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A GENERALIZATION OF SIMONS'

RESULTS ON BEST APPROXIMATIONS

SANGHO KUM

1. Iutroduetiou

In [10], Simons gave an existence theorem for certain families of
quasiconcave functions on a compact convex set and its application
to locally convex, normed, Hilbert and finite dimensional spaces. Bel­
lenger generalized Simons' existence theorem to paracompact setting.
Recently, Park and Bae [9] removed the paracompactness assumption
in the result of Bellenger, and Park [8] used this extension to generalize
results of Simons [10] on fixed points.

In this paper, we are concerned with the results of Simons [10] on
best approximations which lead to an extension of the famous Fan's
result [3, Theorem 2] in an interesting way. As an application of the
existence theorem of Park and Bae [9], we extend various results of
Simons to more general cases, mainly to noncompact cases.

Our starting point is Theorem 0 which is a noncompact version of
Simons [10, Theorem 2.1]. The usefulness of this theorem fully appears
in the rest of the paper. We rely basically on the methods of Simons,
however, we refine and simplify several results of Simons by virtue of
our own useful observations.

2. Preliminaries

A cO/weT space X is a nonempty convex set (in a vector space) with
any topology that induces the Euclidean topology on the convex hulls
of its finite subsets. Thus, a convex subset X of a topological vector
space E with the relative topology is automatically a convex space.

A nonempty subset L of a convex space X is called a c-compact set
if for each finite subset SeX there is a compact convex set Ls C X
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such that L uSe L s. It is obvious that every nonempty compact
convex set in a Hausdorff topological vector space E is a c-compact
subset of E.

Let X be a convex space. We denote by X the set of all quasiconcave
upper semicontinuous real functions on X. Let L be a c-compact subset
and K a nonempty compact subset of X.

We first state the following due to Park [8, Theorem 2], which is a
noncompact version of Simons [10, Theorem 2.1].

THEOREM O. (Park [8, Theorem 2]) Let X, X, L, and K be as
above. Let B be a nonempty convex subset ofX, and a, (3 : X x B -+

R = [-00, +00] functions such that {f E B I a(x,/) > (3(x,j)} is
convex for eacb x EX. Suppose tbat, for eacb f E B,

(0.1) XI = {x E X Ia(x,f}S j3(x,j)} is closed;
(0.2) XI :) M I = {x E K I f(x) = maxf(X)}; and
(0.3) for each x E X \ K, f(x) 2: supf(L) 'implies x E XI'

Tben tbere exists an x E X sucb tbat x E X I for all f E B.

If a is concave and (3 is convex in their second variables, then
{f E B I a(x,j) > (3(x,f)} is convex for each x E X. If a is l.s.c.
and (3 is u.s.c. in their first variables, then (0.1) holds automatically.
Threrefore, for X = L = K, Theorem 0 reduces to Simons [10, Theo­
rem 2.1].

From now on, we assume that X is a nonempty convex subset of a
Hausdorff locally convex topological vector space E with the toplogical
dual space E* ..

A multifunction F : X -+ 2E is said to be upper hemiconiinuous
(in short, u.h.c.) or a CLR map if for each f E E* and each real a,
the set {x E X I supf(Fx) < a} is open in X.

Let m be a continuous seminorm on E. This assumption is different
from that of Simons, who assumed that m is continuous with respect to
the Mackey topology T(E, E*). In fact, this different assumption was
used only to simplify the proof of Theorem 2 in Section 4. Thus our
results remain true under the assumption of Simons except Theorem
2.
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We define two sets Bm and Am as follows:

Bm = {f E E* I If(x)l:::; m(x) for all x E E},

Am = {f EBm I sup If(x)1 = I}.
xEE

m(x):::;l

And also, we put

Ilfll = sup If(x)1 for each f E Bm.
xEE, m(x):::;l

We say that T: X -+ 2E \ {0} is a m-upper hemicontinuous map
(simply m-CLR map as in [10]) if for all f E Am, the map x -+

supf(Tx) is U.S.c. on X. An upper hemicontinuous (or CLR in [10])
map is clearly m-CLR.

Throughout this paper, cc(E) always denotes the set of nonempty
closed convex subsets of E.

3. Good approximation theorems

We use the same notations and circumstances of the previous sec­
tion. We begin with the following.

PROPOSITION A. (Hirano et al. [4, Theorem 1]) Let p be a sublinear
functional on a vector space E, C a nonempty convex subset of E, and
f a concave functional on C such that f( x) :::; p( x) for all x E C. Then
there exists a linear functional fo on E such that

f(x):::; fo(x) for x E C,

f 0 (y) :::; p( y ) for y E E.

THEOREM 1. Let P, Q : X -+ cc(E) and g: X -+ R+ anonnegative
real function. For each f E Bm, define Xf and Mf as follows:

Xf = {.t. E X I inf f(Qx - Px) :::; g(x)},

.~1f = {x E ]{ I f (x) = max f (X)} .

Suppose that,
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(1.1) for each f E Bm, Xf is closed in X;
(1.2) for each f E Am, Mf C Xf; and
(1.3) for each x E X \ K and for each f E Bm' f(x) ;::: supf(L)

implies x E Xf'

Then there exists an Xo E X such that distm(Pxo,Qxo) ::; g(xo),
where

distm(Pxo, Qxo) :=infm(Qxo -Pxo).

Proof. Observe that (1.2) is actually equivalent to the condition
that for all f E Bm' Mf C Xf' Indeed, let f E Bm \ Am and X E Mf
be given (we may assume that 0 < llfll < 1). Then mE Am and
X E M..L' By (1.2), we have

11/11

inf II~II (Qx - Px) = II~II inf f(Qx - Px) ::; g(x).

Since g(x) ;::: 0 and 0 < IIfll < 1,

inf f(Qx - Px) ::; IIfllg(x) ::; g(x),

hence, Mf C Xf' Taking B = Bm, a(x,f) = inf f(Qx - Px) and
fJ(x,f) = g(x), we can easily check that all the requirements of The­
orem 0 are satisfied. Thus there exists an Xo E X such that for all
f E Bm,

(1.4) inf f(Qxo - Pxo) ::; g(xo).

It remains to show that

distm(Pxo, Qxo) ::; g(xo).

Suppose the contrary, i.e., inf m(Qxo - Pxo) > g(xo). Then there is an
c > 0 such that inf m(Qxo - Pxo) > g(xo) + c. From Proposition A,
with C = Qxo - Pxo, f(x) = g(xo) + c for all x E C and p(x) = m(x)
for all x E E, there is a linear functional fo on E such that fo (x) ~ f( x)
for all x E C and Ifo(x)1 ~ m(x) for all x E E. This fo belongs to
Bm since m is continuous (see Treves [11, Corollary, p.64]). Since
fo(x) ;::: f(x) for all x E C,

inf fo(Qxo - PXo) ;::: g(xo) + c.

This contradicts (1.4), because fo E Bm. This completes the proof.
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REMARKS. 1. IT P and Q are m-CLR and g(x) is u.s.c., (1.1) is
automatically true. In this case, for X = L = K, Theorem 1 reduces
to Simons [10, Theorem 4.1].

2. Simons derived his theorem from the theorem of Mazur and Orlicz
applied to the seminorm m and the convex set Qxo - Pxo. We gave
an easy proof by using Proposition A.

We strengthen the continuity conditions on P and Q in the same
manner as in Simons [10]. We say that P, Q : X _ 2E are m­
continuous if they are both u.s.c. and l.s.c. into the topology defined
by the seminorm m. Simons stated the following lemma without proof.
We give a detailed proof to improve Simons' results slightly.

LEM MA B. The function x 1---+ distm (Px, Qx) is continuous.

Proof. Claim 1. The function x 1---+ distm(Px, Qx) is U.S.c.

Fix x E X and c > o. Take p E Px and q E Qx arbitrarily. We
define Up and Vg as follows:

c
Up := {y EEl m(x - p) < "2}'

c
Vg := {y EEl m(x - q) < "2}.

Since P and Q are l.s.c., there is an open neighborhood W of x in
X such that for each z E W, pz n Up i= 0 and Qz n Vg i= 0. For
Po E pz n Up and qa E Qz n Vg, we have

Thus

and so,
distm(Pz, Qz) ~ m(p - q) + c.

Since p and q are arbitrary,

distm(Pz, Qz) ~ distm(Px, Qx) + c for all Z E W

This implies that the function x _ dist m (Px, Qx) is u.s.c.
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Claim 2. The function x t--l' distm(Px, Qx) is l.s.c.

Define two sets U and V as follows:

U:= U Up,
pEPx

V:= U Vq

qEQx

where

e e
Up ={YEE 1m(x- p)<2} and Vq ={YEElm(x- q)<2}'

Then U [resp. V] is an open neighborhood of the set Px [resp. Qx].
Since P and Q are u.s.c., there exists an open neighborhood W of x in
X such that for each z E TV,

pz c U and Qz C V.

For each Po: E pz and qo: E Qz there exist p E Px and q E Qx so that

e e
m(po: - p) < 2 and m(qo: - q) < 2'

Now consider the inequality

m(p - q) ~ m(pCll - p) + m(pCll - qCll) + m(qCll - q)

~ m(pCll - qCll) +e.

Since PCll E pz and qCll E Qz are arbitrary, we have

distm(Px, Qx) ~ m(p - q) ~ distm(Pz, Qz) + e for all z E w:

Thus the function x t--l' distm(Px, Qx) is l.s.c. as desired. This com­
pletes the proof.

Now we can state the following.

COROLLARY 1. Let P, Q : X -+ cc(E) be m-CLR and 1.s.c. with
respect to the topology of E defined by the seminorm m. Given." E
[0,1), we assume that for each x E X\K and f E Bm, f(x) ~ supf(L)
implies

inf f(Qx - Px) ~ 1] distm(Px, Qx).
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Then there exist an f E Bm and an X E Mf such that

inf f(Qx - PX) 2: 77 distm(Px,Qx).

Proof. Define 9 : X ~ R+ by g(x) = 77 distm(Px, Qx) for each
x E X. Note that 9 is U.S.c. with the aid of the proof of Lemma B
because P and Q are l.s.c. We consider two cases.

Case 1. distm(Px, Qx) > 0 for all x E X.

Then distm(Px,Qx) > g(x) for all x E X. Assume that for any
f E Bm and x E Mf,

inf f(Qx - Px) < 77 distm(Px,Qx) = g(x).

Since 9 is U.S.c. and P and Q are m-CLR,

Xf = {x E X I inf f(Qx - Px) :::; g(x)}

is closed for each f E Bm. It is not hard to see that the remaining
requirements of Theorem 1 are also satisfied. Hence there is an x E X
such that distm(Px, Qx) :::; g(x), a contradiction.

Case 2. distm(Px,Qx) = 0 for some x E X.

Taking f = 0, the zero functional, we trivially obtain the result.
This completes our proof.

REMARK. Clearly, rn-continuity implies m-CLR and m-l.s.c.. Hence,
Corollary 1 improves Simons' result in the sense that the condition on
the domain X and the continuity conditions on P and Q are weakened.

4. Best approximation theorems

THEOREM 2. Let P, Q : X ~ cc(E) be m-continuous. Suppose
that for each x E X \]{ and f E Bm, f(x) 2: supf(L) implies

inf f( Qx - Px) :::; ~ distm(Px, Qx).
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Then there exist an I E Bm and an x E Mf such that

inf I(Qx - Px) = distm(Px, Qx).

Further if for all x EX,

(2.1) distm(Px, Qx) > 0,

then I E Am.

Proof. From Corollary 1, for all k > 2, there are Ik E Bm and
Xk E Mik C K such that

Note that the set {k E R I k ~ 2} is a net ordered by the usual order
in R. Since K is compact, by passing to an appropriate subnet Xk' , we
may suppose that there exists an x E K such that Xk' -+ x. Let

u = {x EEl m(x) ::; I},

UO = {I E E* I I/(x)1 ::; 1 for all x E U}.

Recall that UO is the polar of U. The Banach-Alaoglu theorem states
that UO is weak* compact. Actually, it is compact in the topology E*k
of uniform convergence on each compact subset of E (See [5, Exercise
IS.E] or [6, Theorem 2.2)). In this case, Bm is a closed subset of UO in
the topology E*k. Hence there exists an I E Bm such that a subnet
of !k' converges to f in the topology E*k. In fact, we may assume
without loss of generality that {fk/} satisfies this property.

Claim 1. x E M f .

Since !k, -+ I uniformly on the compact set K, the dual pairing
( , ) on Bm X K -+ R, defined by (I, y) = I(y), for each I E Bin and
y E X, is continuous with respect to the product topology on Bm X K.
Therefore Ikl(Xkl ) converges to I(x). Since Xk' E M/'e"
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and so, by letting k' ---t 00, we obtain that

f(y) ::; f(x) for all y E X.

This forces us to get the result.

Claim 2. inf f(Qx - Px) = distm(Px,Qx).

We follow the fashion of Simons. Fix P E PX, q E Qx and c > O.
Since P and Q are m-l.s.c. and Xk' ---t x, there are two nets {Pk'}
and {qk'} such that Pk' E Px k' [resp. qk' E Qx k' ] and pk' ---t P [resp.
qk' ---t qJ. Hence there is an ko such that for any k' 2': ko,

(2.3)
c: c:

m(Pk' - p) < 2 and m(qk' - q) < 2'

From (2.2) and (2.3), for k' 2': ko,

and

hence

fdq - p) 2': (1 - ~') distm(Pxk', QXk') - c.

Thus for all pE Pr and q E Qx,

liminf fk'(q - p) 2': distm(Px,Qx)
k'

from which
f(q - p) 2': distm(Px,Qx).

Since this holds for all pE Px and q E Qx,

inf f(Qx - Px) 2': distm(Px, Qx).
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Moreover, the reverse inequality is trivial. Therefore, the conclusion
follows.

Suppose, finally, (2.1) is true. From Claim 2, f i= O. Let 9 = m'
Then 9 E Am and IIglI = 1, hence,

distm(Px,Qx) ~ inf g(Qx - Px)

= II}II inf f(Qx - Px)

= II}II distm(Px, Qx) > O.

Thus IIfll ~ 1, from which it follows that IIfll = 1, i.e., f E Am, as
desired. This completes the proof.

For a normed vector space E, we have the following consequence.
However, we can simplify the proof in this case, which consequently
gives a short proof for Simons' result.

THEOREM 3. Let P, Q : X -+ cc(E) be continuous. Let L be
a compact convex subset, and J{ a nonempty compact subset of E.
Suppose that for each x E X \ J{ and / E E* with IIfll ~ 1, f(x) ;:::
sup f(L) implies

inf f( Qx - Px) ~ %dist(Px, Qx).

Then there exist an f E E* with 11/11 ~ 1 and an x E Mf such that
inf f(Qx - Px) = dist(Px, Qx). Further, iffor all x EX,

dist(Px,Qx) > 0

then 11/11 = l.

Proof. We have only to modify Claim 2 in Theorem 2 as follows:

Fixp E Px, q E Qx ande > O. Since P and Q arel.s.c. andxk' -+ x,
there are two subsequences {pk'} and {qk'} such that Pk' E PXk"
qk' E QXk' ,Pk' -+ P, and qk' -+ q. Hence there is an ko such that for
any k' ~ ko,

(3.1)
€

IIpk' -plI <­
2
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From (2.2) and (3.1), for k' 2:: ko,

(3.2) fdqk' - Pk') 2:: (1 - ~,) dist(PXkl, QXkl ).

Since Pk' -t P, qk' -t q and /k, -t f, we have fk,(qk l - pk') -t f(q - p).
By Lemma B we see that dist(Pxk',Qxk') -t dist(Px,Qx). Hence we
obtain from (3.2) that

f(q ~ p) 2:: dist(Px,Qx).

Since this holds for all pE Px and q E Qx,

inf f(Qx - Px) 2:: dist(Px,Qx).

Moreover, the reverse inequality is trivial. Therefore, the conclusion
follows.

REMARK. Theorem 3 is a noncompact version of Simons [10, The­
orem 5.1]. Simons showed how Theorem 5.1 leads to an extension of
Fan [3, Theorem 2J. For more discussion, refer to Simons [10, Remark
5.3J. On the other hand, we can also generalize Simons [10, Corollary
5.2]. We omit it here.

In what follows we suppose that (E, 11· 11) is a normed vector space
and X is a nonempty weakly convex subset of E. Let E have the
11· 11 topology and X the weak topology. We only state our final result
without proof which is easily obtained by employing a similar process
in Claim 1 of Theorem 2 and Simons' argument.

THEOREM 4. Suppose that E* is locally unifonnly convex. Let
P, Q: X -t cc( E) be continuous. Let L be a weakly compact convex
subset, and]( a nOllempty weakly compact subset of E. Suppose that
for each x EX \ I< and f E E* with Ilfll ~ 1, f(x) 2:: supf(L) implies

inf f( Qx - P:t) ~ ~ dist(Px, Qx).

Tllen there exist an f E E* with IIfll ~ 1 and an x E Mf such that
inf f( Qx - Px) = dist( Px, Qx). If, further for all x EX,

dist(Px, Qx) > 0

then Ilfll = l.

REMARK. We can easily obtain a Corollary to Theorem 4 which is
an improvement of Simons [la, Corollary 6.2J. We omit it here.
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