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THE SUBHARMONIC BIFURCATION

IN AREA-PRESERVING MAPS

YONG IN KIM· AND EOK KYUN LEE"

1. Introduetion

Many authors [1, 2, 3] have studied two-dimensional area-preserving
maps as typical discrete versions of nonintegrable autonomous Hamil
tonian systems with two degrees of freedom or nonautonomous sys
tems with one degree of freedom. In particular, Van der Weele [3]
has performed a bifurcation analysis based on Meyer [4] to prove the
appearance of n-cycles from the elliptic fixed point at each resonance
values.

The purpose of this paper is to present mathematically more clear
and ~eneralmethods to analyze the pattern of n-cycles bifurcating from
the origin by means of the theory of normal forms [5, 6, 7, 8, 9] and
the Liapunov-Schmidt method [10, 11].

Our bifurcation analysis can be compared with that of Ropf-bifurca
tion [7], however, the assumptions on the linear part of a map are quite
different from each other. In the case of Ropf bifurcation, the complex
conjugate eigenvalues of the linear part of a map cross the unit circle
transversally as a parameter varies through 0, whereas in our case
those eigenvalues move along the unit circle due to the area-preserving
property of the map.

The main point of our analysis is that even if the normal form of an
area-preserving map may not be area-preserving, the orbits, especially
the n-cycles of the area-preserving map are locally diffeomorphic to
those of the normal form, because the nonlinear change of coordinates
leading to the normal form is a l1-dependent local diffeomorphism.
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2. The Norn'lal form of an area-preserving map

Consider a two-dimensional area-preserving map R 2 --+ R 2 of the
following form [12, 13]

(2.1)

where f(x) = L:~2 akxk is of class Coo and c is a real parameter.
For any c E R, the origin is a fixed point of (2.1) and its stability is
determined by the eigenvalues

of the linear part. Note that A+ . A_ = 1, in agreement with the area
preserving condition of (2.1). For lel ::; 1, the eigenvalues lie on the
unit circle, complex conjugate to each other and the origin becomes an
elliptic fixed point.

Introducing a new parameter J.l E R by writing

we have

(2.2) c = c(J.l) = cos 27r(80 + J.l),

where 80 = m with m and n relatively prime integers. Then, we can
n

rewrite (2.1) in the form

(2.3)

where

[
XI] [X] [f(X)]y' = Gp.(x,y) == Ap.. y + 0 '

A = D G (0 0) = [2 cos 27r(80 + J.l)p. (x,y) p. , 1

Let A(J.l) and ~(fl) be the eigenvalues of Ap. and let AO = A(O). Then
we have

(2.4) \ _ e21l"i90
/\0 - •
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Notice that the eigenvalues move along the unit circle as f-l vanes
through O.

Now, we make a linear change of variables

where

- sin 27r(80 + f-l)] [~]
cos 27r(80 + f-l) 7J

(2.5)
p=[ 0

- sin 27r(80 + f-l)

to put (2.3) in the standard form,

(2.6)

[e] = F (, ) = [cos 27r(80 + f-l)
r/ J.l' 7J - sin27r(80 + f-l)

+ 1(1]) [cot 27r(io + f-l)] ,

where FJ.l = p-l . GJ.l· P.
And again, by setting z = , + i1] and z = , - i1] in (2.6), we can

obtain the two-dimensional area-preserving map in complex form

(2.7) z' = FJ.l(z) = )..U1)z + I~~~) . 1 (Z ~ z), FJ.l: C -+ C,

where )..(f-l) = )..oe21ri J.l = )..0(1 + 27rif-l + 0(1111 2
)), and

(2.8) (z-z) ~ (Z_Z)k1 ~ = L...Jak -2'-
_1 k=2 1

Let us write (2.7) in the form

(2.9) z' = FJ.l(z) = )..(f-l)z + R(f-l, z, z),

where R(f-l, z, z) = R2(f-l, z, z) + R3(f-l, z, z) + .... with Rl({l, z, z) =
L,p+q=l cpq(f-l )::p:zq, I ~ 2. Then, from (2.8), the coefficients cpq(f-l) are
given by
(2.10)

a2 a2
C20(f-l) = -7 777 (p), Cll(f-l) = 2"m(p),

ia3 3ia3
C30(f-l) = sm(p), c2I(p) = --8- 771 (11),

U 13
C03(f-l) = -sm(p),
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with m(p.) = A(P.) / Im A(P.).
.Finally, we put (2.9) in a normal form by means of a p.-dependent

change of coordinates of the following form

(2.11)

where

Z = '1.0 + 1P(p., '1.0, ill) == T/L(w),

1P(p., '1.0, ill) = 1P2(P., '1.0, ill) + 1P3(P., '1.0, ill) + ... , and 1Pl(P., '1.0, ill)

= L 1Ppq(p.)wPill
q,f ~ 2,

p+q=l

with a suitable choice of the coefficients 1Ppq(p.).
Then the new map in '1.0 becomes

'1.0' = F/L( '1.0) = (T;;1 0 F/L 0 T/L)( '1.0).

According to the theory of normal forms for maps [5, 6, 7, 8, 9], we
can obtain the normal forms of F/L(z) as given in the following.

LEMMA 1. Let F/L(z) = A(P.)Z + R2(p., Z, z) + R 3(p., Z, z) +... witb

Rl(p., z, z) = L cpq(p. )zPzq, f ~ 2 and
p+q=l

A(P.) = Aoe21ri/L, wbereAo = e21ri60.

Then there exists a p.-dependent local diffeomorpbism of tbe form
(2.11) wbicb transforms tbe map F/L(z) to tbe following normal forms:

(i) wben 00 = t
F/L(z) = A(P.)Z + C02(p.)Z2 +1]21 (p. )z2Z+1]40(P. )Z4 + 1]13(P.)zz3 +O(lzIS)

IfC02(0) = 0, tbe term Z2 can be removed in tbe normal form.
(ii) wben 00 = t

F/L( z) = A(P.)Z + 1]21 (p. )z2Z+ 1]03 (p.)z3 +1]OS(p.)zS + 1]14(P. )zz4 +O(lzI7)

(iii) wben 00 = ~ (n ~ 5)

F/L(z) = A(P. )Z+1}21 (p. )z2 z+1]0,n-1CU )zn-1 +1]32(P. )Z3 Z2 +O(lzI7+Izln
)
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The coefficients 1]ij can be calculated from those of FtJ(z) as follows;

ICll(OW 21co2(OW 2>'0 - 1
1121(0) = C2l(0) + 1 _ ,xo + >'5 _ >'0 + >'0(1- >'O)Cll(O). C20(0)

(0) - (0) Cll(0)C02(0) 2C02(0) . C20(0)
1}03 - C03 + \2 \ + \2 \ .

1\0 - 1\0 1\0 - 1\0

Furthermore, writing FtJ(z) = >'(Il)z +R(Il,z,z), R(Il,z,z) satisfies

R(Il, >'oz, 'xoz) = >"oR(Il, z, z)

Proof. See [5], [6], [7].

As- we me:c.tioned in the iD.trodllction, the orbits of Fj'{z) .are locally
diffeomorphic to those of FtJ (z). Hence it is sufficient to examine the n
cycles of FtJ(z). From now on, we write FtJ(z) for FtJ(z} for notational
simplicity.

3. The Liapullov-Schimdt method [7]

Assume that >'0 = 1(80 = ~) for n ~ 3. Let x = (XI, ... , Xn) E en
be a n-cycle of the map FtJ(z), that is

FtJ(xt} = X2

FtJ(X2) = X3

FtJ(x n ) = Xl

where FtJ(z} is in normal form as is given in Lemma 1. Let

and

S~[I
1 0
o 1

o 0
o 0
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Then (3.1) can be written as

(3.3) Sx = .rll(x),

To diagonalize S, we make a linear change of coordinates

(3.4) y=Px, Y = (Yl' ... , Yn) E en,

where

p=
A2(n-l)

o

Then (3.3) is reduced to the equation

(3.5)

where A = diag(l, >'0, ... , >'~-l).
If we define the map iP : en x R --+ en by

(3.6)
iP(Y,JL) = p.rIl(P-1y) - Ay

= [A(JL)I - A]y + PR(JL, P-1y, P-ly),

and let

(3.7) L == DyiP(O, 0) = AoI -A = diag(Ao-1,Ao-).0, ... ,Ao->'~-l),

then, since Ao - ).~-l = 0, L has rank n - 1, and ker L is a one
dimensional subspace of en as

(3.8) ker L = {ynvnlYn E e, Vn = (0, ... ,0,1)TEen}.

By writing
en = ker L EEl (ker L).L,

any y E en can be written as

(3.9) y = YnVn + w, where Vn E kerL and w E (kerL).L = ImL.
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Let E : en -+ (ker L).1. be the projection. Then, I - E : en -+
ker L, Ey = (Y!, ... , Yn-!, 0) T = w, and (I - E)y = YnVn' Also, we
can easily notice that E, I - E and L commute each other. Conse
quently, the equation ~(y, p,) = 0 is equivalent to the following pair of
equations

(3.10) {
E~(Ynvn + w,p,) = 0 (a)

(I - E)~(Ynvn +w,p,) = 0 (b)'

Notice that (3.10) (a) is uniquely solvable for w as a function of (Yn, p,)
near (0, 0) by the implicit function theorem. Denoting w = W*(Yn,P,),
we can easily verify that [7]

(3.11) {
W:(Yn, p,) = O(IP,I~nl + IYnI

2
) •

W (>"OYn,P,) = Aw (Yn,P,)

After substituting w*(Yn'P,) into (3.10) (b), we define a function, :
CxR-+Cby

(3.12)

Then, solutions (Y, p,) of ~(y, p,) = 0 are locally one-to-one correspon
dence to the solutions (Yn, p,) of ,(Yn, p,) = 0 via the relation

(3.13)

From (3.6), we have

(3.14)
,(Yn, p,) = (q>(Ynvn + w*(Yn, p,), p,), vn)

= (>..(p,) - >"O)Yn + (rR(p"p-1y,P-1y),vn) ,

where Y is given in (3.13).

LEMMA 2. Let z = ~Yn' Then the equation ,(Yn, p,) = 0 is equiva
lent to the following equation in C:

(3.15) >"Oz = FJL(z) = >"(p,)z +R(p"z,z),
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(k=1,2, ... ,n).

(3.16)

where Fp.(z) is in nonnal fonn.

Proof. Letting Z = ~Yn in (3.14), i(Yn, Il) = 0 becomes

1 ( -1 - )AOZ = A(Il)Z +;; PR(Il, P y, P-ly), V n .

Recall that Fp. (z) = A(Il)z + R(Il, z, z), where R(Il, z, z) ( = R(Il' z, z)

+O(lzjT+l») is in normal form up to order r and hence R(Il, AoZ, )'oz) =
AoR(Il, z, z). From (3.2) and (3.4) we have

( PR(Il, p-lY, p-l y), vn) = R(Il, Xl, Xl) + ),oR(p., X2, X2) + ...
+ ),~-l R(Il, Xn, xn),

where {x}, ... , x n } is the n-cycle for the system (3.1) given by

Xk = (P-lY)k = [P-l(Ynvn + w*(Yn,Il»]k
n-l

1 L ,- (k-1)(j-1) *( ) 1 ,- (k-1)(n-1)
= - AO 'Wj Yn,1l + -AO Yn

n nj=l
n-1

1 '" ,- (k-1)(j-1) *( ) + ,k-1= - L-J AO W j nz, Il AO Z
n.

]=1

Note that if we write
1 n-1

Xl = 'Pp.(z) == Z+ - L wJ(nz, Il) = Z + O(lllllzl + IzI2
),

n.
J=l

then the other n-periodic points X2, ... , Xn can be obtained from the
property (3.11) as

(3.17) X2 = 'Pp.(AoZ),X3 = 'Pp.(A~z),. ",Xn = 'Pp.(A~-lz).

Then we have

R(Il,X1,Xl) = R(Il,'Pp.(z),'Pp.(z»

= R(Il, z, z) + O(lzl r+1
)

),oR(Il,X2,X2) = ),oR(Il,'Pp.(Aoz),<pp.(Aoz»

= ),oR(p., AoZ + O(!llllzl + IzI 2), ),oz + O(lllllzl + Iz1 2»
= R(Il, z, z) + O(lzl r +1).
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Consequently, g(Yn, J.l) =°is equivalent to
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Thus, our problem to find the n-periodic fixed points for the area
preserving map FIL ( z) written in the normal form has been reduced to
solving the scalar equation (3.15) and the coordinates of the n-periodic
fixed points are given by (3.16) and (3.17).

4. Bifurcation Analysis of n-cycles [11]

(i) The case 11 = 3 and a2 =1= 0

In this case, Ao = e
2rri

/
3 and from the Lemma 1, we have,

(4.1 )

(4.2)

Then (3.15) becomes

aZ
coz(O) = - j.)Ao.

2v3

Let z = r·eZrri.p. Then we have,

where gl("., re2rrl'P, re- 2rri
.p) = O(IJ1.1 2 r + 1".11'2 + 1'3).

Separating the trivial solution l' = 0, we have

pAl + '\ocoz(O)n-6rrl
'f' + g(p,1',cp) = 0,
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(4.3)
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'). ~ -61ri<p + ( ) - 0
~7rlP - Me r 9 J..l, r, 'P - ,

2v3

g(iJ" r, 'P) = r-1 e -21ri<pgl (p, re21ri<p, re -21ri<p)

= O(IJ..l1 2 + 1J..llr + r2).

Note that g(J..l' r, 'P) has the following property

1
g(J..l' r, <p + '3) = g(J..l' r, 'P).

Now, if we set

(4.4)
(mod t),

substituting (4.4) in (4.3) and simplifying (4.3), we have

p - J..le-61ri
<Pl (1 + rl) + g(J..l, 47rV31 £.. 1(1 + rI), 'Po + <pI) = 0.

a2

Set
h(J..l, rI, 'PI) = 1 - e-61ri

<Pl (1 + rl) + g2(P, rI, 'Pd,

where g2(J..l, rI, <pI) = J..l-l g(p, 47rV31£.. 1(1 + rI), 'Po + 'PI) = O(lpl)·
a2

Since

h(O, 0, 0) = 0,
8h
-8(O,O,Q) = -1,

rl 8
8h (0,0,0) = 67ri,

<PI

by the implicit function theorem, we have

Consequently, we have

(4.5)
{

r = 47rV31-!;1 :+- O(lJ..l12
)

'P=-6
I
1r arg(;;)+O(lpl) (modi)·
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and the coordinate of the 3-periodic points for the area-preserving map
Fp.(z) in normal form is given, from (3.16), (3.17), (4.5), by

(4.6)

Xl = 'Pp.(z) == z(p) +O(lpllzl + Iz12
)

= r(p)e21ri <p(p.) + 0(lpI2)
= 47rV311; le21ri <Po + 0(lpI2),

.T2 = 'P1'(Aoz)

X3 = 'Plt{A5z),

where 'Po = - 611rarg( 1!;) and Ao = e21l:i/3. .

Notice that as p varies from p < 0 to P > 0, arg( ZJ.l) changes by 11",
a2

and hence the orientation of the 3-cyde is reversed as p crosses 0 (Fig.
1).

Also note that the 3-cycle of the original area-preserving map (2.9)
is given in the same form as in (4.6), since, for p near 0, the original
map (2.9) is transformed to the normal forms via the near-identity
transformation of the form (2.11).

To examine the stability of the 3-cycle for the map

we consider the map

Then, we can easily see that one of the eigenvalues of the J aco
bian o(F;(z),P;(z))/o(z,=) at one of the 3 fixed points in (4.6) is
outside the unit circle and the other inside it, so the 3-cycle is hyper
bolic( saddle) on both sides of p = O.

We can summarize the above results in the following theorem.

THEOREM 1. Let Fll : C ~ C be the map in complex form given
in (2.7) and assume that Ag = l(Ao i= 1) and a2 i= O. Then, a one
parameter family of 3-periodic fixed points {(Xl (p), X2(p), x3(p»Ip. E
R} undergoes transcritical bifurcation from the origin (elliptic fixed
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point) and reverses tbe orientation as J.l crosses O. Tbe 3-periodic points
are given by

Xl(J.l) = r(J.l)e21ri<p(P) + O(lJ.l12
)

xZ(J.l) = r(J.l)e21ri(<p(pH!) + O(IJ.l1 2 )

X3(J.l) = r(J.l)eZ1ri(<p(pHi) + O(IJ.l12 ),

wbere

r(J.l) = 47rV31£'\ + O(IJ.lIZ)
az

"P(J.l) = _J:.-arg(iJ.l) + O(IJ.l1)
67r az

1
(mod 3)

and tbey are byperbolic (saddle) on botb sides of J.l = O.

(ii) The case n = 3 and az = 0

In this case, cpq(p) = 0 for all p, q with p+q = 2 and from Lemma 1,
we have the normal form,

where the coefficients 0:0 == 0:(0), (30 == (3(0) and ")'0 == ")'(0) are given by

(4.8)

Eq. (3.5) becomes

(4.9) - 2 - 4 - 3
J.l AI Z + AOO:OZ Z + Ao{30Z + AO")'OZZ

+ O(lltlZlzl + 1J.lllzl3 + 1J.lllzl4 + Iz15) =o.
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Let z = re21ri
<.p. Then,

p>'1 re21ri
<.p + >'0 fro 7,3 e 21ri

<.p + >'0 f3or 4e81ri'l' + >'0/'or4 e-41ri 'l'

+ O(lpl2r + Iplr3 + Iplr4 + r 5
) = o.

Separating the trivial solution r = 0,

pAt + >'Ofr07,2 + >'0f3or4e61ri'l' + >'0/'or3e-61ri 'l'

+ O(lpl
2 + Iplr2 + Iplr

3 + r
4

) = o.
or
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(4.10)

Set

(4.11 ) {
/-l = P07,2 + Plr3 + P2 r3 ,

'P = 'Po + 'Pt

where po, PI , P2, 'Po and 'PI are to be determined.
Substituting (4.11) into (4.10),

. 2 3 3 V3 . 2 a4 3 6 .
21r7(por + plr + P27' ) - -za3r + ;;;r e 1r1<p

4 8y3
a4 3 6· 4- --r e- 1r1'l' + O(r ) = O.

2V3

First, choose /10 so that 27fipo - ¥ia3 = 0, then

(4.12 )

With this choice of /10, we have

(4.13)
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Next, we choose III and <po so that

a4 6" 6 .27r"iIl1 + ,r.;(e 1U'I'o - 4e- 1U'I'O) = O.
8y3

Note that since III and a4 are real, e61ri'l'O - 4e-61ri<po must be pure
imaginary and this happens only when e61ri 'l'o is pure imaginary, that
IS,

7r
(mod 27r)67r<po = ±-

2
or

(4.14) (1),(2) _ ±~ 1
<Po - 12 (mod 3)'

(1) 1
If <po = <Po =?' then

L

(4.15) (1)
III = III =

(2) 1
If <Po = <Po = --, then

12

(4.16)

Now, from (4.13), we let

Then,
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and by the implicit function theorem, we know that 112 = 1l2(r), e.p =
e.p(r) and 1l2(0) = 0, e.p1(0) = 0. Thus, we have a pair of9-cycles
z = re2 11"i<p(r) , where r is regarded as a parameter which is related to Il
as

(4.17)

1/(1) =~a ,,2 _ _ 5_ a r 3 +O(r4 )
r 811" 3 1611"va 4

e.p(1) = l2 + O(r) (mod 1)
1l(2) = ~a3r2 + ~a4r3 + O(r4 ) •
r 811" 1611"y3

e.p(2) = -l2 +O(r) (mod 1)
Note that if a3 > 0, Il must be greater than 0 and we have a super
critical bifurcation and if a3 < 0, Il must be less than °and have a
subcritical bifurcation (Fig. 2).

To study the stability of the pair of 3-cycles for the map

we examine the eigenvalues of the map

(4.18)

z' = F;(z) =(1 + 31lAI)z + 3XoQ oz2z
- 4 - 3+ 3A0.80Z + 3Aol'ozz

+ O(11l1 2 1zl + 1Illlzl3 + 1Illlzl4 + Iz15) = o.

Let 0"1,0"2 are the eigenvalues of the Jacobian A = o(z',z')jo(z,z) at
one of the 3 fixed points .1: of one family for F;(z). If we assume that
we used an area-preserving transformation of the form (2.11), then we
can easily check that if a3a4 > 0, 0"1 and 0"2 are real and reciprocal for
Il = 1l(2), and 0"1 and 0"2 are complex conjugate on the unit circle for
Il = 1l(1). If a3a4 < 0, the situation is reversed.

Therefore, we can state the following theorem.

THEOREM 2. Let Fp : C -t C be the map given in (2.7) and assume
that A~ = l(Ao i= 1) and a2 = O. Then a pair of two one-parameter
families of 3-periodic fixed points

(j = 1,2)
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bifurcate from tbe origin on tbe same side of fl = O. H a3 > 0, or < 0
we bave a supercritical or subcritica.l bifurcation respectively. Tbose
3-periodic points are given by

x~j) = xij)(r) = re27ri'f'(j)(r) + O(r2)

x~j) = x~j)(r) = re27ri ('f'(j)(r)+!) + O(r2)

x~j) = x~j)(r) = re21ri('f'(j)(r)+~) + O(r2 ) for j = 1,2.

wbere r is related to fl as in (4.17).
Moreover, tbose 3-periodic points witb smaller r is byperbolic (sad

dIe) and tbose witb larger r is elliptic.

(iii) The case n = 4

Let ).0 = e21ri / 4 = i.
Then the normal form of Fp. (z) is

(4.19)

where a(O) == ao and 13(0) == 130 are related to the coefficients of the
original equation as follows

Then eq. (3.15) becomes

(4.20)

where

- Z 3 2
Cl = ).oao = -8(3a + a2)

- z 2
C2 = ).0130 = 8(a2 - a3)

gl(fl,Z,Z) = O(lfll2 lzl + IflllzI3 + IzI5
).
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Setting z = re21ri
<p and separating the trivial solution r = 0, we have

(4.21)

(4.22)

where g(J..L, r, 'P) = O(IJ..L1 2 + 1J..Llr2 + r4
).

To look for the principal part, put

{
J..L = J..Lor

2 + /ll r
2

,

'P = 'Po + 'PI

where J..Lo, J..LI, 'Po and 'PI are to be determined.
Substituting (4.22) in (4.21) and dividing by r 2 , we have

(4.23)

where it (/lI, r, 'P) = O( r 2). We choose /lo and 'Po so that

IT C2 =1= 0, i.e. a3 =1= a~, we have

Since e-81ri
<po must be real, we must have

(4.24)
(2) 1

'Po = 'Po =-
8

1
(mod 4)'

and for each value of 'PO, J..Lo can be determined as

(4.25) (1) a3 (1) d
J..Lo = J..Lo = - for 'Po an

411"
2

(2) a3 + a2 (2)
J..Lo = J..Lo = 811" for 'Po .

IT C2 = 0, i.e., a3 = a~, we have one solution for /lo

(4.26)
Cl 3a3 + a~

J..Lo = --. =
211"z 161l"
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However, this is not the generic case. Furthermore, if we define h(J-L1, r,
cp) as following

h(JL1, r, cp) = (27riJ-Lo + Cl + C2e-8rri<p) + 27riJ-L1 +!I (J-L1 , r}, cp),

we have

h(O, O,cpo) = °
8h .
-8(O,O,cpo) = 27ri

J-L1

8h (0 ° ) 8· -8rri<po8cp , ,cpo = - 7rZC2e

( 2 ) (d' (1) (2»= ±7r a2 - aa ± accor mg as CPo = CPo or CPo ,

and hence the implicit function theorem is applicable only if a3 =1= a2.
Thus, in this generic case, from the evenness of h (J-L}, r, cp) in r, we
have

(4.27)

Therefore, generically we have two one-parameter families of 4-cycles,
z = z(j}(r) = re2rri<p(j)(r) (j = 1,2), bifurcating from the origin, and
the parameters J-L and r are given as

{

J-L(j) = J-LV)r2 + O(r4
) ,

cp(j) = cp~}) + O(r2 )

where J-L~j) and cp~j) (j = 1,2) are given in (4.24) and (4.25). Notice

from (4.25) that if aa > °or aa < -a~, then J-L~1)J-L~2) > 0, so the two
families bifurcate on the same side of J-L = °(supercritical if aa > °and
subcritical if aa < -aD. If -a~ < aa < 0, then J-L~1) < °and J-L~2) > 0,
so the two families bifurcate on the opposite side of J-L = °(Fig. 3).

To study the stability of the 4-cycles for the map (4.19), we consider
the map

If 0"1 and 0"2 are the eigenvalues of the Jacobian A = 8(z',z')/8(z,z)
at one of the 4 fixed points x of one family for F:(z) and also if we
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assume that we used an area-preserving transformation of the form
(2.11) then we can easily see that i) (Tl and (T2 are complex conjugate
on the unit circle for p(2) if a3 > a~ or a3 < -a~, and also for p(l)

if 0 < a3 < a~; ii) (Tl and (T2 are real reciprocal each other for J.L(I) if
a3 > a~ or a3 < -a~, also for J.L(2) if 0 < a3 < a~, and for both p(l)
and J.L(2) if -a~ < a3 < O.

From the above results, we can state the following theorem.

THEOREM 3. Let FJl : C -+ C be the map given in (2.7) and assume
that A6 = l(Ao f= ±1) and a3 f= O. Then, generically we have two one

parameter families of 4-periodic fixed points {x~j)(r),x~j)(r),x~j)(r),

x ~j) ( r ) IrE R +, j = 1, 2} bifurcating from the origin and those 4
periodic points are given by

x~) = x~j)(r) = 1'e271"i[",,~j)+ k:;l) + O(r3 ) (j = 1,2, k = 1,2,3,4).

where the parameter r is related to J.L as in (4.27).
Moreover, if a3 > 0 or a3 < -a~, then the two families bifurcate

on the same side of p = 0 and one family with smaller r is hyperbolic
(saddle) and the other with larger r is elliptic. If -a~ < a3 < 0, then
the two families bifurcate on the opposite side of p = 0 and both are
hyperbolic (saddle).

(iv) The case n ~ 5

when Ao = e27ri1n (n ~ 5), the normal form of FIl(z) is

(4.29) FIl(z) = A(p)z+a(J.L)z2z+t3(J.L)zn-l+'(J.L)z3z2+0(lzI7 +Izln)
and the coefficient a(O) == ao can be computed from (2.12) as

_ _ AO [3' I A _ 2. (Ao + 1)(2A~ + AO +2)]
ao - 8(Im AO)2 W3 m 0 a2 ,\~ _ 1 .

Since

(AO + 1)(2A~ + AO + 2) AO + 1 ( A5 + 1 )
3 =-- 1 + """""-2---':::"---

AO- 1 AO - 1 AO+ AO + 1

= AO +1(1 + 11 )

AO -1 1+~

. 7r 1+4cos 2
:= -z cot - . (n ~ 5),

n 1 + 2 cos 271"
n
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(4.30)

where

(n ~ 5),

1 271" ( 2 271" 1 +4 cos 2:) ( )(4.31) ~n = --6 csc - 6a3 + a2 . csc -. 211" n ~ 5 .
1 n n 1+2cos n

Notice that (4.30) also covers the case n = 4.
The bifurcation equation (3.15) becomes

where Cl = 'xoao = i~n, C2 = 'xo13o.
Setting z = re2

11"i<p and separating the trivial solution r = 0, we have

For n = 5, we set

(4.34)

and take f-lo as

(4.35)

Then (4.33) becomes

{
f-l = f-lo r2 + f-ll r3 + f-l2 r3 ,

'P = 'Po + 'PI

~5
f-lo =--2.. 71"

(4.36)

Now assume that C2 =1= O. Then we can take f-ll and 'Po such that

that is,

(4.37) {
hi

f-ll = - 211"'

'Po = 1~1I"arg(~) (mod t)
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From (4.36), we define

Then,

h(O, lpo, 0) = 0, ~h (0, lpo, 0) == 21ri,
VJ..l2

ah ( . 10witp I I...J.alp 0, lpo, 0) = -101rzc2e- 0 = 101r C2 -r O.

Hence, by the implicit function theorem, we have

J..l2 = f.l2(r) = OCr), - ~l;;lpl(r) == OCr).

Therefore we have a one-parameter family of 5-cycles bifurcating from
the origin, given by

(4.38) {
J..l = _*r2 - ~r3 + O(r4

)

lp= l~warg(f:i)+O(r) (mod!-)

For n ~ 6, we set
~5 2 4J..l = --r +J..llr ,
21r

and can proceed as before by imposing more conditions on the coeffi
cients of the higher order terms.

Thus, we have the following theorem.

THEOREM 4. Let Fp. : C ~ C be tbe map given in (2.7) and assume
tbat

Ai) = 1 (AO i= ±1) (n ~ 5).

Tben, generically, we bave a one-parameter family of n-periodic fixed
points bifurcating from tbe origin.
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------>t<-----JI.

.
'x __x

........._- .-......

(~>o, JI.> 0)

....... ---···x
.x ..
: ~

Fig. 1. The bifurcation diagrams and the positions of the 3 - periodic fixed

points for 80 =1and ~ *0

r

---+------- JI.

z~1) for JI. = J,111

Z~21 for JI. = J,121

Fig. 2. The bifurcation diagrams and the positions of the 3 - periodic fixed

points for () =~ and ll_ = 0o 3 "<
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a) r
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Jill

z~l) for rp = <11
)

~2l for

J.l>O

b) r

0< 12:J< ~

J.l

z~1) for rp = <11)

z~2) for rp = rp(2)

J.l> 0
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c)
r

d) r

z~1) for rp = qfl)

Z:2) for rp= qf2)

Jl<O

------;-----Jl

.
........ - ..---~'

z~1) for rp = qJI)

Jl<O

'x
".---

Z~2) for rp = rp(2)

Jl>O

Fig. 3. The bifurcation diagrams and the positions of the 4 - periodic

fixed points
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