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GENERALIZED SEMIAUTOMORPHISM
GROUPS OF MODULES

CHIN-HONG PARK

DEFINITION. Let M and NV be right R-modules. Let a : R — R and
f: M — N bemaps. (1) f isa GENERALIZED R-MODULE HOMO-
MORPHISM with respect to a (or briefly « FR-HOMOMORPHISM) if
fim +q) = f(m) + f(g) and f(ma) = f(m)a(a) for all m,q € M
and a € R. f is an RRHOMOMORPHISM if o = Ir(identity). f
is a SEMIR-HOMOMORPHISM if f(ma) = f(m)a for all m € M
and ¢« € R. (2) f is an a R-MONOMORPHISM [resp. EPIMOR-
PHISM, ISOMORPHISM] if f is an aR-homomorphism and both f
and o are injective [resp. surjective, bijective]. (3) f is an aR-
ENDOMORPHISM if M = N and it is an aR-homomorphism. (4)
fis an a R-AUTOMORPHISM if is an aR-isomorphism and M = N.
{5) Let f and g be an aR-homomorphism and an 3R-homomorphism
respectively. Then we define f = ¢ if f = g with a = 3. (6) f is
a SEMIaR-HOMOMORPHISM if f(ma) = f(m)a(a) for all m € M
and a € R. (7) f is a SEMIaR-ENDOMORPHISM [resp. SEMIaR-
AUTOMORPHISM] if M = N and f is a semiaR-homomorphism

[resp. semiaR-endomorphism and f, o are bijective].

NOTATION.
ENDRg(M) = {f]|f is an aR — endomorphism with a map a : R —
R}

SENDRg(M) = {f| f is a semiaR — endomorphism with a map a :
R — R}

AUTRg(M) = {f|f is an o R — automorphism with a map o : R —
R}

SAUTR(M) = {f|f is a semiaR — automorphism with a map o :

R — R}

Endg(M)={f|f: M — M is an R — endomorphism}
SEndp(M) = {f|f: M — M is a semiR — endomorphism}
Autp(M)={f|f: M — M is an R — automorphism}
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SAutp(M) = {f|f: M — M is a semiR — automorphism}

Homp(M,N)={f|f: M — N is an R — homomorphism}

SHompg(M,N)={f|f: M — N is a semiR — homomorphism}

SHOMRgr(M,N) = {f|f : M — N is a semiaR — homomorphism
with a map a : R — R}.

We note that for any f,g € ENDg(M), if f is an aR-homomorphism
and ¢ is an SR-homomorphism, then fg is an afR-homomorphism.
From now on, unless specified otherwise, “R — module” means “right
R-module”.

PROPOSITION 1. Let M be an R-module. Then
(1) AUTR(M),SAUTR(M), Autr(M) and SAutr(M) are groups;
(2) ENDg(M), SENDg(M), Endr(M), and SEndr(M) are monoids.

LEMMA 2. Let M be an R-module. For any f,g € SENDr(M) let
f and g be semia R-endomorphism and semif3 R-endomorphism respec-
tively. We define two relations on SENDg(M) as follows :

(f,9) € 0, < f =g on SENDr(M).
(f,9) € 7, <= a = on SENDg(M).

Then o, and T, are congruences relations on SENDr(M).

Proof. We will show that 7, is a congruence relation on SENDr(M).
It is easy to show that 7, is an equivalence relation. To show 7,
is a congruence relation, let (f,g) € 7, where f and g are semiaR-
endomorphisms. For any h € SENDg(M), let h be a semif R-endomor-
phism. Then (f,g)kh = (fh,gh) € 7, and also, h(f,g) = (hf,hg) € 7.

Similarly, it is easy to show that ¢, is a congruence relation.

NOTE. Similarly, for any f, g € SAUTR(M), let f and g be semiaR-
automorphism and semi3 R-automorphism respectively. We can define
two congruence relations on SAUT r(M) as follows :

(f.9) €0, < f =g on SAUTr(M)
(f,9) € 7, <= a = on SAUTg(M).
Then

(1) o, and 7, are congruence relations on SAUTp(M).
(2) SAUTR(M)/7, = SAUTr(M)/SAutr(M).
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DEFINITION. Let M be an R-module and let a € R.

(1) T, : M — M is called a RIGHT TRANSLATION if T,(m) = ma
for all m € M.

(2) We define a congruence y,, C R x R on R through (a,b) €
ppy < To =Ty for a,b € R.

(3) M is CYCLIC iff M = mR for some m € M. Also, m is called
a GENERATOR.

(4) M is STRONGLY CONNECTED iff every element of M is a
generator (or for any m, ¢ € M, ma = q for some a € R).

(5) M is PERFECT iff M is strongly connected and R is a commu-
tative ring.

LEMMA 3. Let M and N be R-modules. For any f,9 € SHOMg(M,
N) let f and g be semia R-homomorphism and semif R-homomorphism
respectively. If M is strongly connected, then

f =9 a=pf and f(p) = g(p) for some p € M.

Proof. We will show that f(m) = g(m) for all m € M. Since M is
strongly connected, M = gR for every ¢ € M. So, we have M = pR.
This implies that for any m € M, m = pa for some a € R. Hence

f(m) = f(pa) = f(p)a(a) = g(p)B(a) = g(pa) = g(m). ie, f =g

The converse is trivial.

COROLLARY 3.1. Let M and N be R-modules. Let M be strongly
connected. Then for every f,g € SHomp(M,N),

f =g < f(m) = g(m) for some m € M.

COROLLARY 3.2. Let M be a strongly connected R-module. Then
for any f,g € SEndr(M), f = g <= f(m) = g(m) for some m € M.

LEMMA 4. Let M be an R-module and let Tr = {T, : a € R}.
Then

(1) Tr C Endgr(M) if R is commutative.
(2) Tp = SEndgr(M) if M is perfect.
(3) Tr C Endr(M) <= R is commutative if M is free of rank 1.
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(4) Tap = T, T} for any a,b € R if R is commutative.

Proof. For (1), for any T, € Tr we will show that T, is an R-
homomorphism. For all m € M and b € R, T,(mb) = (mb)a =
m(ba) = m(ab) = (ma)b = To(m)b. Also, for all m,q € M, T,(m+q) =
(m + q)a = ma + qa = T,(m) + T,(q). Hence T, € Endr(M). For (2),
it is enough to show T D SEndg(M). Choose any f € SEndg(M).
Claim: f = T, for some a € R. To prove this, let m € M and f(m) =¢
for some ¢ € M. Since M is strongly connected, we have ma = ¢ for
some a € R. So, f(m) = ¢ = ma = T,(m). Hence f = T, by Corollary
3.2. For (3), to show ab = ba for all a,b € R, let {m} be a basis for
M. Now, m(ab) = (ma)b = Ta(m)b = T,(mb) = (mb)a = m(ba). So,
we have m(ab — ba) = 0. Hence ab = ba. (4) is trivial.

PROPOSITION 5. Let M be an R-module. Then the following con-
ditions are equivalent :

(1) par =0 on R where 0 is the identity relation.

(2) Foralla,bec R, T, =T, => a=b.

(3) 0, =0 on SAUTR(M).

(4) 05 =0 on SENDr(M) if M is perfect.

Proof. (1) <= (2) : Trivial. (2) => (3) : Let (f,g9) € o, where
f and g are semia R-automorphism and semifR-automorphism respec-
tively. Since f,g € SAUTg(M) and f = g, f(ma) = f(m)a(a) =
f(m)B(a) for all m € M and a € R. This means Tyqo)(f(m)) = .
Tp(a)(f(m)). Since f is bijective, Ty(a)(m) = Tp(a)(m) for all m € M.
So, we have Ty (a) = T(a). By assumption, afa) = B(a) for all a € R.
Hence a = f. ie,0, =0. (3) = (2): Wedefineamapa:R— R
given by a(a) = b, a(b) = a and a(t) = t for all t € R — {a,b}. Then
a is bijective with a(a(a)) = a and a(a(b)) = b Let I : M — M
be the identity map. Then I is a semiaR-automorphism (it is easy
to show this, using To = T3). So, I € SAUTR(M). Also, I is a
semilp R-automorphism where Ig : R — R is the identity map. Hence
I € SAUTR(M). So, (I,I) € 0, = 0. This means @ = Ir. Hence
a =b. (2) = (4) : For any (f,g) € oy let f and g be semiaR-
endomorphism and semif R-endomorphism respectively. Then for all
m € M and a € R, f(ma) = f(m)a(a) and g(ma) = g(m)B(a). From
f =g, we have f(m)a(a) = f(m)B(a) for all m € M and a € R. This
implies To(a)(f(m)) = Tp(a)(f(m)). Since M is perfect, from Lemma 4
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and Corollary 3.2 we have To(,) = Tg(a). By assumption, a(a) = 8(a)
for all @ € R. Hence a = B. ie., oy = 0. (4) = (2) : Clear from
o, <o, =0

DEFINITION. An R-module M is called a MODULE with REDUCED
R if one of the equivalent statements of Proposition 5 is satisfied.

PROPOSITION 6. Let M be an R-module. Let Tp = {T, : a € R}
and let (Tr) be the semigroup generated by Tr. Then R/u,, = (Tr)
where = means semigroup isomorphic.

DEFINITION. R/p,, is called the characteristic semigroup of a mod-
ule M.

LEMMA 7. Let M be an R-module and let a,b € R.
(1) If f € SAUTR(M) and f is a semia R-automorphism, then
(a,b) € py = (o(a), (b)) € py-
(2) Assume M is perfect. If f € SENDg(M) and f is a smiaR-
endomorphism, then (a,b) € p, => (a(a),a(d)) € p,,-
Proof. For (1),

(a,b) €y, <= Ty =T <= To(m) =Ty(m) forallme M
<= ma = mb <= f(ma) = f(mb)
= f(m)a(a) = f(m)a(d)
= To(a)(f(m)) = Tog)(f(m))
= Ta(a) = Tap) = (a(a), a(b)) € py-

For (2),

(a,b)€py =T, =Tp < T,(m)=Ty(m)forallme M
&= ma = mb==> f(ma) = f(mb)
= flm)ala) = f(m)a(b)
& Tua)(f(m)) = Tay(f(m))
= Taga) = Tav) <= (ala),a(d)) € py,-
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LEMMA 8. Let M be a perfect module and let a,8 : R — R be
maps. Let II, and Ilg be maps defined by Hy([a]) = [a(a)] and
s([a]) = [B(a)] for a € R respectively where [ ] = [ ], . For any
f,g € SENDg(M) let f and g be a semiaR-endomorphism and a
semif R-endomorphism respectively. Then we have the following state-
ments:

(1) Iy and Mg are endomorphisms if a@ and B are ring-homomor-
phisms.

(2) Ugo = MgM,.

(3) Iy =IIg <= a = B if R is reduced

where the product of maps means the composition of maps.

Proof. We note that Il and IIg are well-defined from Lemma 7(2).
For (1) and (2), it is easy to check them. For (3), for every t € R,
To([f]) = Ma([t]). This implies [a(t)] = [8(1)]. Hence (a(t), A(2)) €
Pp- Moreover, (a(t), B(t)) € py <= Tory = Ta). From the fact
that M is a module with reduced R we can conclude that Ty =
Ty = aft) = B(t). i.e.,, a = B. The converse is trivial.

COROLLARY 8.1. Let M be an R-module. For any f,g € SAUTr(M)
let f and g be a semiaR-automorphism and a semif R-automorphism
respectively. Then the following statements hold:

(1) I, and Hg are semigroup-automorphisms if a and B are ring-
homomorphisms.

(2) g = Upll,.

(3) Ia =1lg <= a = B if R is reduced.

REcALL. Let S and T be semigroups. Let f : S — T be a ho-
momorphism. The Kernel of f is the set Ker f of all the elements of
S x S which are carried by f onto the same element of T. That is,

Ker f = {(a,b) € S x S : f(a) = f(b)}.

LEMMA 9. Let M be a perfect R-module and let End(R/p,,) be
the set of all endomorphisms (not R-endomorphisms) on Rfu,,. Let
h : SENDg(M) — End(R/u,,) be a map defined by h(f) = I, with
semioR-endomorphism f where a : R — R is a ring-homomorphism.
Then

(1) h is a homomorphism.
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(2) Kerh = 1 if M is with reduced R.
Proof. (1) is trivial. For (2),

Kerh = {(f,9): h(f) = h(9)} = {(f,9) : I« = Il for semia R—
endomorphism f and semiR — endomorphism ¢}
= {(f,9) : @ = B for semiaR — endomorphism f and semifR—

endomorphism g} = 7.

From Lemma 9 we have the following proposition.

PROPOSITION 10. Let M be a perfect R-module with reduced R.
Then SENDg(M)/7, is isomorphic to a submonoid of End(R/p,, ).

LEMMA 11. Let M be an R-module and let Aut(R/u,,) be the
set of all automorphisms (not R-automorphisms) on R/u,,. Let h :
SAUTR(M) — Aut(R/u,,) be a map defined by h(f) = Il with
semiaR-automorphism f where o : R — R is a ring-homomorphism.
Then

(1) h is a group-homomorphism.

(2) Kerh = SAutg(M) if R is reduced.

Proof. (1) is trivial. For (2),

Kerh = {f € AUTR(M): h(f) = I (identity map)}
= {f € AUTR(M): I, = I for semia R — automorphism f}
= {f € AUTR(M) : o = Ig for semiaR — automorphism f}
= SAutr(M).

From Lemma 11 we can obtain the following proposition.

PROPOSITION 12. Let M be an R-module with reduced R. Then
the factor group SAUTR(M)/SAutr(M) is isomorphic to a subgroup
of Aut(R/,, ).
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DEFINITION. Let M be an R-module. Let Qu = {f : M — M is
a transformation map}. i.e., the semigroup of all transformation maps
of M into M.

(1) We define the CENTRALIZER C(Tr) and the NORMALIZER
N(TR) of Tr in Q2 as follows:

C(Tr)={f € Qm :Tof = fT, for al Ty € Tr}
N(Tr)={f € Qm : Trf = fTr}.

(2) We define the PERMUTATION CENTRALIZER (briefly p-
CENTRALIZER) Cy(Tr) and the PERMUTATION NORMALIZER
(briefly p-NORMALIZER) N,(Tr) of Tr as follows:

CP(TR) = 'C(TR)‘ﬂ Sy and NI;(TR) = N(TR)'ﬂ Sum

where Spr is the symmetric group over M.

NOTE. N(Tr) is a monoid and C(Tr) < N(Tg) (a submonoid of
N(TRr)).

LEMMA 13. Let M be an R-module with reduced R. Let f €
N,(Tr). Then for any T, € Tg 3Ty € Tg such that fT, = Tof (or
fTo = be)-

Proof. Suppose there is another T, € Tg such that T,f = fT..
Then fTy = fT. and fTe(m) = fTc(m) for all m € M. This implies
that f(mb) = f(mc). Since f is 1 — 1, mb = mc. This means that
Ty(m) = To(m) for all m € M. ie., T, = T.. Hence b=c.

PROPOSITION 14. Let M be an R-module. Then
(1) SEndgr(M) = C(Tr) and SAutr(M) = Cp(Tr).
(2) Cp(TRr) is a normal subgroup of Ny(TR).

(3) SAUTRr(M) = Np(Tg) if R is reduced.

Proof. For the first part of (1), SEndr(M) C C(Tr): For any f €
SEndgr(M), it is enough to show fT, = T,f for all T, € Tr. To
do this, choose any m € M. Then fT,(m) = f(ma) = f(m)a =
Taf(m). Hence it holds. Similarly, the converse can be shown easily.
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The second part of (1) follows from the first part of (1). For (2), for
any f € Np(Tr), g € Cp(Tr) and T, € Tk,

T.fgf = fThgf™! forsome Ty€ Tr
= fgTof ™"
= fgf—lTa-

Hence it holds. For (3), SAUTg(A) C Ny(Tr): To prove this, choose
any f € SAUTg(M) and let f be a semiaR-automorphism. Then we
have f(ma) = f(m)a(a) for all m € M and a € R. This means that
FlTa(m)] = Toqaylf(m)]. Also, this implies that fT, = Tya)f. Hence
since a is bijective, fTr = Trf. i.e., f € Np(Tr). SAUTR(A) D
Np(TRr): By Lemma 13, for any f € Np(Tr) and T, € Tr 3Ty € Tr
such that fT, = T,f. Let « : R — R be a map defined by a(a) = b
with fT, = T, f.

Claim: a is bijective. (i) a is well-defined : To prove this, let t = u
for t,u € R. By Lemma 13, for Ty and T, 3!'T.,Ta € Tr such that
fTy =T.f and fT, = Tasf. This implies T.f = Tyf. Hence T. = Ta.
So, we have ¢ = d sirice R is reduced. Thus, a(t) = ¢ = d = a(u). (ii)
a = 1—1: Suppose a(t) = a(u). Let a(t) = ¢ with ng = Tcf and
let a(u) = d with fT, = Taf. Then from ¢ = d fT; = fT,. Hence
Ty = Ty. Thus, we have t = u. (iii) a is onto : For any b € R, consider
Ty € Tp. By Lemma 13 3T, € Tg such that Ty f = fT,. Hence Ja € R
such that a(a) = b with fT, = T} f.

Now, we will show that f is a semiaR-homomorphism. For any
meM and a € R,

f(m)a(a) = f(m)b with fT, =T f
= Ty f(m) = fTu(m) = f(ma).

Hence f € SAUTR(A).

COROLLARY 14.1. Let M be an R-module with reduced R. Then
the following statements hold:

(1) Np(Tr)/Cp(Tr) = a subgroup of Aut(S/p,,).
(2) SAutr(M) is a normal subgroup of SAUTR(M).
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NOTATION. Let M be an R-module and a : R — R be a map. For
m,q € M, Hpoq = {a € R: ma(a) = ¢} and Hypy={a € R: ma =
q}-

LEMMA 15. Let M and N be R-modules. Let m € M be a fixed
element and let « : R — R be a map. If f : M — N is any map, then
the following statements hold:

(1) K f(mt) = f(m)a(t) for all t € R, then Hpy C Hym)ag(q) for

allge M.

(2) ¥ Hmg C Hi(m)as(q) for some ¢ € M, then f(mt) = f(m)o(t)
for all t € Hpg.

(3) f(mt) = f(m)a(t) for all t € Hpg <= Hmg C Him)as(q) for
allge M.

(4) Assume M is strongly connected. Then f(mt) = f(m)a(t) for
allt€e R<= H,y C Hi(m)af(q) forallg € M.

Proof. For (1), for every a € Hmg we have ma = ¢. This implies
f(g) = f(ma) = f(m)a(a). Hence a € H g(m)af(q)-

For (2), for every t € Hpy we have mt = ¢ and also, since t €
H f(myaf(a)» We have f(m)a(t) = f(q). This implies f(m)e(t) = f(mt).

(3) is clear from (1) and (2). For (4), suppose M is strongly con-
nected. Then we have M = mR. So, for every t € R, we have
k = mt for some k € M. This implies ¢ € Hukr C Hf(m)ask)- Thus,
f(m)a(t) = f(k). Hence f(mt) = f(k) = f(m)a(t). The converse is

clear from (1).

PROPOSITION 16. Let M and N be R-modules. Let f : M — N
and o : R — R be maps. Then the following statements are equivalent:

(1) f: M — N is a semia R-homomorphism.

(2) Hy,y C Hftmyag(q) for any m,qg € M.

(3) f(gqa) = f(g)a(a) for some ¢ € M and alla € R if M is
strongly connected and « is a semigroup-homomorphism.

Proof. (1) => (2): Forallm € M and t € R, f(mt) = f(m)a(t).
Hence it holds by Lemma 15(1). (2) = (1): To show f(mt) =
f(m)a(t) for all m € M and ¢t € R, we recall R = UgeprHomg. Now,
for any ¢t € R, we have t € H,,q for some ¢ € M. By the assump-
tion, t € Hmg C Hf(m)af(q)- Hence it holds from (2) of Lemma 15.
(2) = (3): Since M is strongly connected, we have M = ¢R for
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some ¢ € M. This means that for any a € R, there is an k € M
such that k = ga. This implies a € Hgx C Hj(gyas(k)- So, we have
f(g)a(a) = f(k) = f(qa). (3) = (1): We have M = ¢R from the
strong connectedness. This implies that for any m € M there is an
b € R such that m = g¢b. So, we have ma = (gb)a. Hence for
any m € M and a € R we have f(ma) = f((¢gb)a) = f(q(ba)) =
f(@)a(ba) = f(g)a(b)a(a) = [f(g)a(b)la(a) = f(gb)a(a) = f(m)e(a).

COROLLARY 16.1. Let M be an R-module. Then f: M — M is
a semia R-automorphism <= f and a are permutations on M and R
respectively and Hmg C Hf(m)as(q) for any m,q € M.

NoTEe. If f € SAUTR(M), then f* € SAUTR(M) for any nonneg-
ative interger n where f™ = fff... f (n times) and the product means
the composition of f’s.

DEFINITION. Let M be an R-module. Then we say that a mapping
a: R — Risan M-HOMOMORPHISM if ma(a) = maforallm € M
and a € R. We recall that f is a REGULAR PERMUTATION on a
set M if f is a permutation on M and for every power, say f*, of f, it
is the case that f"(p) = p for some p € M implies f" = I (identity).

PROPOSITION 17. Let M be a strongly connected R-module. For
every f € SAUTRr(M) let f be a semia R-automorphism. Then f is a
regular permutation on M if « : R — R is an M-homomorphism.

Proof. Suppose that for any n € N, f*(z) =  for some z € M.

Claim: f" = I (identity). Proof. Since f € SAUTgr(M), f" is
a semia”™ R-automorphism and f"* € SAUTR(M). This implies f™ €
SENDg(M). Also, for all m € M and a € R I(ma) = ma = ma(a) =
I(m)a(a). This implies that I is a semiaR-automorphism. Hence I™
is a semia” R-automorphism and I" € SENDg(M). From Lemma 3
we have f* = I.
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