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ON THE ESTIMATE OF THE FIRST

EIGENVALUE OF THE LAPLACIAN ON

A COMPACT RIEMANNIAN MANIFOLD

DONG PYO CHI AND JIN HONG KIM

§o. Introduction

Throughout this paper, let M be an n-dimensional compact Rie­
rnannian rnanifuldwith ()I:'witOOui boundary oM and be asswnedthat
K and H are non-negative constants and d denotes the diameter of M.

We shall consider the solution of the equation

(0.1) ~U = -AU

defined on M. In case M is a manifold with boundary aM, we impose
the following boundary condition:

(0.2) OUIov aM = 0,

where v is the unit normal vector to oM.
Our purpose is largely to show that results of a lower bound of the

first non-zero eigenvalue obtained for the Laplacian on a compact Rie­
mannian manifold by P.Li, S.T.Yau, and R.Chen can be improved by
a simple but sharper inequality. More precisely, this article has triple
purposes: Firstly, we generalize the first non-zero eigenvalue estimate
of (0.1) obtained in P.Li-S.T.Yau [4,5] with Ricc(M) ~ 0 to the case
Ricc(M) ~ -en -l)K ([Theorem 0.1]). Secondly, we improve the first
non-zero eigenvalue estimate of (0.1) given by P.Li-S.T.Yau [4,5] via
the inequality (a -:- b)2 ~ ea2 - (1':e)b2(0 < e< 1) without using a

less sharp one (a - b)2 2: ~a2 - b2 ([Theorem 0.2]). And finally, we
introduce (probably improve) a lower bound of the non-zero Neumann
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eigenvalue of (0.1) with (0.2) [2] which is a generalization of [4, [The­
orem 9]] to a compact Riemannian manifold with possibly non-convex
oM ([Theorem 0.3]).

Using a method similar to those of P.Li-S.T.Yau and R.Chen, we
have the followings:

THEOREM 0.1. Let M be a compact Riemannian manifold witbout
boundary. Let Al be the first non-zero eigenvaJue of (0.1). Suppose
Ricc(M) ~ -en -l)K. Then

[
2e(n) 2

Al~ (n_1)cPB -(n-1)K]exp(-B),

where
e(n) = (n - 1){J(n - 1)2 + 2 - (n - I)}

and

B= 1+ 1 2(n -1)2 cPK
+ e(n)

REMARK. Note that t < e(n) < 1. Hence this eigenvalue estimate
is better than

en -\)d2 exp[-(l + J1 +4(n -1)2d2K)]

obtained by Li-Yau [5, p.129].

THEOREM 0.2. Let M be a compact Riemannian manifold witb
oM. Let T}1 be the first nonzero eigenvaJue of (0.1) and (0.2). Let
oM satisfy tbe "interior rolling €-ball" condition. Suppose Ricc(M) ~
-en -l)K and the second fundamental form elements of oM ~ -H.
By choosing € small, we have

where a and € < 1,

B = 1 (1 2(n - 1)d
2
C )1/2

1 + + (1 _ a2 )e(n,a) ,
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C =(1 + H)C1 + (1 + H)2(n -1)K

H2[(2n - 2 - 2e(n,a)? + (8n - 8 - 4e(n,a))e(n,a)a2
J

+ €(n, a)0:2€2(n - 1) ,

Cl = 2(n -1)H(3H + 1)(H + 1) + H +2H2 ,
€ €

and

€(n, 0:) = (n - I} {}(n -1)2 +2(1- ( 2) - (n -I)}.
I-a

REMARK. When the boundary is convex, our estimate implies the
eigenvalue estimate obtained in [Theorem 0.2J (See Remark after the
[Lemma 2.2J below). In contrast to the result of R.Chen [2J, €(n, a)
has been inserted (1 < €( n, 0:) < 1). But we still don't know whether
or not this result is sharper than that of R.Chen [2J.

DEFINITION 0.3. Let aM be the boundary of a compact Riemann­
ian manifold M. Then aM satisfies the interior rolling €- ball condition
if for each point p E aM, there exists a geodesic ball B q(€/2) s.t.

p = B q ( €/2) n aM

and
B q(€/2) C M.

In §1., we shall give gradient estimates which are essential in proofs
of the main results. In §2., we shall give brief proofs of main theorems.

§l. Gradient Estimates

We have the followings:

LEMMA 1.1. Let M be as above with Ricc(M) 2: -(n - I)K and
let 1l be a non-constant first eigenfunction of (0.1) with Al s.t.

1 ::;: sup u > inf u = -k 2: -1 (0 < k :::; 1).

Then we get

IVul2
:::; [All ~ k + (n - l)K](1- u)(k + u).

Proof. This result follows from the proof of P.Li-S.T.Yau [5, p.121]
with handling the condition Ricc(M) 2: -(n - l)K carefully.
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LEMMA 1.2. If u is a non-constant first eigenfunction of (0,1) with
sup u = 1 and >'1, then

where 13 > 1.

REMARK. IT M is a compact Riemannian manifold with aM being
convex, then. we have the same gradient estimate with the same G(x)
defined amid the proof of [Lemma 1.2} under the Newmann condition
by the maximum principle. Thus in that case the same first eigenvalue
estimate as in [Theorem 0.2] can be obtained.

Proof. The proof is a slight modification of the proof given by P.Li­
S.T.Yau [5]. As in [5J, consider the function defined by

IVul2

G(x) = (13 _ u)2

By applying the maximum principle and the Bochner identity in line
with the proof in [5], it is easy to get

at Xo, at which G attains its maximum.
IT we choose an orthonormal frame at Xo S.t.U1 = IVul and Ui = 0

for all i =1= 1,then, from VG(xo) = 0,

(1.2)

and

(1.3)

IVul2
uU=-(f3_u)

Uii = 0, i =1= 1
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Also, at xo,

(1.4)

'" u~· > '" u~· = u211 + '" u2.L...J tJ - L...J n L...J n
i#l

2 O::::i#l Uii )2

? Ull + (n -1)

2 (.6.U-Ull?
= Ull + (n - 1)

2 ~ 2 ~ (.6. )2
?Ull +(n_l)Ull -(n_1)(1_0 U

(n - 1 + 0 2 ~ 2

= (n - 1) Ull - (n - 1)(1 _ 0 (.6.u)

for 0 < ~ < 1. Substituting (1.2),(1.3) and (1.4) into (1.1), we get

(n - 1 +0 l\7ul4
~Aiu2 ?" 12

(n - 1) ({3 - U)2 (n _ 1)(1 _ ~) - (AI + (n - l)R )1\7u

l\7ul 2 l\7ul4

-AIU({3_U) - ({3-u)2 ~O

Since (,8~u) ~ (,8~l)' simple computations show

so that

for ~(n) defined previously.

LEMMA 1.3. Let M be the same as [Theorem 0.3]. Let U be a non­
costant solution of (0.1) and (0.2) with sup U = 1 and 'fIl' If j3 > 1 and
E is "small", then

2 2( n - 1) ( 2 j3) 2l\7ul :::; (1 _ (2)~(n,a) C + (1 + H) 'fIl j3 -1 ({3 - u) ,
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where

C, ~(n,a) = the same as [Theorem 0.3].

Proof. Let 'l/J(r),r, 4>, G(x) be the same completely as in the proof of
[2]. The same kind of reasoning used in [2] gives

(1.5)

at the interior point Xo, where G attains its maximum and we choose
an orthonormal farme {ed (1 ~ i < n) s.t. Ul(XO) = IVul(xo). Then,
at Xo, VG(xo) = 0 gives

(1.6) Ulj =

It is obvious with (1.6) that

+ f2(n-l)(1+4>}2
~l1iu2

""' 2 1 ""' 2L.-J Uii ? n _ 1 (L.-J Uii)
i#1 i>l

1 2
= n_1(~u-Ull)

> _1_ (C( )2 _ ~(~U)2) (0 < C< 1)
- n - 1 .. Un ~ - 1 ..

cu4 'lCu3·/.fr> .. 1 + ""'- Iif' I

- (n - 1)(,8 - U)2 f(n -1)(1 + 4»(,8 - u)

~('l/J'?uiri

(1.7)
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Combining (1.5) with (1.7),

(1.8)
0> ~u~ 2(n - 1 - ~)?jJ'u1r1

- (n - 1)(,8 - u)2 fen - 1)(1 + </»(,8 - u)

Cl 2(n - 1)(?jJ')2 - ~(?jJ')2ri

-1+</> - f2(n-1)(1+</»2

-(n-1)K- 771,8 _ 77iu
2

2 ~ .
,8-u (n-1)u11-~

It is clear that

(1.9)

Hence ,with (1.9), (1.8) gives

o~ [1 - a
2

~](~ )2
n-1 ,8-u

[(2n - 2 - 2~)2 - 4a2e](?jJ')2
4~a2f2(n - 1)(1 + </»2

2(?jJ' )2 Cl 1 K 771,8
- f2 (1 + </> )2 - 1 + </> - (n - ) -,8 - U

77i~u2

(n - 1)(1 - Oui

2

Multiplying through by (1 + </»4 (,8~~F' it is easy to show

(1 - a2)~ G2 < [[(2n - 2 - 202 + (8n~ - 8~ - 4e)a2] (?jJ')2
n - 1 - 4~a2f2(n - 1)

+ (1 + </»C1 + (1 + </»2(n -l)K + ,877~u (1 + </»2]G

772~ u2

+ (n - 1)(1- 0 (1 + </»4 (,8 _ u)2
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l.e.
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G < max{ 2(n -1) [C+(1+H)2 [3111 ] 111(1 +H? (_2_)1/2_1_}
- (1-a 2 )e (3-1' V1-a2 1-e [3-1

Hence, if eCn,a) is the same as above, then our result comes out.

§3. Proofs of Main Theorems 0.1-3

A similar argument to that of [2,5] with the newly-made gradient
estimates in [Lemma 1.1-31 gives the conclusions immediately.
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