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NOTE ON A LOWER BOUND OF NIELSEN NUMBER

Moo HA WOO AND JAE-RVONG KIM

I. Generalized Nielsen number Nq(f)

Let X be a topological space, and let I : X -+ X be a self map.
A fixed point of I is a solution of the equation x = I( x). The set of
all fixed points of I will be denoted by Fix(f). Fixed point theory is
a study of the nature of the fixed point set Fix(f) in relation to the
space X and the map j, such as; the number of fixed points #Fix(J);
the behavior under homotopy; etc. But the actual number of fixed
points of a self-map can be altered by arbitrarily small pertubation of
the map. So, one proposes to determine the minimal number of fixed
points in a homotopy class.

J. Nielsen introduced the concept of separating Fix(/) into fixed
point classes and the number N(f) of essential fixed point classes, now
known as the Nielsen number. Nielsen theory is based on the theory
of covering spaces. An alternative way is to consider nonempty fixed
point classes only, and use paths instead of covering spaces to define
them.

Although the Nielsen number plays an important role theoretically,
its computation is no easy task. B. J. Jiang started with the concepts
of liftings of self maps and used with success a subgroup of 11"1 (X), now
called Jiang subgroup denoted by J(f).

He proved among other results the following (cf. [3], [5]) : Suppose
17f(1I"1(X)) C J(f). Then any two fixed point classes of I have the same
index, and N(f) can be computed by means of the Lefschetz number
L(f) and the Reidemeister number R(f).

For a fiber map he found out some necessary and sufficient condi­
tions that between I and the induced maps the naive product formular
NU) = N(fq)' NUb) holds (cf. [3], [6]).

We will prove that, for a special fiber map j, N(f) can be estimated
by means of a certain lower bound of N(f).
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DEFINITION 1.1. Let q : X ~ X q be a map from a topological space
X to a topological space X q • Two fixed points Xo and Xl of f : X ~ X
belong to the same q-fixed point class of f if there exists a path c from
Xo to Xl such that qfc ~ qc (homotopic reI endpoints)

Note that if the map q = Ix : X ~ X is the identity map then
by a q-fixed point class we mean an ordinary fixed point class and if
Xo, Xl belong to the same ordinary fixed point class then xo, Xl belong
to the same q-fixed point class for any map q : X ~ X q • We will use
the notation F and Fq as an ordinary fixed point class and a q-fixed
point class of f respectively.

LEMMA 1.1. IT Fq n F i= 4> then F C Fq •

Proof. If ao E F n Fq , al E F, then there exists a path c form ao to
al such that c ~ fc(rel end points). Thus qc ~ qfc.

Thus each fixed point class(empty or not) of f is contained in a
unique q-fixed point class of f. Note that if F is empty, it is contained
in every q-fixed point class of f in the set theoretical sense

LEMMA 1.2. A q-fixed point class is consist of union of fixed point
classes of f.

Let f : X ~ X be a self map of a connected compact polyhedron.
According to the definition of F and Fq , Fq is an isolated set of fixed
points. Hence index (f, F q ) is defined and

index(f, Fq ) = I: index(f, F)
FCFq

by the additivity property of index (cf. [3J [4], [6]).
Fq is said to be essential if index(f, Fq ) is nonzero and is said to be

inessential if index(f, Fq ) is zero.

DEFINITION 1.2. The number of essential q-fixed point classes of f
is called the q-Nielsen number of f, and denoted by Nq(f).

Note that Nlx(f) = N(f).

THEOREM 1.1. Nq(f) is homotopy invariant.

Proof. Since index(f, Fq ) = I::FCF index(f, F), by the following
- q

Lemma and Theorem 4.5 [3] we have that Nq(f) is homotopy invariant.
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LEMMA 1.3. Suppose {ht} : X -+ X is a homotopy of fo to h. Let
Fo,F~ be fixed point classes of ho = fo and FI,F{ be those of h = hI
corresponding to Fo, F~ by {ht}. Then Fo, F~ belong to the same
q-fixed point class of fo if and only if FI, F{ belong to the same q-fixed
point class of h.

Proof. Let x I E F I C Fi, ~~ E Fi. Since Fo corresponds to Ft
via {ht}, by Theorem 2.9 [3], there is a path C = {cd in X from
CO = Xo E Fo to Cl = Xl such that {htct} ~ {ct} with end points fixed.

Note that {h ct} ~ {ct} ~ {htct} with point Xl fixed. Indeed, if we
define H' : I x I -+ X by H'(t,s) = h(1-t)s+tCt, then H'(t,O) = htct,
H'(t, 1) = hlCt = hCt, H'(l,s) = hlCI = Xl.

Similarly we can have a path d = {dt } from do = x~ to d l = x~

such that {htdt } ~ {elt } with end points fixed. Also we can have
{fodt} ~ {htdt} ~ {dd with point Xo fixed.

On the other hand, Xo, x~ E F~ implies that there is a path e from
Xo to x~ such that {qfoet} ~ {qet} with end point fixed. Consider the
path {gt} = {c;l * et * dd, then

{qflgt} = {qhc;l * qhet * qhdd

~ {qc;l * qfoet *qdd (with end point fixed)

~ {qc;l * qet * qdd (with end point fixed)

~ {q(C;l * et * dd}

={qgtl·

Thus Xl, X~ E F;. This completes the proof.

The next theorems follow directly from the definition and the prop­
erties of the fixed point index.

THEOREM 1.2. Let f : X -+ X be a self map and q : X -+ X q be a
map. Then we have

(1) Nq(f) ~ N(f) ~ Min{ #Fix(g) I9 ~ n·
(2) L(f) = L:F index(f, Fq).

q

THEOREM 1.3. Let q : X -+ X q, q' : X -+ Xql be maps and
f : X -+ X a self map. If there exists a map r : X q -+ Xql such that
rq = q', then Nq(f) ~ Nql(f).
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THEOREM 1.4. If f: X -+ X is a self map, then Nf(f) = N(f).

Proof. It suffices to show that Ff n F i= 0 implies F = Ff. Let
xo, Xl E Fh then there is a path e from Xo to Xl such that ffe ~ fe
(homotopy reI and point). Let d be the path fe. Then we have fd ~ d.
This means that XI,XO E F.

Let p : X -+ X be a regular covering of X. For Xo E X and
xo E p-l(xo), the subgroup K(xo) = P7\"?l"I(X,XO) is a normal subgroup
of ?l"1(X,XO). For any path w from Xo to Xl, W* : ?l"1(X, Xl) -+ ?l"1(X,XO)
sends K(xI) onto K(xo). Hence, as in the case of the universal cov­
ering space, the base point is not of much concern. Regular covering
spaces are, up to isomorphism, in 1 - 1 correspondence with normal
subgroups of ?l"1 (x), corresponding the universal covering space to the
trivial subgroup. Given a subgroup 1(, with ?l"1(X) identified with the
group of covering translations on the universal covering p : X -+ X,
we may consider the quotient space X/ K and obtain a commutative
triangle of covering maps

X
p'\.

X

We will take p1\ : X/K -+ X as the model of the covering corre­
sponding to K. The group D K of covering translations on this regular
covering space is the quotient group ?l"1(X)/K.

The only obstacle to developing a theory of fixed point classes with
respect to a regular covering is that not every map f ; X -+ X can be
lifted to JK : X/K -+ ..t /K. We know from the covering space theory
that such a lifting exists iff f7\"(K) C K. So, we re~trict our attention
to maps f with f7\"(K) C K.

LEMMA 1.4.[3]. The fixed point set Fix(f) splits into a disjoint
union ofmod K :fixed point classes. Two :fixed points Xo and Xl belong
to the same mod K fixed point class iff there is a path c from Xo to Xl

such that c(fc)-1 E K.
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THEOREM 1.5. Hq: X -+ X q satisfies the following commutative
diagram

I
X IX

ql lq ,

Xq Iq
I Xq

then our q-fixed point classes coincide with the mod K(= ker q... (q... :
71"1 (X)
-+ 7I"l(Xq » fixed point classes.

The following Theorems are well known when ker q... is K and can
be proved with little modification.

THEOREM 1.6. Let f : X -+ X be a self map with f ... (kerq... ) c
ker q.... Then the number of ordinaxy fixed point classes in any given
q-fixed point class is greater than or equal to #"7 0 O(ker q... ), where
"700 : 7I"l(X) -+ Coker(l - ft .. : H1(X) -+ H1(X)). H f is eventually
commutative, then equality holds.

THEOREM 1.7. Suppose f ...(kerq... ) ~ J(I). Then any two ordinaxy
fixed point classes in a given q-fixed point class have the same index.

11. Nielsen numbers and fibre maps

A map q : E -+ B is a fibration if it has the homotopy lifting
property. The subspace q-1(b) of E is called fibre at b E B, written
Pb = q-1(b). Let q : E -+ B be a fibration with E, B and all fibers
compact connected polyhedra, so that we can talk about the fixed point
index in E, B and fibers. Let PE : E -+ E and PB : iJ -+ B be the
universal covering of E and B respectively. Let g : E -+ iJ be a lifting
of q. Then qpE = PBg.

DEFINITION 2.1. Let q : E -+ B be a fibration. A map J : E -+ E
is called a fiber map if there is an induced map Jq : B -+ B such that
qJ = Jqq. For b E Fix(fq) the map f IFb : Pb -+ H is well defined and
will be denoted by Jb.
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LEMMA 2.1.[3]. Let q : E ~ B be a fibration and q : E ~ E a
lifting. Let f : E ~ E be aiiber map inducing fq : B ~ B. Then every"
lifting j : E~ E of f is a fiber map inducing a lifting jq : E~ E of fq.
Every fixed point class of f is mapped by q into a iixed point class ofIq,
namely qFpc[j] = [jq] and q(pE Fix(j» C pBFix(jq). Furthermore, for
every fixed point class of fq there exists a fixed point class of f that is
mapped by q into it.

In fact qF~djq] = Hj] I[j] is fixed point class contained in the
q-fixed point class [j]q}, i.e., qFPCK[j]q = [jq] where k = ker(q1l' :
7r1(E) ~ 7r1(B».

The following lemma is very useful in computing the fixed point
index in fiber spaces.

LEMMA 2.2.[3]. Let q : E ~ B be a iibration and let f : E ~ E
be a iiber map inducing fq : B ~ B. Let j : E~ E be a lifting of f
inducing jq : E~ E. Then any b E PBFix(jq), we have

THEOREM 2.1.[3]. A fixed point class of f in E is essential iff its
projection in B is an essential fixed point class of fq and its intersection
with an invariant fiber H consists of essential fixed point classes of fb.

THEOREM 2.2. Let q : E ~ B be a iibration with E,B and all
fibers compact connected polyhedra. Let f : E ~ E be a fiber map
inducing fq : B ~ B. Then Nq(f) :::; N(fq) :::; N(f). Moreover, if
11l'(kerq1l:) C J(f), then Nq(f) = N(fq).

Proof. Let Ff, i = 1,2, ... ,N(fq), be essential fixed point classes
of Iq. According to Theorem 2.1, each essential fixed point class of
I projects to an essential fixed point class of fq. Let Fit, . .. , Fie. be
essential fixed point classes of f lying above FI- Note that these Fij,
j = 1, ... ,Ci are contained in the same q-fixed point class F; by Lemma
2.1. Thus we have

N(fq} N(fq}

NU) = L Ci;::: L 1 = N(fq).
;=1 i=1



Note on a lower bound of Nielsen number

Moreover since

Ci

index(J, F;) = I)ndex(J, Fij )
j=l

Ci

= L index(Jq, FI) . index(fb, Fb n Fij),
j=l

123

for any essential q-fixed point class, there exists at least one essential
fixed point class Fij. Thus FI is also essential fixed point class of Iq.
This implies Nq(f) :s N(fq).

Now we will prove the last paragraph. Since I~(kerq~) ~ J(J), by
Theorem 1.7, any two ordinary fixed point classes in a given q-fixed
point class have the same index. If FI is essential, then by Theorem
2.1, we have an essential fixed point class Fij so that the q-fixed point
class F; containing Fij is also essential. Thus we have N(Jq) :s Nq(f).
This completes the proof.

COROLLARY 2.3. Let q : E ---7 B be a libration with E, B and all
libers compact connected polyhedra. Let I : E ---7 E be a fiber map
inducing Iq : B ---7 B. Let the base space B be a Jiang space. Then
Nq(J):S #Coker(l-lq~):SN(J). Mol'eovel'ifl.".(kerq.".) ~ J(f), then
Nq(J) = #Coker(l - Iq~).

DEFINITION 2.2. A fibration q : E ---7 B is said to be (homotopi­
cally) orientable if for any two paths tv, w' in B with same endpoints,
the fiber translations T w ::::: T w ' : Fw(o) ---7 Fw(l)'

COROLLARY 2.4. Let q : E ---7 B be orientable. Let I : E ---7 E be
a libel' map such that I and !b : H ---7 H are eventually commutative
{or b E Fix(Jq). Let P(f) be the Pak number [3} of the square

h
Fb IH

1 1
E

f
lE

Then P(J) :s N(fb).
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f3

b b

EXAMPLE. Let]{2 be the Klein bottle. A fibration q : ]{2 -+ SI is
shown in the figure, where ]{2 is obtained by identifying the opposite
side of a rectangle as indicated and a, 13 are generators of 11"1 (]{2) with
af3a = 13.

Let the fibre map I : ]{2 -+ ]{2 induce the homomorphism f,r(a) =
1, I-rr(f3) = f3d. Then the induced map Iq :SI -+ SI has degree d, and

Since N(f) ::; R(f), if we show that R(f) = 11 - dl, then we have
N(f) = 11 - dl. Recall that in order to compute R(f) we must find,
given p, v E 11"1 (]{2), necessary and sufficient conditions for he existence
of I E 11"1 (]{2) such that p = IVI -rr(I -1). Since I -rr(11"1(K2 )) is generated
by f3d, l-rr(-y-l) = f3kd for some integer k. Hence p = Ivf3kd. Let
w E 1I"1(K2) by any element represented by

w = a P(I) f3P(2) ... a P(2r-l) /3p(2r)

for some p(j) E Z, r 2: 1. Define Iwl = 2:;=1 p(2q). Then Iwl is
independent of any representation of w. Note that Iw- l I = -Iwl and
l-rr = f3d 1w l. Applying 11r to both sides of equation p = Ivf3dk gives
f3 dlltl = f3-dpdlvlpd(dk) or /3 lit!-IvI = f3 k (d-l). We have proved that

p = I v l1r(-y-l) for some I iff Ipl == Ivl (mod 11- dl), and R(f) = 11-dj.
Moreover since 11r(kerq1r) = {I} ~ J(f), we have Nq(f) = N(fq) =
N(f) = 11 - dl·

REMARK. Brown [1] proved that in above example NU) = RU) =
11 - dl if d is even, using the fact NU) = R(f) if 11r(1I"1(]{2)) c
Z(1I"1 (K2)).
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