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ON CERTAIN REAL HYPERSURFACES

OF A COMPLEX SPACE FORM*

U-HANG KI, NAM-GIL KIM AND SUNG-BAlK LEE

Introduction

A complex n-diemensional Kaehler manifold of constant holomor­
phic sectional curvature c is called a complex space form, which is
denoted by Mn(c). A complete and simply connected complex space
form consists of a complex projective space PnC, a complex Euclidean
space cn or a complex hyperbolic space HnC, according as c > 0,
C = 0 or c < O.

Let M be a real hypersurface of Mn(c), c #- O. Then M has an
almost contact metric structure (cP,~,"l,g) induced from the Kaehler
metric and the almost complex structure J of Mn(c). We denote by
A and S the shape operator and the Ricci tensor of type (1,1) on M,
respectively.

On his study of real hypersurfaces of a complex projective space
Pn C, Takagi [7] classified all homogeneous real hypersurfaces and show­
ed that they are realized as the tubes of constant radius over Kaehler
submanifolds if ~ is principal. Namely, he proved the following

THEOREM A. Let M be a homogeneous real hypersurface of PnC.
Then M is a tube of radius r over one of the following Kaehler sub­
manifolds;

(AI) a hyperplane Pn-1C, where 0 < r < 7r/2,
(A z ) a totally geodesic PkC (1 5 k 5 n - 2), where 0 < r < 7r/2,
(B) a complex quadric Qn-I, where 0 < r < 7r/4,
(C) PlC x p(n-l)!ZC, where 0 < r < 7r/4 and n(2: 5) is odd,
(D) a complex Grassmann G 2,sC, where 0 < r < 7':/4 and n =9,
(E) a Hermitian symmetric space SO(IO)/U(5), where 0 < r <

7':/4 and n = 15.
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According to Takagi's classification, the principal curvatures and
their multiplicities of the above homogeneous real hypersurfaces are
given.

Real hypersurfaces of PnC .have been studied by many differential
geometers ([2], [6], [8] and [18] etc.) and as one of them, Kimura [6]
asserts that M has constant principal curvatures and eis principal if
and only if M is locally congruent to a homogeneous real hypersurface.

On the other hand, real hypersurfaces of a complex hyperbolic space
HnC have also been investigated by Bemdt [1], Montiel [13], Montiel
and Romero [14] and so on. Berndt [1] classified all homogeneous real
hypersurfaces of HnC and showed that they are realized as the tubes
of constant radius over Kaehler submanifolds if eis principal. Namely,
he proved the following

THEOREM B. Let M be a homogeneous real hypersurface of HnC.
Then M is cogruent to one of the following hypersurfaces :

(Ao) a horosphere in HnC,
(At) a tube ofa complex hyperbolic hyperplane Hn-t C ofarbitrary

radius,
(A2 ) a tube of a totally geodesic HkC (1 ~ k ~ n - 2) of arbitrary

radius,
(B) a tube of a totally real hyperbolic space HnR.

For principal curvatures and their multiplicities of the above hyper­
surfaces are also given by Berndt [1].

Now it is seen that there exist no real hypersurfaces on Mn(c), c i- 0
with parallel second fundamental form. Kimura and Maeda [8J pointed
out the importance of the distribution e1. of the tangent bundle T M
orthogonal to e. Using the covariant derivative VeA of the shape oper­
ator A in the direction e, Maeda and Udagawa [11] proved the following

THEOREM C. Let M be a real hypersurface ofPnC. He is principal
with nonzero principal curvature and if it satisfies VeA = 0, then M is
locally congruent to one of the following homogeneous real hypersur­
faces which lies on a tube of radius r.

(At) a hyperplane Pn-tC, where 0 < r < 7r/2 and r i- 7r/4,
(A2 ) a totally geodesic PkC (1 :s; k :s; n - 2), where 0 < r < 7r/2

and r i- 7r /4.
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On the other hand, Okumura [15] proved that in order for a real
hypersurface of PnC to be of type Al or of type A 2, it is necessary and
sufficient that it satisfies Leg = 0, where Le denotes the Lie derivative
in the direction of the structure vector field ~. For simplicity, we shall
say that a real hypersurface M of Mn(c), c i= 0 is of type A if it is of
type Al or of type A2 in PnC, or it is of type Aa, of Al or type A2 in
HnC. Giving attention to this fact and Theorem C, Ki, Kim and Lee
[3] proved the following

THEOREM D. Let M be a real hypersunace of Mn(c), c i= o. Hit
satisfies LeA = 0, then M is of type A.

Under certain conditions for the Ricci tensor of M, real hypersur­
faces of a complex space form were studied by many geometers [4], [7],
[10], [16], etc. Taking account of such a situation, we shall investigate
a real hypersurface M of Mn(c), C i= 0 with certain conditions about
the Ricci tensor S of !vI. The main purpose of the present paper is to
classify real hypersurfaces of Mn(c), c i= 0, which satisfy LeS = o.

1. Preliminaries

Let M be a real hypersurface of a complex n-dimensional complex
space form M n ( c) of constant holomorphic sectional curvature c, and
let C be a unit normal vector field on a neighborhood of a point x in M.
We denote by '\7 and '\7 the Riemannian connection in Mn(c) and in
111, respectively. Then by the Gauss formula, we have the relationship
between '\7 and '\7 : For any vector fields X and Y on M

(1.1 ) '\7xY = '\7xY +g(AX, Y)C,

where 9 is the Riemannian metric tensor of M induced from that of
Mn(c) and A denotes the shape operator with respect to C of M in
Mn(c). Furthermore we have another equation which is called the
Weingarten formula:

(1.2) '\7xC = -AX.

For any local vector field X ou a ueighborhood of x in M, the trans­
formations of X and C under the complex structure J in Mn(c) can
be given by

JX = <j)X + 7](X)C, JC = -~,



66 U-Hang Ki, Nam-Gil Kim and Sung-Baik Lee

where 4> defines a skew-symmetric transformation on the tangent bun­
dle TM of M, where 'I} and ~ denote a 1-form and a vector field on a
neighborhood of x in A1 respectively. Then it is seen that g(~,X) =
'I}(X). The set of tensors (4),~,'I},g) is called an almost contact metric
structure on M. They satisfy the following

(1.3) 4>2 = -I + 'I} ® e, 4>e = 0, 'I}(4)X) = 0, 'I}(~) = 1,

where I denotes the identity transformation and ® denotes the 'tensor
product. Furthermore the covariant derivatives of the structure tensors
are given by

(1.4) V'x4>(Y) = 'I}(Y)AX - g(AX, Y)~, V'x~ = 4>AX.

Since the ambient space is of constant holomorphic sectional curva­
ture c, equations of the Gauss and Codazzi are respectively given as
follows;

(1.5)
R(X, Y)Z = c{g(Y, Z)X - g(X, Z)Y + g(4>Y, Z)4>X

- g(4)X, Z)4>Y - 2g(4)X, Y)4>Z}/4

+ g(AY, Z)AX - g(AX, Z)AY,

(1.6) (V'xA)Y -(V'yA)X = c{'I}(X)4>Y -'I}(Y)4>X -2g(4)X,Y)0/4,

where R denotes the Hiemannian curvature tensor of M and V'X A
denotes the covariant derivative of the shape operator A with respect
to X.

The Hicci tensor S' of M is a tensor of type (0,2) given by S'(X, Y)
= tr{Z ~ R(Z,X)Y}. Also it may be regarded as the tensor of type
(1,1) and denoted by S : TM ~ TM; it satisfies S'(X, Y) = g(SX, V).
From (1.5) we see that the Hicci tensor S of M is given by

(1.7) S = c{(2n + l)I - 3'1} 0 0/4 + hA - A2
,

where we have put h = trA. A real hypersurface M of Mn(c) is said
to be pseudo-Einstein if the Hicci tensor S satisfies

(1.8) S = aI + b'l} 0~
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for some functions a and b on M. Moreover, using (1.4) we get

(1.9) \7xS(Y) = -3c{g(</>AX, Y)~ + 1](Y)</>AX}/4

+ dh(X)AY + (hI - A)\7xA(Y)

- \7x A(AY),

where d denotes the exterior differential
Now we assume that the structure vector ~ is principal with corre­

sponding principal curvature a. Then it is seen in Maeda [12] and Ki
and Suh [5] that a is constant on M ant it satisfies

(1.10)
c

2A</>A = 2 </> + a(A</> + </>A).

Then the second formula of (1.4) gives (\7X A)~ = a</>AX - A</>AX,
which together with (1.10) implies that

(1.11)

By the Codazzi equation (1.6) and the above equation we get

(1.12)

which implies

(1.13) dh(O = O.

If X is a principal vector with corresponding principal curvature A,
then (1.10) gives us to

(1.14)
c

(2A - a)A</>X = (2 + aA)</>X.
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2. Lie derivatives

Let M be a real hypersurface of M n ( c), c i= 0 and let ~ be a principal
vector field with corresponding principal curvature 0:. In this section
we assume that the Hicci tensor S satisfies the following

(2.1) Lf,S = 0,

where Le denotes the Lie derivative with respect to~. By definition
we have

Lf,S(X) = Lf,(SX) - SLf,X

for any vector field X and hence using (1.7), (1.9), (1.12) and (1.13)
we obtain

(2.2)
0:

LeS(X) = -2" {h(A</> - </>A) - (A</> - </>A)A - A(A</> - </>A)}X

- (</>AS - S</JA)X

for any vector field X because the structure vector eis principal.
Accordingly, it follows from (1.7), (2.1) and (2.2) that we have

; {h(A</> - </>A) + </JA2
- A2 </>} + </>A(hA - A2) - (hA - A2)</JA = O.

By using (1.10) repeatedly, the above equation is rewritten as

(2.3) c(~ -h)</>+(0:2+c)A</J+0:(0:-4h)</>A+2(0:+2h)</JA2-4</>A3 = O.

First of all, we suppose that there exists a principal vector X or­
thogonal to ~ and with corresponding principal curvature A (=1= 0:/2).
By (1.14) we get </>X is also a principal vector and its corresponding
principal curvature is given by A' = (20:A + c)/2(2A - 0:). Then (2.3)
is reduced to

(2.4) (2A - o:)(A' - A)(h - A- A') = 0,

which means ,AI - A = 0 or ,AI + A = h. In the first case, A is the root
of the quadratic equation

(2.5) 4y2 - 4ay - c = 0
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because of the definition of ),', and hence we get ), = (d~ We
put

(2.6) ), _o-~
1 - 2 '

Furthermore it is seen that the multiplicity of ),1 or ),2 is even. So
we denote by 2p and 2q the multiplicity of ),1 and ),2, respectively. In
the other case where ),' + ), = h, ), is also the root of the quadratic
equation

(2.7) 4y2 - 4hy + 20h + c = 0,

and hence), is given by ), = h±!h
2

22Oth-c. Here we put

(2.8)

or

and it is seen that their multiplicities are equal to each other.
Secondly, we suppose that there exists a principal vector Y orthog­

onal to ~ and with corresponding principal curvature 0/2. Then, by
(1.14), it turns out that 0

2 + C = 0, which means that c is negative.
Moreover, suppose that there exists a principal vector X orthogonal
to ~ and with corresponding principal curvature ),( # 0/2). Then, by
using the above discussion, another principal curvature ),' is deter­
mined. If ),' = )" then (2.6) and the fact that 0

2 + c = °imply that
),1 = ),2 = 0/2, a contradiction. So we have),' + ), = hand

),4 = h ± Ih - 0 1,

2

which means that one of ),3 and '\4 is equal to 0'/2. Taking account
of the fact that the multiplicity of '\3 is equal to that of ),4, we verify
that their multiplicities are equal to zero. Thus it is seen that there are
no principal curvatures different from 0'/2. Namely, we have distinct
principal curvatures a and 0'/2, whose multiplicities are 1 and 2n - 2
respectively.

An eigenvalue of the linear transformation on the tangent bundle
TM is said to be simple if the multiplicity is equal to one, and the
transformation is said to be of no simple roots if each eigenvalues is
not simple. Under these preparations we will prove the following
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THEOREM 2.1. Let M be a real hypersurface of PnC, n ~ 3, with
no simple roots. H the structure vector ~ is principal and if it satisfies
L£.S = 0, then M is a tube ofradius r over one of the following Kaehler
submanifolds;

(AI) a hyperplane Pn-IC, where 0 < r < 1r/2 and r f:: 1r/4,
(A2 ) a totally geodesic PkC, 1 ~ k ~ n - 2, where 0 < r < 11"/2 and

r f:: 1r/4,
(B) a complex quadric Qn-b where 0 < r < 11"/4 and cot2 2r =

n - 2,
(C) PlC x P(n-I)/2C, where 0 < r < 1r/4, cot2 2r = l/(n - 2) and

n(~ 5) is odd,
(D) a complex Grassmann G2,sC, where 0 < r < 1r/4, cot2 2r =

3/5 and n, = 9,
(E) a Hermitian symmetric space SO(1O)/U(5), where 0 < r <

1r/4, cot2 2r =5/9 and n = 15.

Proof. Let Mo, M I and M 2 be subsets of M consisting of points at
which there exists a principal curvature 0./2, Al or A2' and Aa or A4
respectively. Then each set is closed and {Mo, MI ,M 2} is the covering
of M because of (2.4). The above consideration in the latter half implies
that the intersection of M I with M2 is empty.

The proof is divided into the following four cases;

(1)

(2)

(3)

(4)

M=Mo,

M I - M 2 f:: </1,

M 2 - M I f:: cP,
lvIt n M 2 f:: </1,

The case (1). As is already discussed, for any point in M = Mo,
distinct principal curvatures are a. and a./2, where multiplicities are
1 and 2n - 2, respectively. Accordingly we have A = ~ I + 1-7] &> ~.

Since all principal curvatures are constant on M, we can apply the
structure theorem due to Berndt [1] and Kimura [6] to our situation
and it is seen that M is locally congruent to one of homogeneous real
hypersurfaces. Then the classification theorem due to Berndt [1] and
Takagi [17] means that c < 0 and M is of type Ao•
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The case (2). The set M I - M2 = M - (Mo U M 2 ) is open. By
means of (2.6), distinct principal curvatures on M I - M2 are at most
a, Al and A2 and they are constant on the set, which implies that
M I - M 2 is closed and hence it is identical with the whole M by the
assumption of that M I - M2 is not empty. Namely, we get M I = M,
Mo = rp, M2 = rp. Consequently distinct principal curvatures are at
most a, Al and A2 on the whole space M, all of which multiplicities
are constant. Similar to the case (1), the structure theorem and the
classification theorem due to Berndt [1], Kimura [6] and Takagi [17]
show that M is of type A.

The case (3). The set Mo is also empty and M2 - MI = M ­
(Mo U Md is open.- TaKing acc6Witor-(Z"S), the wstin:ct-pi1ircipal
curvatures on M 2 - M I are a, A3 and A4 whose multiplicity is equal to
1, n - 1 and n - 1, respectively. Because the trace h of A is given by
h = a + (n - 1)(A3 + A4) we then obtain (n - 2)h + a = O. It yields
that h is constant on M2 - MI and hence A3 and A4 so are. Thus,
the set M 2 ~ M I becomes closed and consequently M2 = M, Mo = <P,
M I = rp. By developing the similar argument as that of the case (2),
this shows that M is of type B.

The case (4). By the cases (1) and (2) we see that the subsets
M I - M2 and M2 - M I are not empty and M = Mo U (MI n M2).
The set M I n A12 is of course closed and M I , M 2 contains a non void
open set. In fact, if not so, then the continuity of principal curvatures
tells us that M must coincides with the subset Mo. In the case (4)
this fact is rejected. Accordingly it may be supposed that there exists
an interior of M I n M 2 • On the interior of the intersection, distinct
principal curvatures are at most a,AI,A2,A3 and A4 which satisfies
a 2 + c #- O. We may suppose that the multiplicity of Al or A2 is equal
to 2p or 2q and that of A3 and A4 is equal to s. Al and A2 being constant
on M I n M2, p, q and s are also constant on M I n M2. Since A3 and A4
satisfy h = A3 + A4, we obtain h = a + 2PAI + 2qA2 + S(A3 + A4) and
thus

(2.9) (1-s)h=(1+p+q)a+(q-p)Va2+c

on M I n M 2 because of p + q + s = n - 1. Since there are no simple
roots for the shape operator A, this is eqivalent to s > 1 and hence h
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is constant on M t - M 2 • This means that all principal curvatures are
constant on M t - M 2 and therefore it is closed. Accordingly we have
M 1 n M 2 = M, which shows that M is of type C, type D or type E.

By the above discussion, the classification theorem due to Takagi
[18] tells us that the case where M = Mo cannot occur and in the case
where M = M t it is of type At or of type A2. Of course, a homogeneous
real hypersurlace of type At or type A 2, which is a tube of any radius
l' (1' =1= 1r14) satisfies the assumptions of Theorem 2.1. Suppose that
M = M 2 , then M is of type B and it satisfies Aa + A4 = h. Let M
be a homogeneous real hypersurface of Pn C with principal curvature
a = ..;c cot 21' (0 < r < 1rI4), which is a tube of radius r. Then other

distinct principal curvatures Aa and A4 satisfy Aa = 4:- cat(r - 1r14)
and A4 = - 4- tan( l' - 1r14) and their multiplicities are equal to n - 1.
Hence we have h = a + (n -l)(Aa+ A4) = a - (n - l)cla, where we
have used Aa + A4 = -cia. Since we have a 2 = (n - 2)c, and it turns
out that cot2 2r = n - 2.

Similarly we consider a homogeneous real hypersurface of type C, D
or E of PnC which satisfies >'a + A4 = h. By the classification theorem
of Takagi [17J, we get .

h = a + (n - 3)a + 2( -cia),

h=a+4a+4(-cla),

h = a + Sa + 6( -cia),

respectively, where we have used At + A2 = a, which means

135
cot2 2r = --, - or -

n -2 5 9

respectively. This completes the proof of Theorem 2.l.

REMARK 1. A homogeneous real hypersurface of type Bof PnC
satisfying cot2 21' = n - 2 is identified with a real hypersurface M(2n­
1, n~t) which is contructed by the Hope fibration and it is ry-Einstein
(cf. Yano and Kon [19]).

In the previous case (4), by using h = >'a + >'4 we see that the trace
of A2 is given by

tr A
2 = (1 +p + q)a2 + i(p + q) +aVa2 + c(q - p) + shz - 2sAa A4,
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which together with (2.8) and (2.9) yields tr A 2 = ~(n -1- 2s) + (1­
2s)a h + sh2

• Because of (1.7) the scalar curvature k of M is obtained:
k = c(n 2

- 1) + h2
- tr A 2

• Therefore we have

C 2 2
k = '2(2n - n + 1 + 2s) + (28 - l)ah - (s + l)h .

Thus, if the scalar curvature of M is constant, then h is constant on
M 1 n M 2 • As in the proof of Theorem 2.1, we have

THEOREM 2.2. Let M be a real hypersurface PnC, (n ~ 3) with
constant scalar curvature. If the structure vector ~ is principal and if
it satisfies Lf,S = 0, then M is the same types as those in Theorem 2.1.

For a tube of radius r over the submanifold of a complex space form
M n ( c), cf. see Cecil and Ryan [2] and Montiel 13]. In particular, a
Montiel tube of a complex hyperbolic space is only defined here. Let
H 1

2n+1 be a (2n + 1)-dimensional anti-de Sitter space in C n +1 , which
is a Lorentz manifold of constant curvature c/4 « 0). Given the real
hypersurface NI of a complex hyperbolic space HnC, one can construct
a Lorentz hypersurface N of H 1

2n+1 which is a principal 5 1-bundle over
M with time-line totally geodesic fibers and projection 7r : N ~ M in
such a way that the diagram

N
'/
I__~) H

1
2n+1

M ----t

is commutative (i, i' being the isometric immersions). In particular, let
N(t) be the Lorentz hypersurface of H 1

2n+1 in cn+l given by

n

-1'::012 + 2..: IZjl2 = 1, Izo - zll2 = t.
j=l

It is seen in [13] that M n *(t) = 7r(N(t)) is the pseudo-Einstein real
hypersurface of HnC. Then .lI,1n * = M n *(1) is called a Montiel·tube.

For the real hypersurface of HnC, we can prove the following
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THEOREM 2.3. Let M be a (2n - I)-dimensional real bypersurface
of HnC, n ~ 3. If the structure vector eis principal and if it satisfies
LeS = 0, then M is congruent to one of the following hypersurfaces :

(Ao) a Montiel tube,
(Ad a tube of a totally geodesic hyperplance HkC (k = 0 or n -1),
(A2 ) a tube of a totally geodesic HkC, where 1 $ k $ n - 2.

Proof. The proof may be devided into the same four cases as those
stated in the proof of Theorem 2.1. Accordingly, in the case where (1),
(2) and (3) we see that all principal curvatures are constant. In the case
(4), we suppose that s = 1. Then (2.9) leads to (1 + 2p?(1 + 2q)a2 =
(p - q?c. So, we have p = q and a = 0 because of c < o. By the
assumption n ~ 3 there is always a principal curvature >'1 = -4 or

>'2 = :{}, a contradiction. It iIIlPlies that s > 1, and hence h is constant'
on M 1 n M2. Thus we have distinct principal curvatures a, >'1, >'2, >'3
and >'4 on M 1 n M 2 and all principal curvatures are constant, which
means that M 1 nlv.f2 coincide with the whole space M. Thus, by Berndt
[1J M is locally congruent to one of homogeneous real hypersurfaces.

In the case where M = Mo, the hypersurface is of type Ao, and
of course a homogeneous real hypersurface of type Ao satisfies the
assumptions of Theorem 2.3. In the case where M = M 1 , we have
the similar situation to that in Theorem 2.1, and M is of type Al or
type A2 • Conversely, the hypersurface of type Al or type A2 satisfies
the hypothesis of Theorem 2.3. In the last case, M is of type B and
it satisfies h = >'3 + >'4. By the classification theorem due to Berndt
[lJ, a homogeneous real hypersurface of HnC has distinct principal
curvatures

Fe Fe>'3 = 2 coth r, >'4 = -2- tanh r,

different from a = -ccoth 2r, and their multiplicities are equal to n-1.
Consequently we have h = a -(n-1)(cla) because of >'3 +>'4 = -cia.
This implies a 2 = (n - 1)c, a contradiction. So it cannot occur. This
completes the proof.

3. Covariant derivatives

This section is concerned with the covariant derivative of the Ricci
tensor S in the direction of e. Let M be a real hypersurface of Mn(c),
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c i= 0, n 2:: 3 and ~ be a principal vector with corresponding principal
curvature a. We suppose that

(3.1 )

for the Ricci tensor S. Since a is constant and the Ricci tensor S is
given by (1.7), we have

for any vector field Y because of (1.9) and (1.13). By (1.11) this is
equivalent to

(3.3)

If X is orthogonal to ~, and it is principal vector with corresponding
principal curvature >., then ,pX is also principal vector with corre­
sponding principal curvature >" = O:2\+~!2 provided>' i= a/2. Thus,
(3.3) tells us that (2)' - a)(>. - >,')(>. + N - h) = 0 because a i= 0 is
assumed. Thus we can apply the proofs of Theorem 2.2 and Theorem
2.3 in the previous section to our situation and the same conclusions
are obtained. Thus we have

THEOREM 3.1. Let M be a real hypersurface of Mn(c), c i= 0,
n 2:: 3. Suppose that ~ is principal and that the corresponding principal
curvature is nonzero and satisfies \7E"S = O. If c > 0 and M has no
simple roots, or ifc < 0, then M is the same types as those in Theorem
2.1 and Theorem 2.3.

REMARK 2. In the case where the ambient space is complex pro­
jective space, Kimura and Maeda [9] proved Theorem 3.1 under the
condition that the mean curvature is constant in place of the condition
that M has no simple roots.

REMARK 3. The condition \7E"S = 0 and a i= 0 is equivalent to
S,p = ,pS. Kimura [7] classified real hypersurfaces with constant mean
curvature in PnC which satisfies S,p = ,pS.
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