GENERALIZED SEMIAUTOMORPHISM GROUPS OF MODULES

CHIN-HONG PARK

DEFINITION. Let M and N be right R-modules. Let $\alpha: R \to R$ and $f: M \to N$ be maps. (1) f is a GENERALIZED R-MODULE HOMO-MORPHISM with respect to α (or briefly αR -HOMOMORPHISM) if f(m+q) = f(m) + f(q) and $f(ma) = f(m)\alpha(a)$ for all $m, q \in M$ and $a \in R$. f is an R-HOMOMORPHISM if $\alpha = I_R(identity)$. f is a SEMIR-HOMOMORPHISM if f(ma) = f(m)a for all $m \in M$ and $a \in R$. (2) f is an αR -MONOMORPHISM [resp. EPIMOR-PHISM, ISOMORPHISM if f is an αR -homomorphism and both f and α are injective [resp. surjective, bijective]. (3) f is an αR -ENDOMORPHISM if M = N and it is an αR -homomorphism. (4) f is an αR -AUTOMORPHISM if is an αR -isomorphism and M = N. (5) Let f and g be an αR -homomorphism and an βR -homomorphism respectively. Then we define f = g if f = g with $\alpha = \beta$. (6) f is a SEMI α R-HOMOMORPHISM if $f(ma) = f(m)\alpha(a)$ for all $m \in M$ and $a \in R$. (7) f is a SEMI α R-ENDOMORPHISM [resp. SEMI α R-AUTOMORPHISM] if M = N and f is a semi α R-homomorphism [resp. semi α R-endomorphism and f, α are bijective].

```
NOTATION.
```

$$\mathrm{END}_R(M) = \{f \mid f \text{ is an } \alpha R - \text{endomorphism with a map } \alpha : R \rightarrow R\}$$

$$\operatorname{SEND}_R(M) = \{ f \mid f \text{ is a semi} \alpha R - \text{endomorphism with a map } \alpha : R \to R \}$$

$$\operatorname{AUT}_R(M) = \{ f \mid f \text{ is an } \alpha R - \text{automorphism with a map } \alpha : R \to R \}$$

$$\mathrm{SAUT}_R(M) = \{f \mid f \text{ is a semia } R - \text{automorphism with a map } \alpha : R \to R\}$$

$$\operatorname{End}_R(M) = \{f \mid f : M \to M \text{ is an } R - \operatorname{endomorphism}\}\$$
 $\operatorname{SEnd}_R(M) = \{f \mid f : M \to M \text{ is a semi} R - \operatorname{endomorphism}\}\$
 $\operatorname{Aut}_R(M) = \{f \mid f : M \to M \text{ is an } R - \operatorname{automorphism}\}\$

Received February 12, 1991.

```
\begin{aligned} \operatorname{SAut}_R(M) &= \{f \mid f : M \to M \text{ is a semi} R - \operatorname{automorphism} \} \\ \operatorname{Hom}_R(M,N) &= \{f \mid f : M \to N \text{ is an } R - \operatorname{homomorphism} \} \\ \operatorname{SHom}_R(M,N) &= \{f \mid f : M \to N \text{ is a semi} R - \operatorname{homomorphism} \} \\ \operatorname{SHOM}_R(M,N) &= \{f \mid f : M \to N \text{ is a semi} \alpha R - \operatorname{homomorphism} \} \\ & \text{with a map } \alpha : R \to R \}. \end{aligned}
```

We note that for any $f,g \in \text{END}_R(M)$, if f is an αR -homomorphism and g is an βR -homomorphism, then fg is an $\alpha \beta R$ -homomorphism. From now on, unless specified otherwise, "R – module" means "right R-module".

PROPOSITION 1. Let M be an R-module. Then

- (1) $AUT_R(M)$, $SAUT_R(M)$, $Aut_R(M)$ and $SAut_R(M)$ are groups;
- (2) $END_R(M)$, $SEND_R(M)$, $End_R(M)$, and $SEnd_R(M)$ are monoids.

LEMMA 2. Let M be an R-module. For any $f, g \in SEND_R(M)$ let f and g be semia R-endomorphism and semi βR -endomorphism respectively. We define two relations on $SEND_R(M)$ as follows:

$$(f,g) \in \sigma_E \iff f = g \text{ on } SEND_R(M).$$

 $(f,g) \in \tau_E \iff \alpha = \beta \text{ on } SEND_R(M).$

Then σ_E and τ_E are congruences relations on $SEND_R(M)$.

Proof. We will show that τ_E is a congruence relation on $\operatorname{SEND}_R(M)$. It is easy to show that τ_E is an equivalence relation. To show τ_E is a congruence relation, let $(f,g) \in \tau_E$ where f and g are $\operatorname{semi} \alpha R$ -endomorphisms. For any $h \in \operatorname{SEND}_R(M)$, let h be a $\operatorname{semi} \beta R$ -endomorphism. Then $(f,g)h = (fh,gh) \in \tau_E$ and also, $h(f,g) = (hf,hg) \in \tau_E$. Similarly, it is easy to show that σ_E is a congruence relation.

NOTE. Similarly, for any $f, g \in SAUT_R(M)$, let f and g be semi αR -automorphism and semi βR -automorphism respectively. We can define two congruence relations on $SAUT_R(M)$ as follows:

$$(f,g) \in \sigma_A \iff f = g \text{ on } SAUT_R(M)$$

 $(f,g) \in \tau_A \iff \alpha = \beta \text{ on } SAUT_R(M).$

Then

- (1) σ_A and τ_A are congruence relations on $SAUT_R(M)$.
- (2) $SAUT_R(M)/\tau_A = SAUT_R(M)/SAut_R(M)$.

DEFINITION. Let M be an R-module and let $a \in R$.

- (1) $T_a: M \to M$ is called a RIGHT TRANSLATION if $T_a(m) = ma$ for all $m \in M$.
- (2) We define a congruence $\mu_M \subset R \times R$ on R through $(a,b) \in \mu_M \iff T_a = T_b$ for $a,b \in R$.
- (3) M is CYCLIC iff M = mR for some $m \in M$. Also, m is called a GENERATOR.
- (4) M is STRONGLY CONNECTED iff every element of M is a generator (or for any m, $q \in M$, ma = q for some $a \in R$).
- (5) M is PERFECT iff M is strongly connected and R is a commutative ring.

LEMMA 3. Let M and N be R-modules. For any $f, g \in SHOM_R(M, N)$ let f and g be semia R-homomorphism and semi βR -homomorphism respectively. If M is strongly connected, then

$$f = g \iff \alpha = \beta$$
 and $f(p) = g(p)$ for some $p \in M$.

Proof. We will show that f(m) = g(m) for all $m \in M$. Since M is strongly connected, M = qR for every $q \in M$. So, we have M = pR. This implies that for any $m \in M$, m = pa for some $a \in R$. Hence $f(m) = f(pa) = f(p)\alpha(a) = g(p)\beta(a) = g(pa) = g(m)$. i.e., f = g. The converse is trivial.

COROLLARY 3.1. Let M and N be R-modules. Let M be strongly connected. Then for every $f, g \in SHom_R(M, N)$,

$$f = g \iff f(m) = g(m) \text{ for some } m \in M.$$

COROLLARY 3.2. Let M be a strongly connected R-module. Then for any $f, g \in SEnd_R(M)$, $f = g \iff f(m) = g(m)$ for some $m \in M$.

LEMMA 4. Let M be an R-module and let $T_R = \{T_a : a \in R\}$. Then

- (1) $T_R \subset End_R(M)$ if R is commutative.
- (2) $T_R = SEnd_R(M)$ if M is perfect.
- (3) $T_R \subset End_R(M) \iff R$ is commutative if M is free of rank 1.

(4) $T_{ab} = T_a T_b$ for any $a, b \in R$ if R is commutative.

Proof. For (1), for any $T_a \in T_R$ we will show that T_a is an R-homomorphism. For all $m \in M$ and $b \in R$, $T_a(mb) = (mb)a = m(ba) = m(ab) = (ma)b = T_a(m)b$. Also, for all $m, q \in M$, $T_a(m+q) = (m+q)a = ma+qa = T_a(m)+T_a(q)$. Hence $T_a \in \operatorname{End}_R(M)$. For (2), it is enough to show $T_R \supset \operatorname{SEnd}_R(M)$. Choose any $f \in \operatorname{SEnd}_R(M)$. Claim: $f = T_a$ for some $a \in R$. To prove this, let $m \in M$ and f(m) = q for some $q \in M$. Since M is strongly connected, we have ma = q for some $a \in R$. So, $f(m) = q = ma = T_a(m)$. Hence $f = T_a$ by Corollary 3.2. For (3), to show ab = ba for all $a, b \in R$, let $\{m\}$ be a basis for M. Now, $m(ab) = (ma)b = T_a(m)b = T_a(mb) = (mb)a = m(ba)$. So, we have m(ab - ba) = 0. Hence ab = ba. (4) is trivial.

PROPOSITION 5. Let M be an R-module. Then the following conditions are equivalent:

- (1) $\mu_{M} = 0$ on R where 0 is the identity relation.
- (2) For all $a, b \in R$, $T_a = T_b \Longrightarrow a = b$.
- (3) $\sigma_A = 0$ on $SAUT_R(M)$.
- (4) $\sigma_E = 0$ on $SEND_R(M)$ if M is perfect.

Proof. (1) \iff (2): Trivial. (2) \implies (3): Let $(f,g) \in \sigma_A$ where f and g are semi αR -automorphism and semi βR -automorphism respectively. Since $f,g \in SAUT_R(M)$ and f = g, $f(ma) = f(m)\alpha(a) =$ $f(m)\beta(a)$ for all $m \in M$ and $a \in R$. This means $T_{\alpha(a)}(f(m)) =$ $T_{\beta(a)}(f(m))$. Since f is bijective, $T_{\alpha(a)}(m) = T_{\beta(a)}(m)$ for all $m \in M$. So, we have $T_{\alpha(a)} = T_{\beta(a)}$. By assumption, $\alpha(a) = \beta(a)$ for all $a \in R$. Hence $\alpha = \beta$. i.e., $\sigma_A = 0$. (3) \Longrightarrow (2): We define a map $\alpha : R \to R$ given by $\alpha(a) = b$, $\alpha(b) = a$ and $\alpha(t) = t$ for all $t \in R - \{a, b\}$. Then α is bijective with $\alpha(\alpha(a)) = a$ and $\alpha(\alpha(b)) = b$. Let $I: M \to M$ be the identity map. Then I is a semi αR -automorphism (it is easy to show this, using $T_a = T_b$). So, $I \in SAUT_R(M)$. Also, I is a semi I_RR -automorphism where $I_R:R\to R$ is the identity map. Hence $I \in SAUT_R(M)$. So, $(I,I) \in \sigma_A = 0$. This means $\alpha = I_R$. Hence a = b. (2) \Longrightarrow (4): For any $(f,g) \in \sigma_E$ let f and g be semi αR endomorphism and semi βR -endomorphism respectively. Then for all $m \in M$ and $a \in R$, $f(ma) = f(m)\alpha(a)$ and $g(ma) = g(m)\beta(a)$. From f=g, we have $f(m)\alpha(a)=f(m)\beta(a)$ for all $m\in M$ and $a\in R$. This implies $T_{\alpha(a)}(f(m)) = T_{\beta(a)}(f(m))$. Since M is perfect, from Lemma 4 and Corollary 3.2 we have $T_{\alpha(a)} = T_{\beta(a)}$. By assumption, $\alpha(a) = \beta(a)$ for all $a \in R$. Hence $\alpha = \beta$. i.e., $\sigma_E = 0$. (4) \Longrightarrow (2): Clear from $\sigma_A \leq \sigma_E = 0$.

DEFINITION. An R-module M is called a MODULE with REDUCED R if one of the equivalent statements of Proposition 5 is satisfied.

PROPOSITION 6. Let M be an R-module. Let $T_R = \{T_a : a \in R\}$ and let $\langle T_R \rangle$ be the semigroup generated by T_R . Then $R/\mu_M \cong \langle T_R \rangle$ where \cong means semigroup isomorphic.

DEFINITION. R/μ_{M} is called the characteristic semigroup of a module M.

LEMMA 7. Let M be an R-module and let $a, b \in R$.

(1) If $f \in SAUT_R(M)$ and f is a semioR-automorphism, then

$$(a,b) \in \mu_M \iff (\alpha(a), \alpha(b)) \in \mu_M$$
.

(2) Assume M is perfect. If $f \in SEND_R(M)$ and f is a smi αR -endomorphism, then $(a,b) \in \mu_E \Longrightarrow (\alpha(a),\alpha(b)) \in \mu_M$.

Proof. For (1),

$$(a,b) \in \mu_{M} \iff T_{a} = T_{b} \iff T_{a}(m) = T_{b}(m) \text{ for all } m \in M$$

$$\iff ma = mb \iff f(ma) = f(mb)$$

$$\iff f(m)\alpha(a) = f(m)\alpha(b)$$

$$\iff T_{\alpha(a)}(f(m)) = T_{\alpha(b)}(f(m))$$

$$\iff T_{\alpha(a)} = T_{\alpha(b)} \iff (\alpha(a), \alpha(b)) \in \mu_{M}.$$

For (2),

$$(a,b) \in \mu_{M} \iff T_{a} = T_{b} \iff T_{a}(m) = T_{b}(m) \text{ for all } m \in M$$

$$\iff ma = mb \implies f(ma) = f(mb)$$

$$\iff f(m)\alpha(a) = f(m)\alpha(b)$$

$$\iff T_{\alpha(a)}(f(m)) = T_{\alpha(b)}(f(m))$$

$$\iff T_{\alpha(a)} = T_{\alpha(b)} \iff (\alpha(a), \alpha(b)) \in \mu_{M}.$$

LEMMA 8. Let M be a perfect module and let $\alpha, \beta: R \to R$ be maps. Let Π_{α} and Π_{β} be maps defined by $\Pi_{\alpha}([a]) = [\alpha(a)]$ and $\Pi_{\beta}([a]) = [\beta(a)]$ for $a \in R$ respectively where $[\] = [\]_{\mu_M}$. For any $f,g \in SEND_R(M)$ let f and g be a semi αR -endomorphism and a semi βR -endomorphism respectively. Then we have the following statements:

- (1) Π_{α} and Π_{β} are endomorphisms if α and β are ring-homomorphisms.
 - $(2) \Pi_{\beta\alpha} = \Pi_{\beta}\Pi_{\alpha}.$
- (3) $\Pi_{\alpha} = \Pi_{\beta} \iff \alpha = \beta$ if R is reduced where the product of maps means the composition of maps.

Proof. We note that Π_{α} and Π_{β} are well-defined from Lemma 7(2). For (1) and (2), it is easy to check them. For (3), for every $t \in R$, $\Pi_{\alpha}([t]) = \Pi_{\beta}([t])$. This implies $[\alpha(t)] = [\beta(t)]$. Hence $(\alpha(t), \beta(t)) \in \mu_{M}$. Moreover, $(\alpha(t), \beta(t)) \in \mu_{M} \iff T_{\alpha(t)} = T_{\beta(t)}$. From the fact that M is a module with reduced R we can conclude that $T_{\alpha(t)} = T_{\beta(t)} \implies \alpha(t) = \beta(t)$. i.e., $\alpha = \beta$. The converse is trivial.

COROLLARY 8.1. Let M be an R-module. For any $f, g \in SAUT_R(M)$ let f and g be a semiaR-automorphism and a semi βR -automorphism respectively. Then the following statements hold:

- (1) Π_{α} and Π_{β} are semigroup-automorphisms if α and β are ring-homomorphisms.
- (2) $\Pi_{\beta\alpha} = \Pi_{\beta}\Pi_a$.
- (3) $\Pi_{\alpha} = \Pi_{\beta} \iff \alpha = \beta \text{ if } R \text{ is reduced.}$

RECALL. Let S and T be semigroups. Let $f: S \to T$ be a homomorphism. The Kernel of f is the set Ker f of all the elements of $S \times S$ which are carried by f onto the same element of T. That is, Ker $f = \{(a, b) \in S \times S : f(a) = f(b)\}.$

LEMMA 9. Let M be a perfect R-module and let $\operatorname{End}(R/\mu_M)$ be the set of all endomorphisms (not R-endomorphisms) on R/μ_M . Let $h: SEND_R(M) \to \operatorname{End}(R/\mu_M)$ be a map defined by $h(f) = \Pi_\alpha$ with semiaR-endomorphism f where $\alpha: R \to R$ is a ring-homomorphism. Then

(1) h is a homomorphism.

(2) Ker $h = \tau_E$ if M is with reduced R.

Proof. (1) is trivial. For (2),

Ker
$$h = \{(f,g) : h(f) = h(g)\} = \{(f,g) : \Pi_{\alpha} = \Pi_{\beta} \text{ for semi}\alpha R - \text{endomorphism } f \text{ and semi}\beta R - \text{endomorphism } g\}$$
$$= \{(f,g) : \alpha = \beta \text{ for semi}\alpha R - \text{endomorphism } f \text{ and semi}\beta R - \text{endomorphism } g\} = \tau_E.$$

From Lemma 9 we have the following proposition.

PROPOSITION 10. Let M be a perfect R-module with reduced R. Then $SEND_R(M)/\tau_E$ is isomorphic to a submonoid of $End(R/\mu_M)$.

LEMMA 11. Let M be an R-module and let $\operatorname{Aut}(R/\mu_M)$ be the set of all automorphisms (not R-automorphisms) on R/μ_M . Let $h: SAUT_R(M) \to \operatorname{Aut}(R/\mu_M)$ be a map defined by $h(f) = \Pi_\alpha$ with semi αR -automorphism f where $\alpha: R \to R$ is a ring-homomorphism. Then

- (1) h is a group-homomorphism.
- (2) $Ker h = SAut_R(M)$ if R is reduced.

Proof. (1) is trivial. For (2),

From Lemma 11 we can obtain the following proposition.

PROPOSITION 12. Let M be an R-module with reduced R. Then the factor group $SAUT_R(M)/SAut_R(M)$ is isomorphic to a subgroup of $Aut(R/\mu_M)$.

DEFINITION. Let M be an R-module. Let $\Omega_M = \{f : M \to M \text{ is a transformation map}\}$. i.e., the semigroup of all transformation maps of M into M.

(1) We define the CENTRALIZER $C(T_R)$ and the NORMALIZER $N(T_R)$ of T_R in Ω_M as follows:

$$C(T_R) = \{ f \in \Omega_M : T_a f = f T_a \text{ for all } T_a \in T_R \}$$

$$N(T_R) = \{ f \in \Omega_M : T_R f = f T_R \}.$$

(2) We define the PERMUTATION CENTRALIZER (briefly p-CENTRALIZER) $C_p(T_R)$ and the PERMUTATION NORMALIZER (briefly p-NORMALIZER) $N_p(T_R)$ of T_R as follows:

$$C_{\mathfrak{p}}(T_R) = C(T_R) \cap S_M$$
 and $N_{\mathfrak{p}}(T_R) = N(T_R) \cap S_M$

where S_M is the symmetric group over M.

NOTE. $N(T_R)$ is a monoid and $C(T_R) \leq N(T_R)$ (a submonoid of $N(T_R)$).

LEMMA 13. Let M be an R-module with reduced R. Let $f \in N_p(T_R)$. Then for any $T_a \in T_R \exists ! T_b \in T_R$ such that $fT_b = T_a f$ (or $fT_a = T_b f$).

Proof. Suppose there is another $T_c \in T_R$ such that $T_a f = f T_c$. Then $f T_b = f T_c$ and $f T_b(m) = f T_c(m)$ for all $m \in M$. This implies that f(mb) = f(mc). Since f is 1 - 1, mb = mc. This means that $T_b(m) = T_c(m)$ for all $m \in M$. i.e., $T_b = T_c$. Hence b = c.

PROPOSITION 14. Let M be an R-module. Then

- (1) $SEnd_R(M) = C(T_R)$ and $SAut_R(M) = C_p(T_R)$.
- (2) $C_p(T_R)$ is a normal subgroup of $N_p(T_R)$.
- (3) $SAUT_R(M) = N_p(T_R)$ if R is reduced.

Proof. For the first part of (1), $\operatorname{SEnd}_R(M) \subset C(T_R)$: For any $f \in \operatorname{SEnd}_R(M)$, it is enough to show $fT_a = T_a f$ for all $T_a \in T_R$. To do this, choose any $m \in M$. Then $fT_a(m) = f(ma) = f(m)a = T_a f(m)$. Hence it holds. Similarly, the converse can be shown easily.

The second part of (1) follows from the first part of (1). For (2), for any $f \in N_p(T_R)$, $g \in C_p(T_R)$ and $T_a \in T_R$,

$$T_a f g f^{-1} = f T_b g f^{-1}$$
 for some $T_b \in T_R$
= $f g T_b f^{-1}$
= $f g f^{-1} T_a$.

Hence it holds. For (3), SAUT_R(A) $\subset N_p(T_R)$: To prove this, choose any $f \in SAUT_R(M)$ and let f be a semi αR -automorphism. Then we have $f(ma) = f(m)\alpha(a)$ for all $m \in M$ and $a \in R$. This means that $f[T_a(m)] = T_{\alpha(a)}[f(m)]$. Also, this implies that $fT_a = T_{\alpha(a)}f$. Hence since α is bijective, $fT_R = T_R f$. i.e., $f \in N_p(T_R)$. SAUT_R(A) $\supset N_p(T_R)$: By Lemma 13, for any $f \in N_p(T_R)$ and $T_a \in T_R \exists ! T_b \in T_R$ such that $fT_a = T_b f$. Let $\alpha : R \to R$ be a map defined by $\alpha(a) = b$ with $fT_a = T_b f$.

Claim: α is bijective. (i) α is well-defined: To prove this, let t=u for $t,u\in R$. By Lemma 13, for T_t and T_u $\exists!T_c,T_d\in T_R$ such that $fT_t=T_cf$ and $fT_u=T_df$. This implies $T_cf=T_df$. Hence $T_c=T_d$. So, we have c=d since R is reduced. Thus, $\alpha(t)=c=d=\alpha(u)$. (ii) $\alpha=1-1$: Suppose $\alpha(t)=\alpha(u)$. Let $\alpha(t)=c$ with $fT_t=T_cf$ and let $\alpha(u)=d$ with $fT_u=T_df$. Then from c=d $fT_t=fT_u$. Hence $T_t=T_u$. Thus, we have t=u. (iii) α is onto: For any $b\in R$, consider $T_b\in T_R$. By Lemma 13 $\exists!T_a\in T_R$ such that $T_bf=fT_a$. Hence $\exists a\in R$ such that $\alpha(a)=b$ with $fT_a=T_bf$.

Now, we will show that f is a semi αR -homomorphism. For any $m \in M$ and $a \in R$,

$$f(m)\alpha(a) = f(m)b$$
 with $fT_a = T_b f$
= $T_b f(m) = fT_a(m) = f(ma)$.

Hence $f \in SAUT_R(A)$.

COROLLARY 14.1. Let M be an R-module with reduced R. Then the following statements hold:

- (1) $N_p(T_R)/C_p(T_R) \cong \text{a subgroup of } Aut(S/\mu_M).$
- (2) $SAut_R(M)$ is a normal subgroup of $SAUT_R(M)$.

NOTATION. Let M be an R-module and $\alpha: R \to R$ be a map. For $m, q \in M$, $H_{m\alpha q} = \{a \in R : m\alpha(a) = q\}$ and $H_{mq} = \{a \in R : ma = q\}$.

LEMMA 15. Let M and N be R-modules. Let $m \in M$ be a fixed element and let $\alpha: R \to R$ be a map. If $f: M \to N$ is any map, then the following statements hold:

- (1) If $f(mt) = f(m)\alpha(t)$ for all $t \in R$, then $H_{mq} \subset H_{f(m)\alpha f(q)}$ for all $q \in M$.
- (2) If $H_{mq} \subset H_{f(m)\alpha f(q)}$ for some $q \in M$, then $f(mt) = f(m)\alpha(t)$ for all $t \in H_{mq}$.
- (3) $f(mt) = f(m)\alpha(t)$ for all $t \in H_{mq} \iff H_{mq} \subset H_{f(m)\alpha f(q)}$ for all $q \in M$.
- (4) Assume M is strongly connected. Then $f(mt) = f(m)\alpha(t)$ for all $t \in R \iff H_{mq} \subset H_{f(m)\alpha f(q)}$ for all $q \in M$.

Proof. For (1), for every $a \in H_{mq}$ we have ma = q. This implies $f(q) = f(ma) = f(m)\alpha(a)$. Hence $a \in H_{f(m)\alpha f(q)}$.

For (2), for every $t \in H_{mq}$ we have mt = q and also, since $t \in H_{f(m)\alpha f(q)}$, we have $f(m)\alpha(t) = f(q)$. This implies $f(m)\alpha(t) = f(mt)$.

(3) is clear from (1) and (2). For (4), suppose M is strongly connected. Then we have M=mR. So, for every $t\in R$, we have k=mt for some $k\in M$. This implies $t\in H_{mk}\subset H_{f(m)\alpha f(k)}$. Thus, $f(m)\alpha(t)=f(k)$. Hence $f(mt)=f(k)=f(m)\alpha(t)$. The converse is clear from (1).

PROPOSITION 16. Let M and N be R-modules. Let $f: M \to N$ and $\alpha: R \to R$ be maps. Then the following statements are equivalent:

- (1) $f: M \to N$ is a semi αR -homomorphism.
- (2) $H_{mq} \subset H_{f(m)\alpha f(q)}$ for any $m, q \in M$.
- (3) $f(qa) = f(q)\alpha(a)$ for some $q \in M$ and all $a \in R$ if M is strongly connected and α is a semigroup-homomorphism.

Proof. (1) \Longrightarrow (2): For all $m \in M$ and $t \in R$, $f(mt) = f(m)\alpha(t)$. Hence it holds by Lemma 15(1). (2) \Longrightarrow (1): To show $f(mt) = f(m)\alpha(t)$ for all $m \in M$ and $t \in R$, we recall $R = \bigcup_{q \in M} H_{mq}$. Now, for any $t \in R$, we have $t \in H_{mq}$ for some $q \in M$. By the assumption, $t \in H_{mq} \subset H_{f(m)\alpha f(q)}$. Hence it holds from (2) of Lemma 15. (2) \Longrightarrow (3): Since M is strongly connected, we have M = qR for

some $q \in M$. This means that for any $a \in R$, there is an $k \in M$ such that k = qa. This implies $a \in H_{qk} \subset H_{f(q)\alpha f(k)}$. So, we have $f(q)\alpha(a) = f(k) = f(qa)$. (3) \Longrightarrow (1): We have M = qR from the strong connectedness. This implies that for any $m \in M$ there is an $b \in R$ such that m = qb. So, we have ma = (qb)a. Hence for any $m \in M$ and $a \in R$ we have $f(ma) = f((qb)a) = f(q(ba)) = f(q)\alpha(b) = f(q)\alpha(b)\alpha(a) = f(qb)\alpha(a) = f(m)\alpha(a)$.

COROLLARY 16.1. Let M be an R-module. Then $f: M \to M$ is a semi αR -automorphism $\iff f$ and α are permutations on M and R respectively and $H_{mq} \subset H_{f(m)\alpha f(q)}$ for any $m, q \in M$.

NOTE. If $f \in SAUT_R(M)$, then $f^n \in SAUT_R(M)$ for any nonnegative interger n where $f^n = fff \dots f$ (n times) and the product means the composition of f's.

DEFINITION. Let M be an R-module. Then we say that a mapping $\alpha: R \to R$ is an M-HOMOMORPHISM if $m\alpha(a) = ma$ for all $m \in M$ and $a \in R$. We recall that f is a REGULAR PERMUTATION on a set M if f is a permutation on M and for every power, say f^n , of f, it is the case that $f^n(p) = p$ for some $p \in M$ implies $f^n = I$ (identity).

PROPOSITION 17. Let M be a strongly connected R-module. For every $f \in SAUT_R(M)$ let f be a semi αR -automorphism. Then f is a regular permutation on M if $\alpha : R \to R$ is an M-homomorphism.

Proof. Suppose that for any $n \in \mathbb{N}$, $f^n(x) = x$ for some $x \in M$.

Claim: $f^n = I$ (identity). Proof. Since $f \in SAUT_R(M)$, f^n is a semi $\alpha^n R$ -automorphism and $f^n \in SAUT_R(M)$. This implies $f^n \in SEND_R(M)$. Also, for all $m \in M$ and $a \in R$ $I(ma) = ma = m\alpha(a) = I(m)\alpha(a)$. This implies that I is a semi αR -automorphism. Hence I^n is a semi $\alpha^n R$ -automorphism and $I^n \in SEND_R(M)$. From Lemma 3 we have $f^n = I$.

References

- 1. C. H. Park, Algebraic properties associated with the input semigroup S of an automaton, Bull. Korean Math. Soc. 27(1990), 69-83.
- 2. _____, On right congruences associated with the input semigroup S of Automata, Semigroup Forum, to appear.
- 3. F. Kasch, Modules and Rings, Academic Press New York, 1982.

Department of Mathematics and Computer Science Fayetteville State University Fayetteville, NC 28301 U.S.A.