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THE SUBHARMONIC BIFURCATION
IN AREA-PRESERVING MAPS

YoNnG IN KiM* AND EOK KYUN LEE**

1. Introduction

Many authors [1, 2, 3] have studied two-dimensional area-preserving
maps as typical discrete versions of nonintegrable autonomous Hamil-
tonian systems with two degrees of freedom or nonautonomous sys-
tems with one degree of freedom. In particular, Van der Weele [3]
has performed a bifurcation analysis based on Meyer [4] to prove the
appearance of n-cycles from the elliptic fixed point at each resonance
values.

The purpose of this paper is to present mathematically more clear
and general methods to analyze the pattern of n-cycles bifurcating from
the origin by means of the theory of normal forms {5, 6, 7, 8, 9] and
the Liapunov-Schmidt method [10, 11].

Our bifurcation analysis can be compared with that of Hopf-bifurca-
tion [7], however, the assumptions on the linear part of a map are quite
different from each other. In the case of Hopf bifurcation, the complex
conjugate eigenvalues of the linear part of a map cross the unit circle
transversally as a parameter varies through 0, whereas in our case
those eigenvalues move along the unit circle due to the area-preserving
property of the map.

The main point of our analysis is that even if the normal form of an
area-preserving map may not be area-preserving, the orbits, especially
the n-cycles of the area-preserving map are locally diffeomorphic to
those of the normal form, because the nonlinear change of coordinates
leading to the normal form is a u-dependent local diffeomorphism.
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2. The Normal form of an area-preserving map

Consider a two-dimensional area-preserving map R? — R? of the
following form [12, 13]

'] _ [2c 1] |= f(z)
I vl by | R
where f(z) = 3 pe, arz’ is of class C™ and c is a real parameter.

For any ¢ € R, the origin is a fixed point of (2.1) and its stability is
determined by the eigenvalues

Ar=cEt V-1

of the linear part. Note that At - A_ = 1, in agreement with the area
preserving condition of (2.1). For |¢| < 1, the eigenvalues lie on the
unit circle, complex conjugate to each other and the origin becomes an
elliptic fixed point.

Introducing a new parameter ¢ € R by writing

ctivl-c?= eﬂ”i(a”“),

we have

(2.2) c=c{p) = cos2m(b + ),

where 6y = ™ with m and n relatively prime integers. Then, we can
n

rewrite (2.1) in the form

(23 o] =euam=a. 2]+ 75,

where

2cos2m(6p + 1)

Ap = Diz,5)Gp(0,0) = [ 1

-1 2%2
1 enoe

Let A(x) and A(u) be the eigenvalues of A, and let Ag = A(0). Then

we have

(2_4) )\(ﬂ) = e27ri(90+;t) — )\Oe2m'p.’ Ao = e21ri00.
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Notice that the eigenvalues move along the unit circle as g varies
through 0.

Now, we make a linear change of variables

e[ e

P 0 1

T | —sin2n(8p + ) cos2w(6g+p) |’
to put {2.3) in the standard form,
(2.6)

(2.5)

& _ | cos2n(6g + p) —sin2w(b+p)| [ €
[77'] =Flm= [sin27r(03+y) coszzr(ego—}— ) ] [n]

cot 27 (6 + p)}
1

3

+f(77)[

where F, = P71 -G, - P.
And again, by setting z = £ + ip and £ = £ — in in (2.6), we can
obtain the two-dimensional area-preserving map in complez form

A -z
(2.7) 2 =Fu(z)=MNp)z + Im()\'u(iz) -f(ZQz' ), F,:C—-C,

where A(it) = Aoe?™* = Xo(1 + 2mip + O(|¢|?)), and

z—Z ks z—Z k
(2.8) f(“zi”)zzak( 5 ) )

k=2

Let us write (2.7) in the form
(2.9) z' = Fu(2) = Mp)z + R(p, 2, 2),

where R(p,2,2) = Ro(p,2,2) + Rs(p,2,2) + .... with Ri(u,2,2) =
Zp+q=, Cpg(p)zP29,1 > 2. Then, from (2.8), the coeflicients cpq(p) are

given by

(2.10)
e20(u) = —Fmip), en(p) = Sml),  coa(ps) = —ZFmip),
. o .
czo(p) = 1?—nz(u), ca1(p) = ——g—zimw), crz(p) = 3%:3771(#),
co3(p) = —Eﬁm(#),

8
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with m(p) = M)/ Im Mp).
.Finally, we put (2.9) in a normal form by means of a pu-dependent

change of coordinates of the following form
(2.11) z=w+ P(p,w,w) = Ty(w),

- where
P(p, w, @) = Pa(p,w,®) + P3(p,w, @) + ..., and Pi(p, w, )
= D Ypg(mwra?, 22,

ptg=l

with a suitable choice of the coefficients 1p4{ ).
Then the new map in w becomes

w' = Fy(w) = (T, 0o F, 0 T, )(w).

According to the theory of normal forms for maps [5, 6, 7, 8, 9], we
can obtain the normal forms of Fy(z) as given in the following.

LEMMA 1. Let F,(z) = Mu)z + Ra(p, 2,2) + R3(u,2,2) +... with

Ri(u,z,2) = Z cpg(p)z?2z%, £>2 and
ptg=l

Mp) = Age?™*#,  wherehg = 2™,

Then there exists a p-dependent local diffeomorphism of the form
(2.11) which transforms the map F,(z) to the following normal forms:

(i) when 6 = §

Fu(2) = Mu)z + coa() 2 +m21(p)2°Z + nao(p)2* + ma(p)22° + O(J2[°)

If ¢g2(0) = 0, the term 2? can be removed in the normal form.
(1) when 6 =

Fu(z) = X(p)z + 121 ()22 + 103 (1) 2% + 1os(12)2° + ma()22* + O(|2]")
(i) when 8o =1 (n>5)

Fu(z) = Mu)z+n21(p) 22 24 00,51 (1) 2" +132(p)2* 2+ O(12]" +]2|™)
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The coeflicients n;j can be calculated from those of F,(z) as follows;
le11(0) + 20eo2(0) | _2M0 -1
1—-Ap /\(2) - XO Ao(1 — Ao)
c11(0)co2(0) | 2c02(0) - €20(0)
A2 - X2 -

721(0) = €21(0) + c11(0) - c20(0)

103(0) = co3(0) +

Furthermore, writing F,(2) = A(p)z + R(p,2,2), R(u,z,%) satisfies
R(u, Xz, 202) = MR(p, 2, %)

Proof. See [5], [6], [7]-
-As we meantioned in the introduction, the orbits of Fy(z) are locally

diffeomorphic to those of F,(z). Hence it is sufficient to examine the n-
cycles of F,(z). From now on, we write F,(z) for F,(z) for notational
simplicity.

3. The Liapunov-Schimdt method [7]

Assume that A§ = 1(6 = 1) for n > 3. Let z = (24,...,2,) € C"
be a n-cycle of the map F,(z), that is

Fy(zy) = 22
(3.1) Fu(z2) = 25
F#(xn) =

where F,(2) is in normal form as is given in Lemma 1. Let

Fu(z1) AMp)z1 + R(p, x1,71)
(3.2) Fulz) = =
Fu(zn) AMp)zn + R(p,Tn, Zn)
= Mu)z + R(p, 2, %),
and
0 1 0 ... 0
0 0 1 0
S=1...
0 0 1
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Then (3.1) can be written as
(3.3) Sz = Fu(z), (Fu € C>(C™,C"), Secgc™™m).

To diagonalize S, we make a linear change of coordinates

(34) y = Pxz, y=(v1,...,yn) € C",
where
11 1 1
P e T e
1 apl pMemD o ym=D(-D)

Then (3.3) is reduced to the equation
(3.5) Ay = PF,(Py),

where A = diag(1, Xg,...,A0"1).
If we define the map $ : C* x R — C* by

(36) ®(y,un) = PF.(P7'y) — Ay
= [Me)I — Aly + PR(p, P~ 'y, P~1y),

and let

(3.7) L = Dy®(0,0) = Aol — A = diag(Ao — 1, Ao — Ao, - - ., Ao —AF 1),

then, since Ag — A]™! = 0, L has rank n — 1, and kerL is a one
dimensional subspace of C" as

(3.8) ker L = {ynvnlyn € C, v, = (0,...,0,1)7 € C"}.

By writing
C" = ker L @ (ker L)*,

any y € C™ can be written as

(39) y=y,v,+ w, where v, €kerL and w € (ker'L)J' =ImL.
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Let E : C* — (ker L)* be the projection. Then, I — E : C* —
kerL, Ey= (y1,---,¥n-1,0)" = w, and (I — E)y = ypv,. Also, we
can easily notice that E,I — E and L commute each other. Conse-
quently, the equation ®(y, 1) = 0 is equivalent to the following pair of
equations

(3.10) { E®(ynvn +w,pu) =0 (a)

(I — EY®(yava + w,u) =0 (b)
Notice that (3.10) (a) is uniquely solvable for w as a function of (ya, i)

near (0, 0) by the implicit function theorem. Denoting w = w*(yn, &),
we can easily verify that [7]

W*(Yno i) = O(ellyn| + lynl?) .

(3.11) { w*(AgYn, ) = Aw*(yn, 1)

After substituting w*(y,,u) into (3.10) (b), we define a function « :
CxR— Cby :

(3.12) Y(Yn, ) = (I — E)®(ynVn + w*(Yn, #), ), Vn) -

Then, solutions (y, u) of ®(y, u) = 0 are locally one-to-one correspon-
dence to the solutions (y,,u) of ¥(yn, ) = 0 via the relation

(3.13) Y = YnVn + 0 (Yn, p)-
From (3.6), we have

Y(Yn,p) = ('I)(ynvn + w*(yn, N)a .u)vvn>

3.14 —_—
( ) = (’\(/") - ’\O)yn + <P,R'(/"aP_1y’P~ly)’vn> 3

where y is given in (3.13).

LEMMA 2. Let z = +y,. Then the equation Y(yn, ) = 0 is equiva-
lent to the following equation in C:

(315) Aoz = Fu(z) = /\(/-t)z + R(ﬂ, z, 2)7
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where F,(z) is in normal form.

Proof. Letting z = Ly, in (3.14), ¥(yn, ) = 0 becomes
1 P—
Aoz = A(p)z + ~ <PR(#, Py, P‘ly),vn> :

Recall that F,(z) = A(s)z + R(u, z, ), where R(u,z,z)( = Ry, 2,7)
+O(|2| ! )) is in normal form up to order r and hence R(u, Aoz, hoZ) =
XoR(y, 2, 7). From (3.2) and (3.4) we have
<PR(y,P-1y,ﬁy),vn> = R(u, z1,%1) + MoR(p, T2, %2) + ...
+ X0 R, Ty Zn),
where {z1,...,z,} is the n-cycle for the system (3.1) given by
ek = (P7'y) = [P (ynvn + 0™ (yn, 1))k

1—_k__1 . . 1 - (k=1)(n—-1
;Z,\( Y 1)‘lvj(yn,ﬂ)+;;/\0( "y,

=1

18 e

ISR e =3
n

Note that 1f we write

n—1

(316) =z =pu(z)=z2+— Zw (nz,p) = z + O(|lullz| + |2*),

]'—1
then the other n-periodic points z3,...,2, can be obtained from the
property (3.11) as

(3.17) 22 = 9u(X02), 23 = 9u(A22),. .., 2 = @u(AT T 2).
Then we have
R(p,21,1) = Bl 0u(2), 00(2))
= R, 2,2) + O(Jz™)
MoR(p, 22, 82) = XoR{pt, 0 (Moz), Bu(Ro2))
= XoR(s, Aoz + O(lullz] + [22), RoZ + O(lullz] + [=1%))
= R(p,2,2) + O()=™).
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Similarly, Al 7' R(g, 20, Zn) = R(p, 7, 2) + O(|z|"*}). Therefore
! -1, BT A . r+1
-~ <PR(H-,P y, P 1y),vn> = R(p,2,2) + O(|z|™).

Consequently, g(y,, ) = 0 is equivalent to

Moz = A(w)z + Rip,2,2) + O(|2 ™) = Fu(2)

Thus, our problem to find the n-periodic fixed points for the area-
preserving map F,(z) written in the normal form has been reduced to
solving the scalar equation (3.15) and the coordinates of the n-periodic
fixed points are given by (3.16) and (3.17).

4. Bifurcation Analysis of n-cycles [11]

(1) The case n = 3 and ay # 0

2w /3

In this case, Ay = ¢ and from the Lemma 1, we have,

(4.1) Fo(2) = M)z + coal )22 + O(2]"),

where A(p) = Ao(1 + pAy + O(|p}?)) with Ay = 27¢ and

az

(4.2) co2(0) = 5

Ao-

Then (3.15) becomes
pArz 4 Aoco2(0)2° + O(|uf|=| + lullz* +|2°) = 0.
Let = = re?™¥. Then we have,
pA 7™ 4 Aoeoa (012 4 gy, re IV pe=2TIP) = ),

where g1(p, 7e?™% re™2P) = O(|ul*r + |plr? +73).
Separating the trivial solution r = 0, we have

A1+ Aocoa(0)re ™™ + g(p, 7, 0) = 0,
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or
(4.3) 2rip — 2356_6"in +g(u,r,9) =0,
where

g(ﬂ’ r, <p) = T—le—‘Zm‘cpgl(P, 7.6211'1'4;3, ,’_e-—21ricp)

= O(uf? + lulr +12).

Note that g(g,r,¢) has the following property

1
g(p,mye + 5) = g(/_z,f, sé)-
Now, if we set

{ r= 47r\/?_>|f;|(1 +71)

(44) 1 in 1
p=¢o+p1, po=—gzarg(E£) (mod3),

substituting (4.4) in (4.3) and simplifying (4.3), we have
p— pe ST (1) + g(ﬂ,47r\/§lf—2|(l +71), 0+ 1) =0.

Set
h(p,r1,01) =1 — e "% (1 4+ 11) + g2(, 71, 01),

where g2(s,71,91) = 17 91,47V (L4 1), 0 + 1) = Ol

Since
k(0,0,0) = 0, S—Z(O, 0,0) = -1, %’1-(0, 0,0) = 6n1,
by the implicit function theorem, we have
ri=ri(u), T(0)=0, o1=ei(u), @i(0)=0.
Consequently, we have
{ r = 4rV3|L| + O(|ul?)

(4.5) 1 ; 1
¢ =—gzarg(e;) +O(|lp])  (mod 3).
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and the coordinate of the 3-periodic points for the area-preserving map
F,(z) in normal form is given, from (3.16), (3.17), (4.5), by

21 = pu(2) = 2(p) + O(ullz] + [2]?)
= r(p)e™ ) + O(|ul?)

(4.6) § =4nVBlE|eEve + O(lp),

T2 = pu(Aoz)

\ I3 = 1,9“(/\32),

where g = —g%arg(%) and \g = e27i/3,

Notice that as p varies from p < 0 to ¢ > 0, arg(gi) changes by «,
2

and hence the orientation of the 3-cycle is reversed as u crosses 0 (Fig.
1).

Also note that the 3-cycle of the original area-preserving map (2.9)
1s given in the same form as in (4.6), since, for ¢ near 0, the original
map (2.9) is transformed to the normal forms via the near-identity
transformation of the form (2.11).

To examine the stability of the 3-cycle for the map

Fi(2) = Mp)z + coz2(p)2* + O(|2*),
we consider the map
F(z) = [1 4 3pd1 + O(Juf*)}z + 3e02(0)202> + O(lul|z[* + |2I*).

Then, we can easily see that one of the eigenvalues of the Jaco-
bian B(Fz(z),Fﬁ(z))/a(z,S) at one of the 3 fixed points in (4.6) is
outside the unit circle and the other inside it, so the 3-cycle is hyper-
bolic(saddle) on both sides of u = 0.

We can summarize the above results in the following theorem.

THEOREM 1. Let F, : C — C be the map in complex form given
in (2.7) and assume that A} = 1(\g # 1) and a; # 0. Then, a one-
parameter family of 3-periodic fixed points {(z1(u),z2(p), z3(p))|p €
R} undergoes transcritical bifurcation from the origin (elliptic fixed
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point) and reverses the orientation as y crosses 0. The 3-periodic points
are given by

z1(p) = r(p)e*™ ™ + O(|ul?)
22 (i) = r(p)e?™ WD L O(|uf?)
z3(p) = r(p)e?™ WD) | o(ju)?),

where
(k) = 4mV3I |+ O(1l?)

o) = —gzarg(E) + O(lul)  (mod 3)

and they are hyperbolic (saddle) on both sides of u = 0.

(ii) The case n =3 and az =0

In this case, ¢pq (1) = 0 for all p, ¢ with p+¢ = 2 and from Lemma 1,
we have the normal form,

(47)  Fu(2) = Mp)z + a(p)2®z + B(p)z* + v(p)22° + O(J2]°),

where the coefficients g = «(0), By = 8(0) and v = v(0) are given by

( 3tas A 3
ap = c21(0) = — 28ag Imvo = -{203/\0
A
(4.8)  Bo=ca(0)= %é‘ ImOAO = -——‘8?;3-/\0
a4 Ao as
[ o=asl0)=—F 5 = _2\/:7,)‘0

Eq. (3.5) becomes

(49) Az + 5\0&0225 + /_\Qﬂ024 + X()")/QZZ3
+O(lul |zl + lullzl + |pll=l* + 121%) = 0.
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Let z = re?™%. Then,
pArre?™? 4 Noagrie? v 4 XoBorted ™ 4 XoyorietTi¥
+O(ul’r + |plr® + [plr* +7°) = 0.
Separating the trivial solution r = 0,

pA1 + Aoaor? 4 XoBortet ™ 4 Noyorie T
+ O(ul* + |ulr? + |uir® + %) = 0.

or

: 3t a ; a —6mi
(4.10) 27rzlu—-£—-a37‘2+ L_p3ebmiv . 230wy

4 8./3 23

+ Ol + |plr? + el + vty = 0.

Set

(4.11)

y

{ 4= por? 4+ pard + por’
Y=o+ i1

where pg, 1, 2,90 and @1 are to be determined.
Substituting (4.11) into (4.10),

\/5 a4 ;
2mi(por? + uyrd + par’) — Yiagr? 4+ —=r3ebTi
(1o K1 par®) — —iay 55
a4

rle~0miv 4 O(r4) =0.

__2\/5

First, choose pg so that 2meipg — 34@ia3 = 0, then

(4.12) fo = ﬁag.
8

With this choice of pg., we have

a4

8v/3

(4.13) 27 + (™ — 46_6"“0)]7‘3 -+ 27ri,u2r3 + O(r4) = 0.
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Next, we choose y; and ¢p so that

a4

2mipny + e8P0 _ ge—0mivo) = (),
H1 8\/5( )

Note that since y; and a4 are real, es’""”.— 4e~%™%0 must be pure
imaginary and this happens only when e5™*¢? is pure imaginary, that
is,
s
6mpg = :i:-§ (mod 27)

or
@ _ 1 1
(4.14) Yo = :l:12 (mod 3).
_w_1
Hpo=¢py = 5 then
5a4
4.15 =M =2
_.@_ 1
Hpo=¢; = 1’ then
(2) _ _9a4
4.16 2%
(4.16) p=p =
Now, from (4.13), we let
bz, @,7) = 2mipy + 8‘1;5@6""*’ — 4e75™9) 4 2mip, + O(r).
Then,
h(Ov 99070) =0
Oh _
—‘(0, (,90,0) =271
Ous
9 0, 00,0 = - . 3mi(eSmiv0 4 ge~Smivo) — £ T2 g
a(p ? ? 4\/5 4J§ 9
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and by the implicit function theorem, we know that ps = pa(r), ¢ =
p(r) and p2(0) = 0, ¢1(0) = 0. Thus, we have g pair of 3-cycles
z = re?™%(") where r is regarded as a parameter which is related to p
as

p) = -‘£a312 16&/5“47‘3 +O(rt)
W =L 1 0(r) (mod3)

/4(2) = £a31‘ + —7a4r + (9(1'4)
P =—H+0(r)  (mod )

(4.17)

Note that if ag > 0, 4 must be greater than 0 and we have a super-
critical bifurcation and if a3 < 0, ¢ must be less than 0 and have a
subcritical bifurcation (Fig. 2).

To study the stability of the pair of 3-cycles for the map
Fu(2) = Mu)z + a(p)2*z + B(p)z* +1(p)22° + O(|2]),
we examine the eigenvalues of the map

Z = Fa(z) (14 3pA1)z + 3hoap2z’z
(418) + 3)\0ﬂoz + 3/\0’)’022
+ Ozl + 1pllzf + Jull=l* + 12°) = 0.

Let 01,0 are the eigenvalues of the Jacobian A = 9(2',%')/0(z,%) at
one of the 3 fixed points x of one family for Fg(z) If we assume that
we used an area-preserving transformation of the form (2.11), then we
can easily check that if agay > 0, o, and o, are real and reciprocal for
p = p'?, and o, and 0y are complex conjugate on the unit circle for
p = pM . If azay < 0, the situation is reversed.

Therefore, we can state the following theorem.

THEOREM 2. Let F, : C — C be the map given in (2.7) and assume
that \3 = 1()\0 # 1) and a; = 0. Then a pair of two one-parameter
families of 3-periodic fixed points

{@P(r), 2 (r), e (r)lr e RTY (1 =1,2)
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bifurcate from the origin on the same side of p = 0. Ifas >0, or <0
we have a supercritical or subcritical bifurcation respectively. Those
3-periodic points are given by

.’L'gj) — ng)(r) — TCZWi‘P(j)(T) + 0(7-2)
2 = 2P (r) = r2 @O+ | O(r?)
z:(;j) = zgj)(r) = re2 e DM+ | O(r?) forj =1,2.
where r is related to p as in (4.17).
Moreover, those 3-periodic points with smaller r is hyperbolic (sad-

dle) and those with larger r is elliptic.

(iii) The case n = 4

Let Xo = ?™/4 = 1.
Then the normal form of F,(z) is

(419)  Fu(z) = Mu)z + a(w)22 + B(u)2* + O(|2P),

where a(0) = ap and §(0) = f, are related to the coefficients of the
original equation as follows

g = %(Sag +a3)
fo = (a5 — ).
Then eq. (3.15) becomes
(4.20) 2mipz + 1222 + ¢22° + g1(p, 2,2) = 0,
where
c1 = Ao = 'é(3a3 +a3)

Ca = xoﬂo = —é—(a% - ‘13)

g1(1,2,2) = O(lu*lz| + ||zl + |2I°).
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Setting z = re?™¥ and separating the trivial solution r = 0, we have
(4.21) 2mip + c1r? + cor?e ¥ 4 g(p, ) = 0,

where g(p,7,¢) = O(|ul? + |u|r? + ).
To look for the principal part, put

{ p= por® + pr?

(4.22)
p =0+ ¥

where po, p1, 0 and ; are to be determined.
Substituting (4.22) in (4.21) and dividing by r?, we have

(4.23) (27ipo + c1 + c2e~8) 4+ 2mipy + fi(pa, 7 ) =0,

where fi(u1,7,9) = O(r?). We choose uo and g so that
2mipg + ¢ + cae87vo —

If c; #0,i.e. a3 # a3, we have

: 2
e—87ipo _ 2mpg _ % + 3a; — 16w pg
C2 a% — as

Since e~87*° must be real, we must have

(4.24) Yo = 90((,” =0 or o= go(()?) = % (mod %),
and for each value of g, uo can be determined as
(4.25) Ho = ug” = -Z—:r- for 99((]1) and
2
#0==ﬂ9)::g£é££2 for §”.

If c; =0, ie., a3 = a2, we have one solution for o

ci 3a3 + a%
4.2 -0 _Jsta
(4.26) M=o 167
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However, this is not the generic case. Furthermore, if we define h(p1, 7,
) as following

h(p1,7,¢) = (2mige + 1 + coe ™) 4+ 2mips + fi(p1,71,9),

we have
h(07 0, ‘PO) =0
oh .
5—;;(0, 0,0) = 272
oh

%(0,0,500) = —871'1:626_8“‘”

= +n(a3 — a3) (& according as p¢ = <pgl) or tp((,z)),
and hence the implicit function theorem is applicable only if a3 # as.
Thus, in this generic case, from the evenness of fi(ui,7,¢) in r, we
have

p=p(r)=00?), o1 =pi(r)=0(r).
Therefore, generically we have two one-parameter families of 4-cycles,
z = z(j)(r) = re2miet)(r) (7 = 1,2), bifurcating from the origin, and
the parameters ¢ and r are given as

D = g1+ 0(r%)
(4.27) () () 2

eV =g’ +O(r%)
where ,u((,j) and ‘ng ) (J = 1,2) are given in (4.24) and (4.25). Notice
from (4.25) that if a3 > 0 or a3 < —a2, then ,uél)pgz) > 0, so the two

families bifurcate on the same side of p = 0 (supercritical if a3 > 0 and

subcritical if a5 < —a3).  —a} < a3 < 0, then ,ugl) < 0 and #(()2) >0,

so the two families bifurcate on the opposite side of u = 0 (Fig. 3).
To study the stability of the 4-cycles for the map (4.19), we consider

the map
(4.28) 2 =Fp(z) = Mp)'z +4c12%2 + 4c22° + O(lullz)® + |2P).

If oy and o, are the eigenvalues of the Jacobian A = 9(2',2')/0(z, Z)
at one of the 4 fixed points « of one family for F,(2) and also if we
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assume that we used an area-preserving transformation of the form
(2.11) then we can easily see that i) o; and o2 are complex conjugate
on the unit circle for u® if a3 > a3 or a3 < —a2, and also for u'V
if 0 < a3 < a?; ii) o1 and o3 are real reciprocal each other for u(?) if
az > a3 or a3 < ~a2, also for u® if 0 < a3 < a2, and for both p
and p® if —a? < a3 < 0.

From the above results, we can state the following theorem.

THEOREM 3. Let F,, : C — C be the map given in (2.7) and assume
that A§ = 1(Xo # 1) and a3 # 0. Then, generically we have two one-
parameter families of 4-periodic fixed points {zgj)(r),xg])(r),xg])(r),
xi’)(r)lr € RY, j = 1,2} bifurcating from the origin and those 4-
periodic points are given by

o) = 2 (r) = p 2 T L O%) (G =1,2,k = 1,2,3,4).
where the parameter r is related to u as in (4.27).

Moreover, if a3 > 0 or az < —a3, then the two families bifurcate
on the same side of u = 0 and one family with smaller r is hyperbolic
(saddle) and the other with larger r is elliptic. If —a% < a3 < 0, then
the two families bifurcate on the opposite side of p = 0 and both are
hyperbolic (saddle).

(iv) The case n > 5

when Ao = €2™/"(n > 5), the normal form of F,(2) is
(4.29) Fyu(2) = Mp)z+a(p)=224B(p) 2" +4(p)2° 2+ O(|2]" +2|™)

and the coefficient a(0) = ag can be computed from (2.12) as

2
o0 =~ iy [Bos tmao - of - Lt DL R0 2D,
Since
Mo+ 12N+ A0 +2) Ao +1 A +1
AN :/\0—1( ,\g+,\0+1)

:/\Q+1 14 11
)\0*1 1+)‘0+/\0

1+ 4 cos 2=
z——icotzm—i———-i—';; (n 2 5),
n 1+2cos—n—
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ag can be rewritten as
(4.30) ag = Aoté, (n > 5),
where

1 2 s 1+4cos-21>
4.31 = —— — {6 2. 2 .. =n n > 5).
( ) &a 16cSc n (a3+a2 e8¢ n 1+2cos%" (n25)

Notice that (4.30) also covers the case n = 4.
The bifurcation equation (3.15) becomes

(4:32) 2mipz+e12?24ca 2" 1+ O(|uf |2+ ull2P +pllz* ! +27) = 0,

where G = /_\oao = an, C2 = 5\0,@0.
Setting z = re?™% and separating the trivial solution r = 0, we have

(4.33) 2mip+i€,r? +ear™ eI L O(|ul2 +plr? +|plr 2 +r*) = 0.

For n = 5, we set

(4.34)

?

{ p= por® + pr® + por?
Y=o+

and take pg as

€5
4. =~z
(4.35) Ko o
- Then (4.33) becomes
(4.36) 2mipy + coe 10" 4 2mip, + O(r) = 0.

Now assume that ¢; # 0. Then we can take y; and ¢ such that
27(i[L1 + Cge—loﬂ‘m‘ =0,
that is,

(437) { o

Yo = 1—017{‘”'9('2‘%. (mod %) '

(2]
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From (4.36), we define

h(pa,o,7) = 2mip + c2e™ 107 4 Omips + O(r).

Then,

h
h(0, 00, 0) = 0, fz-(o 0,0) = 23,

Oh ,
5;«L¢m0y=—4mdq54“W°=1oﬂql¢o.

Hence, by the implicit function theorem, we have

=pa(r) = O(r), = p1(r) = O(r).

Therefore we have a one-parameter family of 5-cycles bifurcating from
the origin, given by

—_ __§_§_ 2 3 4
(4.38) {” T 00 -
SO = ]01rarg 21”) + O(T) (mOd 3-)

For n > 6, we set

H= —'éirz +}l17'4,
27

and can proceed as before by imposing more conditions on the coeffi-

cients of the higher order terms.
Thus, we have the following theorem.

THEOREM 4. Let F,, : C — C be the map given in (2.7) and assume
that

A=1  (l#%£l) (n>5)

Then, generically, we have a one-parameter family of n-periodic fixed
points bifurcating from the origin.
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@,>0, u>0) (@,>0, p<0)

Fig. 1. The bifurcation diagrams and the positions of the 3 - periodic fixed

points for 9°=—:1,,- and a,#0

o

Z, for u= e

a,>0, a,>0
z, for p=p?

Fig. 2. The bifurcation diagrams and the positions of the 3 - periodic fixed

points for 9(,:% and a,=0
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a) r
o
e
H
Z:‘) for ¢= qf”
> 2
4> 4 Zi for o= ¢
u>0
b) r
ra
u®
H
Z for = ¢
0< a < é Z:Z) for o= (P(Z)

H>0



114 Yong In Kim, Eok Kyun Lee

c)
r
ue
o
Jii
4<-4
d) r
e e = . Z:l)
# \‘~‘ i 7
Z:n for ¢= (pm
<0
~&<a<0 H
lx' ‘X‘
’ o,
i Z3
‘sx‘ "x”
Ziz) for o= ¢*

u>0

fixed points

Fig. 3. The bifurcation diagrams and the positions of the 4 - periodic



10.
11.

12.
13.

The subharmonic bifurcation in area-preserving maps 115

References

. Mackey. R., Renormalization in area preserving maps, Ph. D. thesis, Princeton

(1982).

. Zisook. A., Intermittency in area-preserving mappings, Phys. Rev. A25(1982),

2289-2292.

. Van Der Weele. J., Capel. H., Valking. T. and Post. T., The squeeze effect in

non-integrable hamiltonian systems, Phys. A147(1988), 499-532.

. Meyer. K., Generic bifurcation of periodic points, Trans. AMS, 149(1970),

95-107.

. Arnold. V., Geometrical Methods in the Theory of Ordinary Differential Equa-

tion Springer, NY. 1983.

. Siegel. C. and Moser, J., Lectures on Celestial Mechanics, Springer, NY.
. Ioose. G., Bifurcation of Maps and Applications, North-Holland. 1979.
. Guckenheimer. J. and Holmes. P., Nonlinear Oscillations, Dynamical Systems

and Bifurcations of Vector Fields, Springer, NY. 1983.

. Cushman. A., Deprit. A. and Mosak. R., Normal forms and representation

theory, J. Math. Phys., 24(1983), 2102-2117.

Chow. S. and Hale. J., Methods of Bifurcation Theory, Springer, NY. 1982.
Golubitsky. M., Stewart. 1., Schaefter. G., Singularities and Groups in Bifur-
cation Theory, I & 11, Springer, NY. 1988.

Schuster. H., Determinstic Chaos, an Introduction, VCH, P.17. 1988.
Lichitenberg. A. and Lieberman. M., Regular and Stochastic Motion, Springer,
NY. P.422(1983).

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea

Department of Chemistry
Korea Advanced Institute of Science and Technology
Taejon 305-701, Korea





