k-points. To see it, let A E T(O).
Then A E T(o,(5, 1)), if A C i. Hence A E A(O) by (2.6). If A :) i,
then A E A(O) by (2.4). Similar argument can apply to elements of
T(f).

A nonempty proper subcoutinuum K of a metric space Z is an R 2
_

continuum of Z [2J if there exists an open set U containing K and two
sequences {C~} and {Cn of components of U such that (limn _ oo C~)n

(lim n _ oo C~) = K.
In [2] it is proven that if a metric continuum Z contain an R 2

_

continuum thpn C(Z) is not contractible.
For the space X with the graph Y of a sawtooth map, no sub

continuum of Y is an R2-continuum of X. Hence if X has an R 2
_

subcontinuum, it must be a subcontinuum of i or a subcontinuum
containing i. But if B E C(X), B :) i, then each open set containing
B has a unique open component containing B properly so that B can
not be an R 2-continuum. Suppose (0, b) is a subcontinuum of i and
bET. Let U be an open set in X containing (0, b). We show that there
exists f > 0 such that if {Cn } is any sequence of components of U such
that (0, b) C limn _ oo Cn, then (0, b+ f) C limn _ oo Cn.

Let {Cn } be a sequence of components of U such that (0, b) C
limn _ oo Cn . Then, since U is open, there exists f > 0 such that
U' = [0, f) x [0, b + f) n X c U with b + f < 1. Then the horizon
tal line y = b + f separates Cn for almost all n. Since (0, b + f) E A(O)
by the remark above and U' C U, there is a sequence {Cl.} of arc
components of U' of type vV each of whose end points lie on the line

-I -I -
Y = b + f such that C k C C nk and limn _ oo C k = (O,b + f). Therefore
(0. b+ E) C Cn. This proves that (0, b) can not be an R2-continuum.

Similar argument applies for showing that (a,l), a =!= T, is not an
R 2-continuum.

THEOREM 2.7. A subcontinuum (a, b) of i, a =!= 0, b =!= 1, is an



22 B.S.Baik, K.Hur, P.K.Lim and C.J.Rhee

R 2 -continuum of X if and only if there exist E > 0, two essential
points el E E and e2 E E, el ~ e2, and two sequences {C~}and
{C~} of components of U = [0, E) X (a - E,b + E) n X of types W
and M respectively such that a = eI, b = e2, and (limn-+<x> C~) n
(limn-+oo C~) = (el, e2).

Proof. Suppose (a, b) is an R 2-continuum of X. Let U be an open
set containing (a, b) and let {C~} and {C~} be two sequences of com
ponents of U such that (limn -+oo C~) n (limn-+<x> C~) = (a, b). We may
assume without loss of generality that C~, C~ c Y for all n and we let
Cl = limn-+<x> C~ and C2 = limn__<x> C~.

First we show that the R 2 -continuum (a, b) is properly contained in
Cl. Suppose Cl = (a, b). Then there exists E > °such that U(€) =
[0, E] X[a-€, b+€]nX is contained in U. Furthermore there is a positive
integer k such that C~ c U( ~) = [0, b+ €/2) x (a - €/2, b+ €/2) n X
for all n :2: k. So we have C~ c U(~) C U(€) C U for n :2: k. Sine

each C~ is a component of U, the end points of C~ must lie on U\U .
-1 -

On the other hand, for each n :2: k, C~ c U(~) so that Cn C U(~).

But (U\U) n U( ~) = </>. This is contradiction. Therefore Cl i= (a, b).
Similar argument applies to show that C2 i= (a, b).

Let a' E Cl \ (a, b) and b' E C2 \ (a, b). Suppose a' < a we show that
b' > b (the argument for a' > b implies b' < a is similar). If b' < b,
then (b', b) c C2 • Since a' < a, we also have (a', b) C Cl. Combining
those two, we have (a', b) n (b', b) c Cl n C2 • But this is impossible.
Therefore b' > b.

Let us assume that a' < a for each a' E Cl \ (a, b) and b < b' for each
b' E C2\(a,b). Let ao E Cl\(a,b) and bo E C2 \(a,b) be fixed. Choose
€ > °such that ao < a - E < a and b < b+ E < bo, and

Ul = [0, E) X(a - E, b - E) n X c U.

Then the condition a' < a for all a' E Cl \ (a, b) implies that there is
a subsequence {C~J of {C~} such that if Xi is a maximal point of
-1 -1
Cni (i.e. 1l"2(Xi) :2: 1l"2(X) for all X E CnJ then 1l"2(Xi) < b + E. Since
ao < a - E < a there exists a positive integer k such that each C~i

- intersects the line y =. a - E for i :2: k.
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Now let Ai be the arc component of Ul containing the point Xi, i ~
k. Then Ai C C~i for each i ~ k so that Xi is a maximal point of
Ai. It is easily seen that each Ai intersects the line Y = a-E. And
hence Xi is an interior point of Ai. This means that each Ai is an arc
of type M with its maximal point Xi in its interior and whose both end
points lie on y = a-E. It is clear that limi_oo C~i = (a - E, b), and

limi_oo Xi = b. Hence bEE.
Similar argument can be applied by using the condition that b < b'

for each b' E CZ \ (a, b) to show that there is a subsequence {Bi} of {C~}
of type W with lowest point Yi E Bi such that limi_oo Bi = (a, b+ E)
and limi_oo Yi = a, a E E. Thus we have limi_oo Bi n limi_oo Ai =
(a, b) such that a E E and bEE. Converse is obvious.

COROLLARY 2.8. If e E EnE, then {e} is an R 2-continuum of X.

COROLLARY 2.9. Let el E E and e2 E E and el :s e2. Suppose
there are points x, Y E i\E wbich satisfy the following:

(i) x < e1 :s e2 < Y
(ii) (a) (x,ez) E A(x) but (X,Zl) rt. A(x) for some Zl such that

e2 < Zl < Y and (e2, Zl) n E = 0, and
(b) (e1,y) E A(y) but (Z2,y) rt. A(y) for some Zz such that

X < Z2 < e1 and (Z2, e1) n E = 0.
Then (el, e2) is an R2-continuum of X.

Proof. We shall find an open set U and two sequences {en} and
{Dn } of arc components of U of types M and W respectively such
that limn_ooCn n limn_ooDn = (e1,e2). Since (X,Zl) fI. A(x), there
exists E1 > 0 such that for each bn = ~, there exists xn,d(xn,x) <
~ such that H«X,Zl),T(xn)) ~ fl. Similarly there exist EZ > 0
and Yn,d(Yn,y) < ~ such that H«Z2,y),T(Yn) ~ E2. Let f = ! .
min{f1, fZ, d(Zl, E), d(zz, En, and let U = [0, E) X (X - f, Y + e) n X.

Let P = [0, f) X [ez+f, Zl]nX. Since (e2, Zl) nE = 0 we may assume
without loss of generality that P does not contain any point v E V.

Let C~ be the component of U containing X n for each n = 1,2, ....
Then by the condition (i) (a) we have (x, e2) E A(x) implies each C~

contains an element An E T(x n ) such that H( (x, ez), An) < f and
(X,Zl) rt. A(x) implies H«x,ez),Bn) > e for each B n E T(xn).
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Consider the open set Ul = [0, E) X (x - E, e2 + E) n X. For each 11.

with ~ < E, let Cn be the arc component of Ul such that X n E Cn. We
may assume without loss of generality that Cn n Cm = 0 for m =f. n.
Then Cn C C~ for each n.

Let m n be a maximal point of Cn. We will show that m n is an
interior point of Cn' Suppose m n lies on the line y = e2 + E. Then
V n P = 0 implies that m n <I. V. This means that m n is not a point of
local maximuum. BecauSe pnv = 0, the component C~ must intersect
the line y = Zl at a point z. This would imply that C~ contains the
subcontinuum [xn,z] E T(xn) such that H((x,zl}, [xn,z]) < E, which is
a contradiction. Thus we conclude that m n is below the line y = e2 +E,
so that m n is a point of Cm. Hence Cn is an arc of type M. Therefore
the end points of Cn must lie on the line y = X-E.

Since H(C n , (x,e2) < E for almost all 11. and {mn } is a sequence of
maximal vertices of C~ 's, we may assume that m n ~ e2. Then it is
easy to verify that limn -+oo = (x, e2) .

In similar manner, one can find a sequence {Dn } of component of
U of type W whose end points lie on y = y + E and the sequence {wn }

of minimal points of D n converging to el such that limn -+oo D n =
(el,Y+E). Therefore by (2.7), (el,e2) is an R2-continuum.

If En E =f. 0, then the set E of essential points of X contains an
R2-continuum by (2.8) and hence C(X) is not contractible [2]. In
order to avoid some unnecessary technical consideration, we assume
that EnE = 0.

Furthermore, we assume that E is finite and we give the natural
order on E.

PROPOSITION 2.10. Suppose (a, b) is a subinterval of i such that
(a,b) nE = 0. Then T(x, (a,b) C A(x) for each x E (a,b). Moreover
if a andb are two consecutive elements of E then T(x,(a,b) C A(x)
for each a < x < b.

Proof. Let E > °be such that E < min{ b;a, H( (a, b) )}, where H is
the Hausdorff metric for 2x . Let U = [0, E/2) X (a - E/2, b+ E/2) n X.
Since (a-E/2, b+E/2) nE = 0, all but finite number of arc components
An of U have the property that one end point of An lies on y = a - E/2
and the other lies on y = b+ E/2. Therefore each An is an arc of type
N for almost all 11. such that a maximal point of An lies on the line
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y = b+f/2 and a minimal point of An lies on the line y = a-f/2. Thus
if [) < f/2 and d(y,x) < [),x E (a, b), then H((a,b),An) < f for yE An.
Therefore (a, b) E A(x). By similar argument one c~ show that if
(a', b/) is a subcontinuum of (a, b) and a' ~ x ~ b' , then (a', b/) E A(x).

For the second part, let an, bn E (a, b) and an < x < bn and an ~ a
and bn ~ b. Then by compactness of A(x), (an, bn ) E A(x), n =
1,2 ... , we have (a, b) E A(x). Therefore T(x,(a,b)) c A(x) for each
a < x < b.

PROPOSITION 2.11. Let el, e2 and e3 be three consecutive elements
of E such that el < e2 < e3.

(i) Suppose e2 E E. Then

(a) T(e2,(e2,e2)) c A(e3) and hence T(x,(el,e3)) c A(x) for all
Cl < x ~ C2.

(b) for any a < e2 and C2 ~ x < e3 we have (a,x) ~ A(x).

(ii) Suppose e2 E E. Then

(a) T(e2,(cI,C2)) C A(e2) and hence T(x,(el,e3)) C A(x) for all
e2 ~ x < e3,

(b) for any b > e2 and el < x ~ e2 we ahve (x, b) ~ A(x).

Proof. (i). (a). Let BE T(e2,(e2,e3)). Then B = (e2,Y) for some
Y, e2 ~ y ~ C3. Assume that e2 < Y < e3. Let f > O. Choose
f' = ming, y~e2 e 2 ;-e 2 }. Then the closed interval (e2 - f/, Y + f/) in

j contains only one element of E, namely e2. Let U = [0, f/) x (e2 
f/, y + f/) n X be an open set containing B. If U has an infinite number
of arc components. Cn, each of which has its maximal element, say
X n E Cn, in its interior then the sequence {xn} has a subsequence
{xn,} which converges to an element e E E. This would mean that
Cl < e < C3 which is impossible. So let us assume that, for convenience,
U does not contain any arc component which has its maximal point
its interior. Similar argument applies to deduce to have U containing
no arc component having its minimal point in its interior lying above
or on the line y = e2 + f. Thus each component of U is either an arc
of type lV whose minimal point lies below the line y = e2 + f' and
whose end points lie on the line y = y + f' or an arc of type N whose
one end point lies on the line y = y + f' and the other one on the line
y = e2 - f/.
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Let 8 < e' and y E X such that d(y, e2) < 8. Let C be a com
ponent of U and y E C. If C is of type W with its minimal point
m, then e2 - £' < 7I"2(m) < e2 + e. And hence H«(e2,y),7I"2(C» =
H«(e2,y), (7I"2(m),y + e') < e. If C is an arc of type N, then 7I"2(C) =
(e2 - e',y + e') and so H«(e2,Y),C) < e by (2.3). This proves that
BE A(e2)'

If y = e3, then the compactness of A(e2) provides (e2, e3) E A(e2).
For the secon4 part of (a), let el < x < e2. Then by (2.10) we

have T(x,(el,e2) C A(x). Now suppose BE T(x,(el,e3) such that
B = (b, c) = (b, e2) U (e2, c) where el ::; b ::; x < e2 ::; c ::; e3. Then
(b,e2) E A(x) by (2.10) and (e2,c) E A(x) by the first part of (a).
Hence by (1.1), we have B E A(x).

(b). Let a < e2 and e2 ::; x < e3.
Let e > 0 such that e < tmin{(e2 - a),(x - e2),(e3 - x)}. Let

U = [0, e) X (a - e, x + e) n X. Since e2 is the only essential point
between el and x + e and e2 E E, there exists a sequence {Cn} of
arc components of U of type W such that limn_ co Cn = (e2, x + e).
Thus if d(y,x) < 8 < e/2, and yE Cn, then H«(e2,x)7I"2(Cn»< e for
almost all n. This implies that H ((a, x), 71"2 (C n» > 2e for almost all
n. Therefore (a,x) ~ A(x). Argument for part (ii) is similar to that of
(i).

COROLLARY 2.12. Suppose el < e2 < ... < en are n consecutive
elements of E.

(i) Ifei E. E fori = 1,2, ... ,n, tben T(X,(e2,en) C A(x), el::;
x ::; e2.

(ii) H ei E E for i = 1,2, ... ,n, tben T(x,(el,en-l) C A(x),
en-l ::; x ::; en.

PROPOSITION 2.13. Tbe space X bas nonempty M-set if and only
if tbe set E of essential points bas more tban two elements.

Proof. If E contains only two elements, they must be the end points
of i so that 0 E E and lEE. Thus T(x,i) C A(x) for each x E i.
Hence by the remark above x E i is a k-point of X. This means that
X has the empty M-set. Conversely, suppose e E E which is not an
end point of i. Suppose e E E. Let x E i such that e < x and (e, x)
contain no essential point other than e. Then (a, x) ~ A(x) for a < e,
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by part (i) of (2.11). Hence x is not a k-point. If e E E then choose
x < e so that (x, e) contains no essential point other than e. Then
(x,b) tl. A(x) for e < b by (2.11). Hence x is not a k-point of X.

In either case X has points x which are not k-points. Thus X has
its nonempty M-set.

REMARK. Let x E i and A E T(x). Then either A C j or A::> 1. If
A ::> i, then A E A(x) by (2.4). Hence we have that a point x E j is not
a k'-point of X if and only if there is C E T(x,i) such that C tl. A(x).

PROPOSITION 2.14. Suppose el < e2 are two consecutive essential
points of X. Suppose there is a point Yo, el < Yo < e2, such that Yo is a
point of the M -set M of X. Then the open interval (el, e2) is entirely
contained in "M.

Proof. In view of the remark above, let (bo, bd E T(yo, i) such that
(bo,bI) tl. A(yo).

Let (bo, bl ) = (bo, yo) U (YO' bd. Then at least one of these subin
tervals is not admissible at Yo. Suppose (bo, Yo) tl. A(yo). Then
T(yO,(el,e2)) C o4.(yo) by (2.10) and bo < Yo imply bo < el· This
means that for each X,el < x S Yo, (bo,x) tl. A(x). Because (bo,x) E
A(x) would imply (bo,x) U (x,Yo) E A(x), and (x,yo) E o4.(x). Hence
each x, el < :r S Yo, is an element of the M-set M of X. Now
suppose Yo < :r < C2. We show that x E M by showing (bo, x) tl.
04.( x). Since Cl < Yo < x < e2 and no other essential point is be
tween el and e2, and (bo, yo) tl. A(yo), we choose € > 0 such that
€ < ! min{( e2 - x), (x - YO)} and which satisfies the following condi
tions: the open set Ul = [0, €/2) x (yO - €/2, x + €/2) nU does not
intersect the set V = {v E V : v is a local extreme point}, and for
every 0 < bn < €/2,b n ---t 0, there is Yn E Y, d(Yn,yo) < bn, and a
component Cn in [12 = [0, €/2) x (bo - €/2, Yo + €/2) n Y containing Yn
such that H ((bo, yo), 7r2 (C) > €. Let pn E Cn be a maximal point of
Cn and let Zn E C n be a minimal point of Cn. Then Iyo - 7r2(Yn)1 <
15" < €/2 and 7r2(Yn) S 7r2(P,,) S Yo + €/2 imply Iyo - 7r2(Pn)1 S €/2.
Also H( (bo, Yo), 7r2( Cn») = H( (bo,Yo), (7r2( Zn), 7r2(Pn))) = max{ Ibo 
7r2(Z" )1, Iyo - 7r2(p,,)I} > €. Therefore we have Ibo - 7r2(zn)1 > €. This
means that Zn is above the line of y = bo + €/2. Hence Zn E V. That
is Zn is a minimal point lying in the interior of Cn. Therefore C n is
an arc of type W whose both end points lie on the line y = yo + €/2.
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Now let U~ = [0, E/2) x (bo - E/2, x +E/2) nX. Then U3 is an open set
and contains Uz. Let C~ be the component of U3 containing Cn. We
note that the intersection of the line y = Yo + €/2 and Ul contains at
most finite number of elements of V; otherwise yo + €/2 would be an
essential point. So we assume that (Ul n C~) n V = </J, for each n. H
C~ has a point z such that 1rz(z) < Yo + €/2, then C~ would contain
an arc joining z to one of the end point of C n which lies on the line
y = Yo +€/2. This would mean that C~ contains a local maximal point
v E V which is above the line y = yo +€/2. This is impossible. Thus we
must conclude that C~ is an arc of type W whose both end points lie on

y = x + €/2. Since {C~} has converging subsequence, we may assume
-/ ~-

that {Cn} converges to a closed interval in I. Thus d(x, C n) -+ O. Since
.-/ -/

7l"z(Cn) = (7l"Z(zn), x+E/2), H«(bo, x), 7l"z(Cn»= H«(bo, x), (7l"Z(zn), x+
€/2» = max{lbo -7l"Z(zn)I,€/2} = Ibo - 7l"Z(zn)l > €. This proves that
(bo,x) rJ. A(x). Hence x EM.

COROLLARY 2.15. Suppose el < ez are two consecutive essential
points of X. If the open interval (et, ez) contains a k-point then every
point of (el, ez) is a k-point.

COROLLARY 2.16. IfM is the M-set of X, then the components of
M are nondegenerate.

Proof. Let E be the set of essential points of X. Suppose x E M\E.
Then the component of M containing x is nondegenerate by (2.14).
Suppose z E M n E. Since the end points of i are k-points by the
remark after (2.6), we assume that z is not an end point of i. Let
el,eZ E E such that el < z < ez and (el,ez)nE = {el,z,eZ}. H
Z E E, we consider the closed interval (el, z). let z < b < ez. Then
for each el ~ x ~ z, (x, b) rJ. A(x) by (b) of part (ii) of (2.11). Hence
x E M. Thus (el, z) C M. H z E E, then we consider (z, ez) and a
point el < a < z. Then for each z ~ x ~ ez, (a,x) tI- A(x) by (b) of
part (i) of (2.11). Hence x E M and (z, ez) CM.

PROPOSITION 2.17. Let Mo: be a component of the M-set M ofX.
Then there exist essential points a, bEE with a E E and bEE such
that Mo: = (a, b).

Proof. Since Mo: is connected, let a, b E j such that Mo: = (a, b).
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Since the lower end point 0 E E is a k-point, we may assume that
a 1= O.

Suppose a et. E. Then there are elements el, e2 E E such that
el < a < e2 and (el,e2) nE = {el,e2}' Then (el,e2) n MOl =F <p.
Hence (el, e2) C M by (2.14). Since Mer is a component of M, we have
(el,e2) C Mer. But this would mean that Mer must contain elements
y E (el, a). This is a contradiction. Hence the point a must be an
essential point. But a E E implies that a E M by (2.11). Therefore
a E Mer.

Now suppose a E E. Let el E E such that el < a are two consecutive
elements of E. Let el < x ::; a < a'. Then (x,a') rf:. A(x) by (b) of
part (ii) of(2.11). Therefore each point of (el, a) is a point of M. This
implies that (el, a) U Mer is a cOlllleetedsubset of M which contradicts
the fact that Mer is a component of M. Therefore the point a must be
an element of E.

Since the upper end point T of i is an essential point belong to E
which is also a k-point, we may assume that b < T. Then an argument
similar to the above can be applied to get bEE n Mer.

COROLLARY 2.18. (i) IfMer is a component ofM and (el, e2) = M er
such that ej 1= 0, T, i = 1,2. Then Mer is closed.

(ii) If Mer and AI/3 are two distinct components of M, then M er n
M /3 = 0.

We define the collection M n of the nth derived sets as follows:
Let Mo = {Mer: Mer is a component of {x EX: T(x) =F A(x)}}.

Suppose M n is defined and M n 1= 0. Then we define M n+l = {N er :
NOt is a component of{x E N /3 : T(x, N /3) 1= A(x)nC(N /3), N fJ E M n }.

PROPOSITION 2.19. Let N E Mk for some k > O. Let (a,b) = N
such that a E E and bEE, and let M = {x E N : T( x, N) =f:.
A(x) n C(N)}. Then m 1= 0 if and only if N containis more than two
essential points.

Proof. The proof is indentical to that of (2.13) if one replace i by
Nand k-point x by x satisfying T(x,N) = A(x) n C(N).

PROPOSITION 2.20. Let N E Mk for some k > O. Let (a, b) = N
such that a E E and bEE, and let

AI = {x E N : T(x, N) 1= A(x) n C(N)}.
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(1). Suppose el < e2 are two consecutive essential points of X lying
in N such that there is a point Yo, el < Yo < el such that Yo EM.
Then the open interval (el, e2) is entirely contained in M.

(2). H M =J. 0 then the components of M are nondegenerate.
(3). H Mo: is a components of M, then there exist essential points

a E E and bEE such that Mo: = (a, b). And furthermore if Mo: and
M{3 are two distinct components of M then Mo: n M fJ = 0.

The proofs of (1), (2), and (3) are identical to those of (2.14), (2.16)
and (2.17).

PROPOSITION 2.21. Let N E Mk for some k > O. Let M = {x E
N: T(x,N) =J. A(x) n9(N)} and let eo < el < ... < en+l be the set
of essential points lying in N such that (eo, en+l) = N. Then

(i) if there is a point x E (eO,el) such that x E M, then there is
ej E En N, 1 :S j :S n such that T(x, (x,ej» = A(x) n C«(x, ej» and
(x,b) tj A(x) for any b,ej < b:S en+l. Similarly

(ii) if there is a point x E (en, en+1) n M, then there is an element
ei E En N, 1 :S i :S n, such that T(x, (ei,x» = A(x) n C«(ei,x» and
(a,x) tj A(x) for any a,eo:S a < ei.

Proof. Since the proof of (ii) is similar to that of (i), we prove
only (i). Let D = {c E N : T(x, (x,c» = A(x) n C«(x, c»)}. Then
T(x, (x,el» = A(x) n C«(x,el» by (2.6) implies that D =J. 0. Let
d = max D. Suppose {cn } is a sequence in D such that Cn ~ d. Then
(x,cn ) E A(x) for each n. So by compactness of A(x), (x,d) E A(x).

If en < d :S en+l, then T( d, (d, en+l» = A(d)nC( (d, en+l» by (2.6).
This together with T(x, (x, d» = A(x)nC((x, d» imply T(x, (x, en+l»
= A(x) n C«(x,en+l») by (1.1). This means that T(x,(eo,en+l» =
A(x)n C( (eo, en+l», which contradicts the fact that x E M. Therefore
ej :S d :S ej+l for some 1 < j < n. If ej < d < ej+l, then choose a
point b such that d < b < ej+l. Then (d, b) E A(d), so that the
conditions (x,d) E A(x) and (d,b) E A(d) yield (x,b) E A(x) by (1.1).
And hence T( x, (x, b» = A(x) n C( (x, b» which contradicts the choice
of d. So we must assume that d is an essential point, say d = ej.
If ej E E then (ej,c) E A(ej), for ej < C < ej+l, by (2.11) so that
(x,c) E A(x). This means that T(x, (x,c» = A(x) n C«(x, c», which
is a contradiction again. Thus ej must be an element of E.
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PROPOSITION 2.22. Let (a, b) be a closed interval in i. Let eo <
el < ... < en+1 be the set of all essential points lying in (a, b). Let
e, < Xo < ei+l.

(i) If T(xo, (xo,b)) =I A(xo) n C((xo,b)), then there exists ej E

En (a, b), ei+1 :::; ej such that

(a) T(xo, (xo, ej)) = A(xo) n C((xo, ej)),
(b) (xo, b') ~ A(xo) for ej < b' :::; b,
(c) (a) and (b) imply that T(x,(ei,ej)) = A(x) n C((ei,ej)) for

any x,ei < x < ei+1 and (x,b' ) ~ A(x),ej < b' :::; b. Similarly

(ii) if T(xo, (a,xo)) =I A(xo) n C((a,xo)), then there exists ek E
En (a, b), ek :::; ei, such that

(a) T(xo, (ek,.To)) = .'1(.1'0) n C((ek,xo)),
(b) (a', xo) ~ A(xo) for a:::; a ' < ek.
(c) T(x,(ek,ei+d = A(x) n C((ek,ei+l)),ei < x < ei+1 and

(a',:r) ~ A(x) fora:::; a ' < ek,ei < x < ei+1.

Proof. We only give proof of (i). The proof (ii) is similar.
(a) and (b). Let d = max{c E (a,b) : T(xo,(xo,c)) = A(xo) n

C((xo,c))}. Then by the same proof as that of (i) of (2.21), d = ej E
En (a,b),ei+l :::; ej and (xo,b') ~ A(xo) for ej < b' :::; b.

(c) First assume that Xo < x < ei+ 1. Let 10 > °be chosen so that
10 < !min{(ei+1 - x),(xo - ein. Since ei and ei+l are consecutive
pair, we may assume without loss of generality that the open set Uo =
[0,10) X (xo - 10, X+ E) n X does not intersect the set V of local extrema.

Since (.ro, ej) E A(xo) and (:ro, b') ~ A(xo) for ej < b' the set {An}
of arc components of U1 = [0, f) X (xo - 10, ej + E) n X must satisfy the
followings: H(A n, (xo - E,ej + E)) :::; 10, all but finite number of An's
are arcs of type N or W, and (xo, b') ~ A(xo) implies that {An} has a
subsequence {An;} of arcs of type M such that the end points of each
An. lie on the line y = Xo - E, the maximal points Zn; of An; lie below
the line y = ej + 10, and An. -t (xo - 10, ej), and if Zn; is a minimal
interior point of An;, then Zn; lies above the line y = x + 10 for almost
all i.

Now let Bj be an arc component of rh = [0, E) X (x - 10, ej + E) n X.
Since U2 C U1,Bj C A nj for some nj. Let Yj E Bj such that d(yj,x) <
E, and let Cj be the unique arc in Anj joining Yj to a maximal point
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of A nj • Since one end point of Bj must lie on y = x - € and there is
no local extreme in Uo, we see that Bj :) Cj. Thus H«x,ej},Bj):::; €.
This implies that .

T(x, (x, ej}) = A(x) n C((x, ej}).

IT ei < x < xo, then (x,xo) E A(x) by (2.10). So that (x,xo) U
{xo,ej} = {x,ej} E A(x) by (1.1). Therefore T(x,(ei,ej}) = A(x) n
C({ei, ej». Now suppose there is b' , ej < b' :::; b such that (x, b' ) E A(x)
for some x, ei < x < eHl. Applying the same reasoning as above,
{x, b' } E A(x) wouid imply (xo, b' ) E A(xo) which is a contradiction.
Thus the proposition is proved.

PROPOSITION 2.23. Suppose {ei,ej} is an R2-continuum ofX. Then
there are two essential points a and b, a < ei < ej < b such that the
closed interval (a, b) is contained in some element N n of M n for each
n = 0, 1,2, ....

Proof. Since ei and ej are not the end points of i, let a, bEE such
that a < ei < ej < band (a,ei) nE = {a, ei} and {ej,b} nE = {ej,b}.

First we show that (ei' ej) is entirely contained in the M-set M of
X. Let x E (ei, ej) . Since {ei, ej} is an R2-continuum, there exists
€ < t min(ei - a), (ej - ei), (b - ej)} such that the open set U =
[0, €/2)x(ei-€/2, ej+€/2)nX contains two sequences {An} and {Bn} of
arc components of type M and W respectively such that limn->oo An =
{ei - €/2,ej} and limn->ooBn = (ei,ej + €/2) by (2.7). Furthermore
both end points of each An lie on the line y = ei - €/2 for almost
all n, and both end points of each B n lie on the line y = ej + €/2
for almost all n. Let Ul = [0, €/2) x (a - €/2, ej + €/2) n X. Then
{a,x} C Ul and U C Ul . Since end points of B n lie on the line
y = ej + €/2 and U C Ut, Bn's are components of Ul . Let y E Bn and
d(x, y) < €/2 and let X n be the lowest point of B n such that d(ei' xn) <
€/2. If A is a subcontinuum containing y and H«a,x},A) < €/2,
then A C Ul . Since Bn is a component of Ul as well and y E B n ,

A C B n. If a' is a lowest point of A then 1r2(Xn) ~ 1r2(a') and hence
la - 1r2(a')1 ~ la - 1r2(xn)1 ~ ~€. Thus by (2.2) «a,x},A) ~ ~€.
This contradicts the asuumption that H({a, x}, A) < €/2. So x E M.
Therefore T(x,(a,b}) =1= A(x) n C«a,b}), for x E {ei,ej}.
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Now let x E (a, ei). Choose c' = ~ min{c, (x - a)}. We take the
sequence {An} of arc components of U of type M. Let X n E An
be a maximal interior point of An which converges to ej. Consider
the open set Uz = [0,f/2) x (x - f/,ej + c/2) n X. Since there is no
essential point in (X-f' , ei -f/2)), we may assume that the components
Cn of Uz containing An has both of its end points lie on the line
y = x - c'. Then such Cn is an arc of type M having Xn as its
maximal interior point. Let Ua = [0, f/2) x (x - f/, b+ f/2) nX. Then
Ua :> U2 ane each Cn is a components of Ua. By the same argument
applied above, we see now that (a, b) f/. A(x) n C( (a, b)). Therefore
T(x, (a, b)) =fi A(x) n C( (a, b)), x E (a, ei). Similarly one can show

..~llat f?re.~~ x E (ej, b),-7'(£J.~.1.!!}U-&:l;Jr:LQCtb_b.)l__.Therefore ~
conclude that T(x, (a, b)) =fi A(x) n C«a,b)) for each a < x < b.

Now let N n E M n such that (a,b) C N n and let M = {x E N n :
T( x, N n) =fi A(x) n C( N n) }. The established condition T(x (a, b)) =fi
A(x )nC( (a, b) ) for each a < x < b implies that the open interval (a, b)
is contained in M. Hence, if N is the component of M containing
(a, b), then (a, b) c N E Mn+I.

PROPOSITION 2.24. Suppose X does not contain any R2-continuum.
Let NI E Mi and NE Mi-I such that NI C N. Suppose x E NI E
A(x). Then T(NI,N) = {A E C(N): A:> Nd c A(x).

Proof. Let (aI,bI) = NI and (a,b) = N with a,aI E lE and b,bI E
E. Let ei be the element of E which is immediate predecessor of
aI, let ei E E n N be the immediate successor of bI . Then we have
a ~ eI ~ aI < bI ~ ej ~ b.

There are three cases to consider: a = aI, b = bI or a < aI < bI < b.
We prove for the third case and leave the other cases for the reader.

Let c > °be chosen such that f < ! min{(aI - ei), (ej - bt)}. Let
U = [O,~) x (aI - f, bI + f) nX. Then by (2.5) there exists 0 >°such
that if C is a components of U which intersects the 6-neighborhood 0
of x, then H( (at, bI ), 71"2(C)) < c and hence by (2.3) H( (aI, bI), C) < c.

Let {Cn } be the set of all arc component of U, each of which in
tersects O. This set can not contain an infinite sequence of arcs of
type M at the same time containing an infinite number of arcs of
type W. Otherwise N would have an R2-continuum. So we suppose
that {Cn } contains a subsequence {Cn ;} of arcs of type M. Then
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the end points of Cn; must lie on the line y = aI - E. Let Xi be
a maximal point of Cni which converges to bl . Choose X so that
al - E < Xl < al and let y = bI + ~~. Since NI is a derived set
of N, by (2.20), T(x,N) = A(x) n C(N). Hence (x,y) E A(x). But
H((x,y},BnJ ~ H((x,y}, (a - E, 1l"2(Xi)}) ~ 190E for any subcontinuum
Rn; c Cn;' This means that (Xl, y) can not be approximated by a
sequence {Rn;} of subcontinua, Rn; c Cn;, which contradicts the ad
missibility of (x, y) at x. So we may assume that {Cn } is the set of
arc components of U of type N, each of which has one end point ly
ing on y = al - E and the other one on the line y = bl + E. Now let
A E T(N1, N) such that A C (aI, -E, bI + E). Let Zl and Z2 be the
lowest and highest point of A respectively. Then, since each Cn is an
arc with one end point on y = al - E and the other one on y = bl + E,

there are x n, Yn E Cn such 1l"2(Xn) = 1l"2(zd and 1l"2(Yn) = 1l"2(Z2). Let
Rn be the arc in C n joining X n and Yn. Then Rn ---+ A. Therefore
A E A(x).

Now let D E T(Nl,N). Assume that D\(ei,ej) =1= 0. Let A E

T(N 1, N) such that A C (al -E, bl +E) and A C D and A\(al, bl ) =1= 0.
Let Xl E A\(al, bl}' Then T(xl,N) = A(xdnC(N) so that A E A(Xl)
and DE A(xd. Since A E A(x) by above, Xl E AnD implies DE A(x)
by (1.1). This proves the proposition.

Let us call a consecutive pair ei, ei+l with ei < eHl of essential
points of X open (or closed) if ei E E and ei+! E E( ei E E and ei+l E
E).

PROPOSITION 2.25. Suppose eo < el < ... < en is the set of all
essential points in N EMs. H N does not contain any open consecutive
pair ofessential points, then it contains a unique closed consecutive pair
ek < ek+! such that ei E E for 0 S i S k and ei E E for each k < i S n.

Proof. Since NE Ms, we have N = (eo, en) with eo E E and en E E
by (2.20).

Let k = mix{j : ej E NnE}. Then ek E E and ej E Efor allj < k.
If there is i < k such that ei E E, let m = mix{i : ei E NnE, i < k}.

Then em E E and em < ek. Thus em+! E E, m + 1 S k. This
would mean that em and em+! form an open consecutive pair which
contradicts the hypothesis. Therefore ai E E implies i > k. Hence
ek+! E E and ek and ek+l form a unique closed consecutive pair.
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Let us denote the cardinality of En A by lE n AI.
PROPOSITION 2.26. Suppose X does not contain any R2-continuum.

Suppose N E M j which does not contain open consecutive pair of
essential points. Then for each component N ex of {x E N : T(x, N) =1=

A(x) n C(N)}, we have IN ex n El < IN n El and N ex does not contain
any open consecutive pair.

Proof. We assume that N contains more than two essential points.
Otherwise N would have empty derived set. Let eo < e1 < ... < en
be the set of all essential points in N. Then N = (eo, en) with eo E E
and I: n E E by (2.20).

Since N does not contain open consecutive pair of essential points,
let fJ.. E E and ek+] E E be the unique closed consecutive pair provided
by (2.25). Let eo < x < e] and en -] < y < en. Let i and j be the
smallest and largest indices provided by (2.21) and (2.22) respectively
such that T(.1',(eo,ej)) = A(.r) n C((eo,ej)) and (x,b) rf:. A(x) for
() < b, and T(y,(c"Cn)) = A(y)nC((c"cn)) and (a,y) rf:. A(y)a < Cj.

Then by (2.12) and (2.25) we have i ::; k and j ~ k + 1. Hence by
(2.25) again Cj E E and Cj E E. Suppose ej =1= eo and Cj =1= en' Then
by (2.9) (ej, ej) is an R2-continuum. Since N does not contain any
R 2 -continuum, we must have either Ej = eo or ej = en.

Suppose Cj = eo. Then T(y, (eo,e n )) = A(y) n C((eo,e n )) for each
cn-] < y ::; en' Thus N ex n (e n-], en) = 4>. Therefore en rf:. N ex' Hence
IN o nEI < INnEI.

If Cj = en the argument is the same. The second part of the propo
sition is obvious. Thus we proved the proposition.

COROLLARY 2.27. Let (a, b) be an interval and let eo < ... < en
be the set of all essential points in (a, b) such that a < eo and en < b.
Suppose (eo, en) does not contain any R2-continuum, and contains no
open consecutive pair of essential elements. Let a < z] < eo and
(Il < ::2 < b. Then either T(Z].(Z],Z2)) = A(zJ) n C((Z],Z2)) or
T(Z2, (Z], Z2)) = A(Z2) n C( (z], Z2)).

Proof. Let eo < :r < (1 and en -] < y < en, Then by (2.25) eo E E
and en E E. And by (2.26), either T(x,(eo,e n)) = A(x)nC((eo,en ))

or T(y, (eo, en)) = A(y) n C( (eo, en)). Since eo E E, (Zl' x) E A(zt} by
(2.11). Similarly en E E implies (y, Z2) E A(Z2). Combining these with
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above, we have T(ZI,(ZI,e n )) = A(ZI)nC«(zI,en)) or T(Z2, (eo,z2)) =
A(Z2) n C«(eo,z2)). Since (eo,en ) is not an R2-continuum, we must
have either T(ZI,(ZI,Z2)) = A(ZI) n C«(ZI,Z2)) or T(Z2,(ZI,Z2)) =
A(Z2) n C( (ZI, Z2)).

Let N E Mi for some i. Let eo < eI < ... < en be the set of
essential points in N = (eo, en). Suppose N contains open consecutive
pairs of essential points. Let e(i, 0) < e(i, 1) be the ith open consecutive
pair in N such that e(i, 0) E E and e(i, 1) E E. We have linear
ordering e(i,O) < e(i,l) < e(i + 1,0) < e(i + 1,1),i = 1,2, .... If
N contains k number of open consecutive pairs,we let, for convenience,
eo = e(O, 1) E E, en = e(k + 1,0) E E. Then there are (k + 1) number
of intervals Pi = (e(i, 1), e(i + 1,0)) in N, each of which contains no
open consecutive pair, for i = 0, 1, ... , k, and hence each Pi contains
a unique closed consecutive pair, denoted by e(i, V) < e(i,l\) between
e(i, 1) and e(i + 1,0). Thus, for each Pi, i = 0,1, ... , k, we have

e(i, 1) $ e(i, V) < e(i,l\) $ e(i + 1,0).

Let Uo be the open interval (eo,eI) and UHI be the open interval
(en-I, en). And for each i = 1,2, ... , k, let Ui = (e(i, 0), e(i, 1)) be the
open interval between the ith open consecutive pair. We fix a point
Zi E Ui for each i = 0, 1, 2, ... , k + 1. Then each Pi is contained in
the interior of the closed interval (z i, Zi+ I), so that we have the natural
ordering of Pi with the assigned index i.

PROPOSITION 2.28. Suppose X does not contain any R 2-continuum.
Suppose N E Mi such that N contains open consecutive pairs of es
sential points. Then, for each components NI of the set {x E N :
T(x, N) # A(x) n C(N)}, we have 1N l n El < IN n El.

Proof. Let {Po, PI, ... ,PHd, Zi E Ui be the same as defined above
for N. We patch up inductively consecutive elements of {Pi} so that
at the end each derived set NI of N contains at least one less essential
point than N. For each consecutive pair Pi and Pi+I with containing
intervals (Zi, Zi+I) and (Zi+I, Zi+2) respectively, i = 1,2, ... , k, we have
the following conditions by (2.27).

1. (i) T(Zi, (Zi, Zi+I)) = A(Zi) n C((Zi, Zi+I)) or
(ii) T( Zi+I, (Zi, ZiH)) = A(Zi+I) n C((Zi, ZiH)).
H. (i) T(Zi+I, (Zi+I,Zi+2)) = A(Zi+I) n C«ZiH,Zi+2)) or
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(ii) T(Zi+2, (Zi+l, Zi+2» = A(Zi+2) n C( (Zi+l, Zi+2»).
Then we have the following four cases to consider:
Case 1. I (i) and 11 (i).
Let A E T(Zi, (Zi, Zi+2». Then either A C (Zi, Zi+I) or A = (Zi, Zi+l)

U(Zi+l,b) for some b E (Zi+l,Zi+2). Since (Zi,Zi+l) E A(Zi) and
(Zi+l,b) E A(zi+I), by (1.1) we have A = (zi,b) E A(Zi). Therefore we
have T(Zi, (Zi, Zi+2») C A(zi).

Case 2. I (ii) and 11 (ii).
In this case we have T(Zi+2,(Zi,Zi+2») C A(Zi+2). The proof is

similar to that of Case l.
Case 3. I (ii) and 11 (ii).
Since T(Zi+1 ,(Zi, Zi+l}) C A(Zi+d and T(Zi+ll(Zi+l, Zi+2}) C A(Zi+l),

we see immediately that T(Zi+I,(Zi,Zi+2» C A(Zi+d.
Case 4. I (i) and 11 (ii).
For T(Zi, (Zi' Zi+I» C A(zd, we extend the set (Zi,ZHI) according

to (2.22) to (Zi, c), Zi+1 < c < Zi+2, such that c is a largest element to
satisfy T(Zi+I,(Zi+I,C» c A(Zi+l). Then T(Zi,C») c A(Zi). Similarly
we extend the set (Zi+I,Zi+2) to (d,Zi+2), Zi < d < Zi+1 such that d
is t,he smallest element for which T(Zi+I,(d,Zi+I») c A(Zi+I}. Then
we have T(Zi+2, (d, Zi+2» C A(Zi+2). IT d :/:. Zi and c "# Zi+2, then
d E E and c E E and (d, c) would be an R 2-continuum, so we must
have either d = Zi or c = Zi+2. That is T(Zi, (Zi, Zi+2») C A(Zi) or
T(Zi+2, (Zi, Zi+2» C A(Zi+2). So we conclude that, for each consecutive
pair Pi, Pi+l, we have reduced to three cases as follow:

'PI : (i) T(Zi, (Zi, Zi+2») C A(zd or
(ii) T(Zi+2, (Zi, Zi+2») C A(ZH2) or
(iii) T(Zi+l,(Zi,Zi+2» c A(Zi+d.
Now we assume that for each consecutive m-tuple Pi, Pi+I, .. . ,

PHm-l, with the interval (Zi, Zi+m), we have
'Pm : (i) T(Zi, (Zi, Zi+m») C A(Zi), or
(ii) T(Zi+m, (Zi, Zi+m» C A(Zi+m), or
(iii) T(Zj,(Zi,Zi+m») C A(zj), i < j < i + m.
We attach the interval (Zi+m, Zi+m+l) containing Pi+m to the inter-

val of Pm with the following given conditions.
(a) T(Zi+m, (Zi+m, Zi+m+I» C A(Zi+m) or
(b) T( Zi+m+l, (Zi+m+I») C A( Zi+m+I}.
There are six cases to be considered:
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(i) and (a) imply T(Zi, (Zi' Zi+m+I)) C A(Zi).
(ii) and (b) imply T(Zi+m+I, (Zi,Zi+m+l)) C A(Zi+m+l)'
(ii) and (a) imply T(Zi+m, (Zi' Zi+m+I) C A(zi+m)'
(iii) and (a) with T(zj, (Zi, Zi+m)) C A(zj) imply that T(zj, (zj,

Zi+m)) C A(zj). Combine this with (a), we have T(zj, (Zj,Zi+m+l)) C
A(zj). .

Therefore T(zj, (Zj, Zi+m+I)) C A(zj).
(i) and (b). There is a largest element c in (Zi+m, Zi+m+l) such that

T(Zi, (Zi, c)) C A(Zi). Also there is a smallest element din (Zi, Zi+m)
such that T(zi+m+l, (d, Zi+m+I)) C A(Zi+m+t}. If d i= Zi and c i=
Zi+m+l, then d E E and c E E such that (d, c) would be an R 2

_

continuum. Thus we conclude that either T(Zi, (Zi,Zi+m+l)) C A(Zi)
or T(Zi+m+l, (Zi, Zi+m+l)) C A(Zi+m+I).

(iii) and (b) . .since T(Zj,(Zi,Zi+m)) C A(zj) implies T(zj,(zj,
Zi+m)) C A(zj), there is a largest element c in (Zi+m, Zi+m+I) such
that T(Zj, (Zj,c)) C A(zj). Also there is an element d E (Zi,Zi+m)
such that T(Zi+m+l,(d,Zi+m+l)) C A(Zi+m+l). But if d::; Zj, then
T(Zj,(Zi,Zj)) C A(zj) and T(Zi+m+l,(d,Zi+m+l)) would imply
T(Zi+m+l, (Zi' Zi+m+l)) C A(Zi+m+I). If d is a smallest element in
(zj, Zi+m) such that T(Zi+m+l, (d, Zi+m+l)) C A(Zi+m+l), then c =
Zi+m+l. Otherwise (d, c) would be an R2-continuum. Thus we have ei
ther T(zj, (Zi,Zi+m+l)) CA(zj) or T(Zi+m+l, (Zi, Zi+m+l)) CA(zi+m+I}.
Thus, for each consecutive (m + l)-truple Pi, Pi+l, ... ,Pi+m with the
interval (Zi' Zi+m+l), at least one of the following must be true:

'Pm+l : (i) T(Zi, (Zi, Zi+m+l)) C A(Zi)
(ii) T(Zi+m+l,(Zi,Zi+m+l) C A(Zi+m+l)
(iii) T(zj, (Zi, Zi+m+l)) C A(zj), for some j, i < j < i + m + 1.
Now suppose N = (eo, en+d E Mi contains k number of open

consecutive pair of essential points. Let m = k and i = 0 in 'Pm+l' Let
M = {x E N : T(x,N) =F A(x) n C(N)}. Let NI be a component of
M.

Case a. T(zo, (zo, Zk+l) c A(zo).
We apply (2.6) to get T(x, (eo, el) C A(x), eo < x < el, and

T(y, (en-l,e n) C A(y) for en-l < y < en' So we apply (1.1) to
get T(x,N) C A(x), x E Uo. Therefore Uo C N\M. Hence eo 1. NI.

Case b. T(Zk+l, (zo, Zk+l) C A(Zk+t}.
Argument is the same as (i). en 1. NI.
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Case c. T(zj, (zo, Zk+I)) C A(zj) for some °< j < k +l.
In this case we have T(x, (e(j, 0), e(j, 1))) C A(x), for x E Uj. So

t.hat T(x, (e(j,O),e(j, 1)) C A(x), for x E Uj' Thus T(x,N) c A(x) for
each x E Uj. Therefore e(j,O),e(j, l) rt. NI.

In any event we have 1Nl n El < IN n El.

THEOREM 2.29. Suppose X has the finite set of essential points.
Then C(X) is contractible if and only if X does not contain any R 2

_

continuum.

Proof. If X contain an R 2-continuum, then C(X) is not contractible
[2].

Suppose X does not contain an R2-continuum. If X has the empty
M-set. then X has property k and ehce C(X) is contractible [11]. Let
us assume that X has nonempty M-set M. Since E is finite, the end
points of each element of M i are elements of E and the elements of M j

are pairwise disjoint by (2.20) and each Mi is finite. Furthermore, by
successive application of (2.26) and (2.28), there is an integer n such
that M n i= 0 and M n+l = 0.

First we prove that if N E Mi and T(x, N) = A(x) n C(N) for
each x E N, then the set-valued map aN : N -t C(N) defined by
Cl'N(;r) = T(x,N). x EN. is a "Y-map.

Clearly {.r},N E aN(.r) for each.1' E N. The monotone-connected
ness of aN(;r) follows from [3]. Now let f > °and A E aN(x). Let
15 = ~, and yEN with d( x, y) < 8. Since N is a closed arc, the arc B
having x and y as its end points lies in N. Then by the hypothesis and
(1.1) we have AUB E T(y,N) C A(y). Also H(A,AUB) < f. This
proves that QN is lower semicontinuous at x. Hence aN is a ,-map.

'Ve define a set-valued map Q n on the union of the elements of Mn
whose restriction on each element of M n is a ,-map and extend it
inductively to a set-valued map aD on the M-set M of X into 2C

(M)

whose restriction on each element Mi of Mo is a ,-map into 2C (M;).

Since M n i= 0 and M n+l = 0, each element N of M n satisfies
the condition that T(x, N) = A(x) n C(N), for each x E N. Let
M n = {NI ,N2 , ••• ,Nk}. We define the set-valued map Q n as follows:
for each i = 1,2•... ,k.let Qn(x) = T(x,N) for each x E N. Then QN

is a ,-map on each N j • Since the set M n is finite and the elements of
.A1 n are disjoint and closed, the lower semicontinuity of Q n on each Ni
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provides the lower semicontinuity of an on U~=lNi.
Let K E M n- l . If K is an element such that T(x,K) = A(x)nG(K)

for each x E K, then define an-leX) = aK(x), for each x E K. If K
is an element such that T(x,K) f= A(x) n G(K) for some x E K, let
{NI, N2 , ••• , N k} be the set of elements' of M n such that Ni C K for
i = 1,2, ... ,k and define

( )
_ {an(x)UP(Ni,K)

an-l x - T(x,K)
if x E Ni, i = 1,2, ... , k

if x E K\ Uf=l Ni

If x E K such that an-leX) = aK(x), then clearly an-I: K -+ G(K)
is a i-map. If x E Ni, and an-leX) = an(x) U P(Ni,K), then the
monotone-connectedness of a n ( x) with Ni as its a maximal element
along with the monotone-connectedness P(Ni, K) by [3] with Ni as
its minimal element provides the monotone-connectedness of an-leX).
Also P(Ni,K) C A(x) for each x E Ni by (2.24). .

Since an is lower semicontinuous at eac x E Ni and P( Ni, K) is a
constant factor of an-leX) at each x E Ni, we see that an-I: Ni -+

G(K) is a i-map. Suppose that x is a limit point of K\ U~=l Ni such
that x E Ni for some i. Let E > 0 and A E an-leX). Then the lower
semicontinuity of an-l at x E Ni (an-l restricted on Ni) implies that
there exists 01 > 0 such that if y E Ni, d(x, y) < 61 , then there exists
an element B E an-l(y) such that H(A,B) < E. Let 02 > 0 such that
02 < f and suppose y E K\ Uj=i Ni and d(x,y) < 02. Let B be an
arc in K having x and y as its end points. Then H(A, A U B) < E.

Also y E K\ Uj=l Ni implies that A U B E A(y) n G(K). Therefore
if 0 = min{bl,b2} and y is a point of the o-neighborhood of x in K,
then there exists an element G E an-l(y) such that H(A, G) < E. This
proves the lower semicontinuity of an-l at x. The lower semicontinuity
of an-l at each point of the open set K\ U~=lNi in K is rather obvious.

Now we assume that, for 0 < i < n, we have a lower semicon
tinuous set-valued map ai on the union of elements of Mi such that
ai restricted on each N E Mi is a i-map from N into G(N). Let
K E Mi-l. If K is such that T(x,K) = A(x) n G(K) for each x E N,
and let ai_leX) = aK(x) for each x E K. Then fri-l is a i-map on K.
If T(x,K) f= A(x)nG(K) for some x E K, let {Nl ,N2, ... ,Nk} be the
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set of all elements of M i such that Ni C K, i = 1, 2, ... , k and define

if x E Ni, i = 1,2, ... ,k

if x E K\ Uj=1 N j

Then the argument showing O'i-1 to be a ,-map on K is identical with
that of O'n-I.

Since O'i-I restricted on each K E Mi-1 is a ,-map of K into
C(K) and elements of Mi-1 are closed and disjoint, O'i-1 is lower
semicontinuous on the union of the elements of Mi-1'

Let i = 1. Then we have a set-valued map 0'0 on the union of
elements of Mo such that 0'0 restried on each element Mi E Mo is a
,-map on M; into G(M;).

For each Mi E Mo, let T(Jvfi, l) = {C E C(l) : Mi cC}. Then by
applying the same technique as in (2.24), we see that T(Mi,l) C A(x)
for each x E M i . We now define a I-map on the M-set M of X into
C(l) by F(x) = O'o(x) U T(Mi,l) if x E Mi. Then F is a I-map.

For the T-admissibility of X, let us first define a set T( l, X) =
{C E C(X) : I CC}. Then T(l,X) is monotone-connected [3]
and T(I,X) C A(x) for each x E I by (2.4). So, for x E M, we
have a monotone-connected set F(x) U T(I,X) c A(x). Therefore
f.-L(F(x) U T(I,X» = [0,1]. If x E X\M, then x is a k-point of X.
So that T(x,X) = A(x). The monotone-connectedness of T(x,X) and
{x}, X E T( x, X) imply that f.-L(T( x, X» = [0, 1]. Therefore X is
T-admissible. Hence by (1.2) we conclude that C(X) is contractible.
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