
J. Kor~an Math. Soe. 29 (1992), No. 1, pp. 79-90

GENERALIZED SEMIAUTOMORPHISM

GROUPS OF MODULES

CHIN-HONG PARK

DEFINITION. Let A1 and N be right R-modules. Let Q' : R -+ R and
f : AI -+ N be maps. (1) f is a GENERALIZED R-MODULE HOMO­
MORPHISM with respect to Q' (or briefly Q'R-HOMOMORPHISM) if
f(m + q) = f(m) + f(q) and f(ma) = f(m)Q'(a) for all m,q E M
and a E R. f is an R-HOMOMORPHISM if Q' = IR(identity). f
is a SEMIR-HOMOMORPHISM if f(ma) = f(m)a for all m E M
and a E R. (2) f is an Q'R-MONOMORPHISM [rcsp. EPIMOR­
PHISM, ISOMORPHISM] if f is an Q'R-homomorphism and both f
and Q' are injective [resp. surjective, bijective]. (3) f is an Q'R­
E:N"DOMORPHISM if Al = N and it is an Q'R-homomorphism. (4)
f is an oR-AUTO~IORPHISMif is an Q'R-isomorphism and M = N.
(5) Let f a.nd 9 be an Q'R-homomorphism and an ;3R-homomorphism
respectively. Then we define f = 9 if f = 9 with Q' =;3. (6) f is
a SEMIaR-HOMOMORPHISM if f(ma) = f(m)Q'(a) for all m E M
and a E R. (7) f is a SEMIoR-ENDOMORPHISM [resp. SEMIaR­
AUT01IORPHISM] if AI = Nand f is a semiQ'R-homomorphism
[resp. semiaR-enclomorphism and f, Q' a.re bijective].

NOTATION.
ENDR(M) = {f If is an oR - endumorphism with a map Q' : R -+

R}
SE~DR(M) = {f If is a semioR - endomorphism with a map Q' :

R -+ R}
AUTR(M) = {f If is an Q'R - automorphism with a map Q' : R -+

R}
SAUTR(M) = {f If is a semioR - automorphism with a map Q' :

R -+ R}
EndR(J1) = {f If: At -+ M is an R - endomorphism}
SEndR( AI) = {f If: 1\1 -+ AI is a semiR - endomorphism}
AutR(M) = {f If: .'11 -+ AI is an R - automorphism}
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SAutR(M) = {f II: M -+ M is a semiR - automorphism}
HomR(M,N) = {Ill: M -+ N is an R-homomorphism}
SHomR(M,N) = {I II: M -+ N is a semiR - homomorphism}
SHOMR(M, N) = {I II : M -+ N is a semiaR - homomorphism

with a map a : R -+ R}.

We note that for any I,g E ENDR(M), if I is anaR-homomorphism
and 9 is an ,8R-homomorphism, then Ig is an a,8R-homomorphism.
From now on, unless specified otherwise, "R - module" means "right
R-module" .

PROPOSITION 1. Let M be an R-module. Then
(1) AUTR(M), SAUTR(M), AutR(M) and SAutR(M) are groups;
(2) ENDR(M), SENDR(M), EndR(M), and SEndR(M) aremonoids.

LEMMA 2. Let M be an R-module. For any I,g E SENDR(M) let
I and 9 be semiaR-endomorphism and semi,8R-endomorpbism respec­
tively. We define two relations on SENDR(M) as follows:

(f,g) E (TE <:==? 1 = 9 on SENDR(M).

(f, g) E TE <:==? a =,8 on SENDR(M).

Then (TE and T E are congruences relations on SENDR(M).

Proof. We will show that T E is a congruence relation on SENDR(M).
It is easy to show that T E is an equivalence relation. To show T E

is a congruence relation, let (f, g) E T E where 1 and 9 are semiaR­
endomorphisms. For any h E SENDR(M), let h be a semi,8R-endomor­
phism. Then (f,g)h = (fh,gh) E T E and also, h(f,g) = (hf,hg) E T E •

Similarly, it is easy to show that (TE is a congruence relation.

NOTE. Similarly, for any 1,9 E SAUTR(M), let I and 9 be semiaR­
automorphism and semi,8R-automorphism respectively. We can define
two congruence relations on SAUTR(M) as follows:

(f,9) E (TA <:==? 1 = 9 on SAUTR(M)

(f,9) ETA <:==? a =,8 on SAUTR(M).

Then
(1) (TA and TA are congruence relations on SAUTR(M).
(2) SAUTR(M)jTA = SAUTR(M)jSAutR(M).
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DEFINITION. Let M be an R-module and let a E R.
(1) Ta : M ~ M is called a RIGHT TRANSLATION if Ta(m) = ma

for all mE M.
(2) We define a congruence J-lM C R x R on R through (a, b) E

J-lM ~Ta.=nfora,bER.

(3) M is CYCLIC iff M == mR for some m E M. Also, m is called
a GENERATOR.

(4) M is STRONGLY CONNECTED iff every element of M is a
generator (or for any m, q E M, ma = q for some a ER).

(5) M is PERFECT iff M is strongly connected and R is a commu­
tative ring.

LEMMA 3. Let M and N be R-modules. For any f, 9 E SHOMR(M,
N) let f and 9 be semio:R-homomorphism and semij3R-homomorphism
respectively. If AI is strongly connected, then

f = g-<====>o: = j3 and f(p) = g(p) for some p E M.

Proof. We will show that f( m) = g( m) for all m EM. Since M is
strongly connected, AI = qR for every q E M. So, we have M = pR.
This implies that for any m E M, m = pa for some a E R. Hence
f(m) = f(pa) = f(p)o:(a) = g(p)j3(a) = g(pa) = g(m). i.e., f == g.
The converse is trivial.

COROLLARY 3.1. Let M and N be R-modules. Let M be strongly
connected. Then for every f,g E SHomR(M,N),

f = 9 {:=} f(m) = g(m) for some m E M.

COROLLARY 3.2. Let M be a strongly connected R-module. Then
for any f,g E SEndR(.M), f = 9 {:=} f(m) = g(m) for some mE M.

LEMMA 4. Let M be an R-module and let TR = {Ta: a ER}.
Then

(1) TR C EndR(M) if R is commutative.
(2) TR = SEndR(M) if M is perfect.
(3) TR C EndR(M)~ R is commutative if M is free ofrank 1.
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(4) Tab = Tan for any a,b E R ifR is commutative.

Proof. For (1), for any Ta E TR we will show that Ta is an R­
homomorphism. For all m E M and b E R, Ta (mb) = (mb)a =
m(ba) = m(ab) = (ma)b = Ta(m)b. Also, for all m,q E M, Ta(m+q) =
(m + q)a = ma +qa = Ta(m) +Ta(q). Hence Ta E EndR(M). For (2),
it is enough to show TR ::> SEndR(M). Choose any fE SEndR(M).
Claim: f = Ta for some a E R. To prove this, let m E M and f(m) = q
for some q EM. Since M is strongly connected, we have ma = q for
some a E R. So, f(m) = q = ma = Ta(m). Hence f =Ta by Corollary
3.2. For (3), to show ab = ba for all a, b E R, let {m} be a basis for
M. Now, m(ab) = (ma)b = Ta(m)b = Ta(mb) = (mb)a = m(ba). So,
we have m(ab - ba) = O. Hence ab = ba. (4) is trivial.

PROPOSITION 5. Let M be an R-module. Then the following con-
ditions are equivalent :

(1) f-tM = 0 on R where 0 is the identity relation.
(2) For all a,b E R, Ta = Tb ===? a = b.
(3) U A = 0 on SAUTR(M).
(4) u E = 0 on SENDR(M) if M is perfect.

Proof. (1) {::::::} (2) : Trivial. (2) ===? (3) : Let (J,g) E U A where
f and 9 are semiaR-automorphism and semiJ3R-automorphism respec­
tively. Since f,g E SAUTR(M) and f = g, f(ma) = f(m)a(a) =
f(m)J3(a) for all m E M and a E R. This means Ta(a)(J(m» =
TP(a)(J(m». Since f is bijective, Ta(a)(m) = Tp(a)(m) for all m E M.
So, we have Ta(a) = Tp(a)' By assumption, a(a) = J3(a) for all a E R.
Hence a = 13. i.e., U A = O. (3) ===? (2) : We define a map a : R -+ R
given by a(a) = b, a(b) = a and aCt) = t for all t E R - {a,b}. Then
a is bijective with a(a(a» = a and a(a(b» = b. Let I : M -+ M
be the identity map. Then I is a semiaR-automorphism (it is easy
to show this, using Ta = Tb). So, I E SAUTR(M). Also, I is a
semilRR-automorphism where lR : R -+ R is the identity map. Hence
I E SAUTR(M). So, (l, l) E U A = O. This means a = lR. Hence
a = b. (2) ===? (4) : For any (J,g) E U E let f and 9 be semiaR­
endomorphism and semiJ3R-endomorphism respectively. Then for all
m E M and a E R, f(ma) = f(m)a(a) and g(ma) = g(m)J3(a). From
f = g, we have f(m)a(a) = f(m)J3(a) for all m E M and a E R. This
implies Ta(a)(J(m» = TP(a)(J(m». Since M is perfect, from Lemma 4
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and Corollary 3.2 we have Ta(a) = T{3(a). By assumption, a(a) = l3(a)
for all a E R. Hence a = 13. i.e., aE = O. (4) ==> (2) : Clear from
a A :::; a E = O.

DEFINITION. An R-module M is called a MODULE with REDUCED
R if one of the equivalent statements of Proposition 5 is satisfied.

PROPOSITION 6. Let M be an R-module. Let TR = {Ta: a E R}
and let (TR) be the semigroup generated by TR. Then RIP.M ~ (TR)
where ~ means sernigroup isomorphic.

DEFINITION. RIJ1. M is called the characteristic semigroup of a mod­
ule M.

LEMMA 7. Let M be an R-module and let a, b E R.
(1) IT f E SAUTR(M) and f is a senllaR-automorphism, then

(a,b) E J1.M ~ (a(a), a(b» E J1.M.

(2) Assume M is perfect. If f E SENDR(M) and f is a smiaR­
endomorphism , then (a, b) E JL E ==> (a(a), a(b» E J1. M•

Proof. For (1),

(a, b) E J1. M~ Ta = Tt>~ Ta(m) = Tb(m) for all m E M

~ ma = mb~ f(ma) = f(mb)

~ f(m)a(a) = f(m)a(b)

<==? Ta(a)(f( m» = Ta(b)(f(m»

<==? Ta(a) = Ta(b) <==? (a(a),a(b» E J1.M'

For (2),

(a, b) E JLM <==? Ta = Tb~ Ta(m) = Tb(m) for all m E M

<==? ma = mb ==> f(ma) = f(mb)

<==? f(m)a(a) = f(m)a(b)

<==? Ta(a)(f(m» = Ta(b)(f(m»

~ Ta(a) = Ta(b) <==? (a(a),a(b» E J1.M.
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LEMMA 8. Let M be a perfect module and let a, f3 : R -+ R be
maps. Let ITa and ITp be maps defined by ITa([a)) = [a(a)] and
IIp([a]) = [f3(a)] for a E R respectively where [ ] = [ ]"M' For any
f, g E SENDR(M) let f and g be a semiaR-endomozphism and a
semij3R-endomozphism respectively. Then we have the following state­
ments:

(1) ITa and IIp are endomozphisms if a and f3 are ring-homomor­
phisms.

(2) ITpa = IIpIIa .
(3) ITa = IIp <===;> a = f3 if R is reduced

where the product of maps means the composition of maps.

Proof. We note that IIO' and ITp are well-defined from Lemma 7(2).
For (1) and (2), it is easy to check them. For (3), for every t E R,
IIa([t]) = IIj3([tJ). This implies [a(t)] = [f3(t)]. Hence (a(t),f3(t» E
flM' Moreover, (a(t),f3(t» E flM ~ Ta(t) = Tj3(t). From the fact
that M is a module with reduced R we can conclude that Ta(t) =
Tp(t) ===> a(t) = f3(t). i.e., a = 13. The converse is trivial.

COROLLARY 8.1. Let M beanR-module. For any f,g E SAUTR(M)
let f and g be a semiaR-automozphism and a semif3R-automozphism
respectively. Then the following statements hold:

(1) IIa and ITp are semigroup-automozphisms if a and I' are ring­
homomozphisms.

(2) IIpa = IIpIIa .

(3) IIa = IIp {=> a = I' if R is reduced.

RECALL. Let S and T be semigroups. Let f : S -+ T be a ho­
momorphism. The Kernel of f is the set Ker f of all the elements of
S x S which are carried by f onto the same element of T. That is,
Ker f = {(a, b) E S x S : f(a) = f(b)}.

LEMMA 9. Let Al be a perfect R-module and let End(R/ flM) be
the set of all endomozphisms (not R-endomozphisms) on R/flM' Let
h : SENDR(.l\tf) -+ End(R/ flM) be a map defined by hU) = ITa with
semiaR-endomozphism f where a : R -+ R is a ring-homomozphism.
Then

(1) h is a homomozphism.
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(2) Kerh = TE if M is with reduced R.

Proof. (1) is trivial. For (2),
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Kerh = {(f,g): h(f) = h(g)} = {(f,g): ITa = IT/3 for semiaR­

endomorphism f and semi(3R - endomorphism g}

= {(f, g) : a = (3 for semiaR - endomorphism f and semi(3R­

endomorphism g} = T E'

From Lemma 9 we have the following proposition.

PROPOSITION 10. Let M be a perfect R-module with reduced R.
Then SENDR(M)/TE is isomozphic to a submonoid of End(R/J-lM)'

LEM MA 11. Let M be an R-module and let A ut( R/J-l M) be the
set of all automozphisms (not R-automozphisms) on R/J-lM' Let h :
SAUTR(M) ---.. Aut(R/J-lM) be a map defined by h(f) = ITa with
semiaR-automozphism f where a : R ---.. R is a ring-homomozphism.
Then

(1) h is a group-homomozphism.
(2) Kerh = SA.. utR(AI) if R is reduced.

Proof. (1) is trivial. For (2),

Kerh = {f E AUTR(.M): h(f) = I (identity map)}

= {f E AUTR(M) : ITa = I for semiaR - automorphism f}

= {f E AUTR(lI1) : a = IR for semiaR - automorphism f}

= SAutR(M).

From Lemma 11 we can obtain the following proposition.

PROPOSITION 12. Let M be an R-module with reduced R. Then
the factor group SAUTR(lI1)/SAutR(lI1) is isomozphic to a subgroup
of Aut(R/J-lM)'
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DEFINITION. Let M be an R-module. Let QM = {f : M -+ M is
a transformation map}. Le., the semigroup of all transformation maps
of M into M.

(1) We define the CENTRALIZER C(TR) and the NORMALIZER
N(TR) of TR in QM as follows:

C(TR) = {f E QM : Taf = fTa for all Ta E TR}

N(TR) = {f E QM : TRf = fTR}.

(2) We define the PERMUTATION CENTRALIZER (briefly p­
CENTRALIZER) Cp(TR) and the PERMUTATION NORMALIZER
(briefly p-NORMALIZER) Np(TR) of TR as follows:

where SM is the symmetric group over M.

NOTE. N(TR) is a monoid and C(TR) :S N(TR) (a submonoid of
N(TR».

LEMMA 13. Let M be an R-module with reduced R. Let f E
Np(TR). Then for any Ta E TR 3! Tb E TR such that fTb = Taf (or
fTa = Tbf).

Proof. Suppose there is another Te E TR such that Taf = fTe.
Then fTb = fTe and fTb(m) = fTe(m) for all m E M. This implies
that f(mb) = f(mc). Since f is 1 - 1, mb = mc. This means that
Tb(m) = Te(m) for all m E M. i.e., n = Te. Hence b= c.

PROPOSITION 14. Let M bean R-module. Then
(1) SEndR(M) = C(TR) and SAutR(M) = Cp(TR).
(2) Cp(TR) is a normal subgroup of Np(TR).
(3) SAUTR(M) = Np(TR) if R is reduced.

Proof. For the first part of (1), SEndR(M) C C(TR): For any f E
SEndR(M), it is· enough to show fTa = Taf for all Ta E TR. To
do this, choose any m E J..1. Then fTa(m) = f(ma) = f(m)a =
Taf(m). Hence it holds. Similarly, the converse can be shown easily.
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The second part of (1) follows from the first part of (1). For (2), for
any f E Np(TR)' 9 E Cp(TR) and Ta E TR,

Tafgf-l = fTbgf-l for some n E TR

= fgTb/-l

= fgf-1Ta.

Hence it holds. For (3), SAUTR(A) C Np(TR): To prove this, choose
any f E SAUTR(M) and let f be a semiaR-automorphism. Then we
have f(ma) = f(m)a(a) for all m E M and a E R. This means that
J[Ta(m)} = Tar(a){f(m)]. Also, this implies that fTa = Tar(a)/' Hence
since a is bijective, fTR = TRf. Le., f E Np(TR). SAUTR(A) :)
Np(TR): By Lemma 13, for any f E Np(TR) and Ta E TR 3!Tb E TR
such that fTa = Tbf. Let a : R ---+ R be a map defined by a(a) = b
with fTa = Tbf.

Claim: a is bijective. (i) a is well-defined: To prove this, let t = u
for t, u E R. By Lemma 13, for Tt and Tu 3!Tc, Td E TR such that
fTt = Tcf and fTu = Tdf. This implies Tcf = Tdf. Hence Tc = Td.
So, we have c = d sirtce R is reduced. Thus, aCt) = c = d = a(u). (ii)
a = 1 - 1: Suppose aCt) = a(u). Let aCt) = c with fTt = Tcf and
let a(u) = d with fTu = Tdf. Then from c = d fTt = fTu. Hence
Tt = Tu. Thus, we have t = u. (iii) a is onto: For any bE R, consider
nE TR. By Lemma 13 3!Ta E TR such that Tb/ = fTa. Hence 3a E R
such that a(a) = b with fTa = nf.

Now, we will show that f is a semiaR-homomorphism. For any
m E M and a E R,

f(m)a(a) = f(m)b with fTa = nf

= nf(m) = fTa(m) = f(ma).

Hence f E SAUTR(A).

COROLLARY 14.1. Let M be an R-module with reduced R. Then
the following statements hold:

(1) Np(TR)/Cp(TR) ~ a subgroup of Aut(S/J-LM)'
(2) SAutR(.M) is a normal subgroup of SAUTR(M).
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NOTATION. Let M be an R-module and a : R -+ R be a map. For
m,q E M, H maq = {a ER: ma(a) = q} and H mq = {a ER: ma =
q}.

LEMMA 15. Let M and N be R-modules. Let m E M be a fixed
element and let a : R -+ R be a map. H f : M -+ N is any map, then
the following statements hold:

(1) H f(mt) = f(m)a(t) for all t E R, then H mq C Hf(m)af(q) for
all q E M.

(2) H H mq C Hf(m)aj(q) for some q E M, then f(mt) = f(m)a(t)
for all t E H mq .

(3) f(mt) = f(m)a(t) for all t E H mq {::::} H mq C Hf(m)af(q) for
all q E M.

(4) Assume M is strongly connected. Tben f(mt) = f(m)a(t) for
all t E R {::::} H mq C Hf(m)af(q) for all q E M.

Proof. For (1), for every a E H mq we have ma = q. This implies
f(q) = f(ma) = f(m)a(a). Hence a E Hf(m)af(q)·

For (2), for every t E H mq we have mt = q and also, since t E
Hf(m)aj(q), we have f(m)a(t) = f(q). This implies f(m)a(t) = f(mt).

(3) is clear from (1) and (2). For (4), suppose M is strongly con­
nected. Then we have M = mR. So, for every t E R, we have
k = mt for some k E AI. This implies t E Hmk C Hf(m)af(k). Thus,
f(m)a(t) = f(k). Hence f(mt) = f(k) = f(m)a(t). The converse is
clear from (1).

PROPOSITION 16. Let M and N be R-modules. Let f : M -+ N
and a : R -+ R be maps. Then the following statements are equivalent:

(1) f: M -+ N is a semiaR-bomomozpbism.
(2) H mq C Hf(m)aj(q) for any m,q E M.
(3) f(qa) = f(q)a(a) for some q E M and all a E R if M is

strongly connected and a is a semigroup-homomorpmsm.

Proof. (1) ===} (2): For all m E M and t E R, f(mt) = f(m)a(t).
Hence it holds by Lemma 15(1). (2) ===} (1): To show f(mt) =
f(m)a(t) for all m E M and t E R, we recall R = UqEMHmq • Now,
for any t E R, we have t E H mq for some q EM. By the assump­
tion, t E H mq C Hf(m)aj(q). Hence it holds from (2) of Lemma 15.
(2) ===} (3): Since M is strongly connected, we have M = qR for
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some q E M. This means that for any a E R, there is an k E M
such that k = qa. This implies a E Hqk C H f(q)OIf(k). So, we have
f(q)a(a) = f(k) = f(qa). (3) ===> (1): We have M = qR from the
strong connectedness. This implies that for any m E M there is an
b E R such that m = qb. So, we have ma = (qb )a. Hence for
any m E M and a E R we have f(ma) = f«qb)a) = f(q(ba» =
f(q)a(ba) = f(q)a(b)a(a) = [f(q)a(b)]a(a) = f(qb)a(a) = f(m)a(a).

COROLLARY 16.1. Let M be an R-module. Then f : M --+ M is
a semiaR-automorphism {:=:} f and 0' are permutations on M and R
respectively and H mq C Hf(m)OIf(q) for any m,q E M.

NOTE. H f E SAUTR(M), then fn E SAUTR(M) for any nonneg­
ative interger n where fn = f f f ... f (n times) and the product means
the composition of f's.

DEFINITION. Let M be an R-module. Then we say that a mapping
a: R --+ R is an Af-HOMOMORPHISM if ma(a) = ma for all m E M
and a E R. We recall that f is a REGULAR PERMUTATION on a
set M if f is a permutation on M and for every power, say fn, of f, it
is the case that 1'1 (p) = p for some p E M implies fn = I (identity).

PROPOSITION 17. Let 111 be a strongly connected R-module. For
every f E S.4UTR (Af) let f be a semiaR-automorphism. Then f is a
regular permutation on Al if a : R --+ R is an M -homomorphism.

Proof. Suppose that for any n E N, fn(x) = x for some x E M.
Claim: r = I (identity). Proof. Since f E SAUTR(M), r is

a semian R-automorphism and r E SAUTR(M). This implies fn E
SENDR(M). Also, for all m E M and a E R I(ma) = ma = ma(a) =
I( m )a( a). This implies that I is a semiO'R-automorphism. Hence In
is a semia n R-automorphism and r E SENDR(M). From Lemma 3
we have fn = I.
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