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WELLPOSEDNESS OF THE CAUCHY PROBLEMS

DAE HVEON PAHK AND Bu HVEON KANG

1. Introduction

Let 'D~(Rn) denote the space of ultradistributions on Rn defined
by Beurling[l] and P( D) be a differential operator of order m with
constant coefficients. In [10] we have shown the following statements
are equivalent:

(a) P(D) is w-hyperbolic with respect to the given vector N, that
is, Pm(N) =1= 0 and there is a constant c> 0 such that P(~ +
irN) =1= 0 for every ~ E Rn and r < -c(l +w(~».

(13) P(D) has a fundamental solution in 'D~(Rn) whose support is
contained in a proper cone of the half space generated by N.

In this paper we show that the wellposedness of Cauchy problem
for P(D) in £w and the above properties in 'D~(Rn) are equivalent for
some limited class of w's.

To show this result we denote by M (respectively, Mc) the set of
all continuous real valued functions w on Rn satisfying the following
conditions (i) - (vi)(respectively, (i) - (iv»

cl> : t t----+ Q( et) is a convex function on R.

(iii)

(iv)

(v)

(vi)

(i) O=w(O):::;w(~+17):::;w(O+w(17),

f w(O
JRn (1 + 1~l)n+l d~ < 00

w(0 2:: a + blog (1 + I~I) for some constants a and b > 0

w(O = n(I~I) for some even concave function n on R

log t = o(n(t)) as t -+ 00

(ii)
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if Xl 2: 0

otherwise.

Beurling and Bjorck [2] defined the test function space as the set
Dw(U) of all 4> E Ll(Rn ) such that 4> has compact support in the open
set U in Rn and

114>11", = f IJ(e)le"'WWde < 00 for every >. > 0iRn
and ew(U) the set of all complex valued functions t/J on U such that 4>t/J
is in Dw(U) for every 4> in Dw(U). In this case they only require that
w satisfies the property (i) - (iv). The reader can find the definition
of other spaces and related properties in [2]. In this paper we add two
more conditions (v) and (vi) for our purpose, which are introduced by
Braun, Meise and Taylor[3].

With these conditions they proved the following representation of
Dw(U) :

LEMMA 1.1. If w E li;! and U is an open set in Rn, then

Dw(U) = {4> E C~(U)I Yk E N,

lalsup sup 14>(CI:)(x)lexp(-k<p*(k» < oo}
Cl:EN3' xEU

where <p* denotes the Young's conjugate of the convex function <p(t) =
!l(et ).

Using this representation we obtain the following lemma which we
need later.

LEMMA 1.2. Ifw E 1.\1 and 4> is in Dw(Rn) with Df4>(O, x') = °for'
ail j = 0,1,2, . .. and x' = (:r2, ... , x n ) E Rn-I, then the function 4>0 is
in Dw(Rn

), where 4>0 is given by

4>0 (x) = { ~(X)

Proof. From the fact that 4>0 E COO(Rn ) and

sup sup 14>~CI:)(x)le:l:p(-k<P*(lakl»
Cl:EN{f xER"

:::; sup sup 14>(CI:)(x)lexp(-k<P*(la
k
,» < 00,

Cl:EN3' xER"

for every k = 1,2, ... , it follows, due to lemma 1.1, 4>0 E Dw(Rn).
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2. Wellposedness of the Cauchy Problems

Let a be any real number. Consider the following Cauchy problem:

(*)
P(D)u = f for

D~u = 9j for

<x,N»a

< x,N >= a and 0$ j < rn,

when f E £w(Rn ) and 9j E £w(Rn - 1). Here P(D) is a partial differen­
tial operator of order m and of constant coefficients, and D N denotes
the derivation along N E Rn - {O}.

For a given real number a, the Cauchy problem (*) is said to be
w-wellposed for P in the half-space < X, N >~ a if, for all f E £w(Rn

)

and all gj E £w(R n - 1), there exists a unique function u in £w(Rn ) such
that (*) holds. And the Cauchy problem is said to be w-wellposed for
P in the direction N if and only if it is w-wellposed in every half-space
< X, N >~ a, a E R. But we note that this is equivalent to the
w-wellposedness in the half space < x, N >~ 0.

We may consider our problem for N = (1,0, ... ,0). Then we can
wrtie

D = (D1, ... ,Dn ) = (D1,D'),

(= ((1,(') = (6 +i1]l,e +i1]'),

P(D) = P(DI,D') and P(() = P((l,(')'

We now have the following lemma from the w-hyperbolicity.

LEMMA 2.1. Let w E Mc, aJld P(D) be of order m and w-h,vperbolic
with respect to N = (1,0, ... ,0). Then, for 0 $ k < rn and Xl ER,
there is a distribution Hd:rl) E £~(Rn-1) such that

(1) D{Hk(xd E £~(Rn-1) for every j ~ 0, P(D1,D')Hk(XI) =
O,DfHk(O) = 6 and D{Hk(O) = 0 when k::j:j < rn.

(2) {(x~,x')lx' E SUppHk(X~)} C suppEn {xlx1 = xn forx~ ~ 0,
when E is the fundamental solution of P(D) given by the w­
hyperbolicity of P( D) with respect to N.

Proof. We write

m

P(O = P((l,(') = L(;n-jqj((')
j=O
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and define
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k

Pk( (1, (') = L (~-jqj((').
j=O

Let r be a simple, positively oriented curve which for fixed (' surrounds
the zeros (1 of peel, ('). Then the function Hk(Xl, ('), defined by

it ( r') = _1_ [ iC;P;l Pm-I-k( (1, (') dr
k Xl,.. 21l"i Jr e P( (1, (') ..1,

is an entire function of (' for every Xl and every k by the continuity in
(' of the solution curve. According to the w-hyperbolicity of P(D), we
have

1(11::; C(l + 1('1) and

for some constant C when peel, (') = O. And from the conditions (i)
and (ii) of w we also have

161 < C(l + 1('1) and 1171\ < C(l + 11]'1 + n(le'l))

for some constant C when P( (1, (') = O. In order to estimate D{Hk( Xl,
('), we can then choose r as the rectangle

(**) 161 = C(l + 1('1); 1171 1= C(l + 11]'1 + nOe'I).
Since IPm-l-k( (1, (')1 is majorized by a constant mutiple of
(l+I('l)m-I-k, and both 1(11 and the length of r by constant multiples
of (1 + 1('1), we get

(***) ID{itk(XI,(')1 ::; C(l + 1('Dm -k+jeC <l X t!+l)[I+I'1'I+o(le'l)]

for some constant C. In particular,

IHk( Xl, (')1 ::; CeC <lxt!+l)i-I/'I+EI'1' 1+C(lxt!+l)0<le'D

for all € > 0 and some constant C. Hence, by Paley-Wiener Theorem,
Hk(Xl, (') is the Fourier-Laplace transform of an element Hk(X1) of
£~(Rn-1) given by

< Hk(Xl),</> >= (27r)-n+l [ itk(X1,e)~(-e')deJRn-l
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when <P is in V",,(Rn-I). We define <D{Hk(XI),<P>= D{ < Hk(XI),<P> .
Then our estimates imply

< D{Hk(xd, <P >= (21l")-n+I JD{Hk(XI, e')~(-e')de' ·

Thus D{Hk(xd E £~(Rn-I) and [D{Hk(XI)]«(I) = D{Hk(XI,(')' And

P(DI, e')Hk(XI, e') = (21l"i)-1 £eiC;l~lPm_I_k«(I, e')d(l = 0

since the integrand is analytic. So P(DI,D')Hk(XI) = O. On the other
hand, we have

D{Hk(O, (') = (21Ti)-1 £({Pm-I-k( (I, (')/P((I, (')d(l'

The integrand is

({Pm-I-k«(I,(')/P«I,(') =({-k-l + ({-k-I[(f+Ipm_I_k«(I,(')

- P( (1, (')J/P((I, (').

The degree of (I in the numerator of the second term is majorized by
j - k - 1 + k = j - 1, hence, by m - 2 when j < m. Since the degree
of (I in the denominator is m, we get

D{Hk(O, (') = (21Ti)-1 £({-k-l del for 0'5: j < m.

Thus D~Hk(O) =8 and D{Hk(O) =0 when k =j:.j < m. Finally, we lo­
calize the support of Hk(3.:~). Let <P be in V",,(Rn- l

) with {(x~, x')lx' E
supp<p} n suppE = 0 and take 'IjJ E V w ( R) satisfying supp'I/J C [-1, 1]
and Jt/Jdx = 1. We set

XE(XI, ... , xn) = XE(XI, x') = e-It/J(e-l(xI - x~»<p(x').

Then x'tC () = XE( (1, C') = exp[ -i(I3.:~]t,&( e(1 )~( (') and, for small e > 0,
supp XEnSUPP E = 0. Hence, for all small e > 0,

0= E(Pm-I-k( -DI, -D'hE)

= (21T)-n f eiC;1J:~Pm_I_k«(I,(I)t,&(-e(d~(-(I)/P«(I,(')d(
ltT(N,t)
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where (T(N, t) is the surface (6 +it(1+Q(161)+Q(lel)), 6, ...,~n) with
t S -C(N), where C(N) is the w-hyperbolicity constant of P(D) with
respect to N. From Paley-Wiener Theorem, we have, for all), > 0, and
some C>.,

lei(lX~t,b( -e(l)1 ~ C>.e-'I/lx~+fI1/11->.n(flelD.

Integrating first with respect to 6 for fixed e', this estimate and the
analyticity of the integ;rand show that the integration' path can be
deformed to a positively oriented circle r surrounding the zeros (1 of
P((1, (') when 0 < e < x~. Hence, letting e~ 0, we have

0= (21r)-n [ [ei(lX~Pm-l-k((l,e)J(-e)d(lde'
JRn-l Jr p((l,e' )

= i < Hk(X~),</> > for x~ > O.

Thus, (x~,SUPpHk(X~)) is contained in supp E and in {xlxl = xn
when x~ > O. Since this is trivial for x~ = 0, the proof of the existence
is complete.

We remark that < H k( Xl ), </> >E &w(R).

THEOREM 2.2. Let w E NI. Let P(D) be of order ID which is w­
hyperbolic with respect to N = (1,0, ... ,0). Then the Cauchy problem

P(Dl , D/)</>(xl, x') = I(Xl, Xl) for Xl > a

ni</>(a, Xl) = gj(xl) for 0 ~ j < m

is w-wellposed in the direction N.

Proof. By translation invariance it is enough to consider the hyper­
plane < x, N >= O. Because of the w-hyperbolicity with respect to
N and -N, P(D) has a unique fundamental solution El with support
in {xlxl ~ O}, and a unique fundamental solution Ez with support in
{xlxl SO}. Write I = /1 + h where supp /1 is in {xlxl ~ -1}, and
supp h is in {xlxl S 1} and fI,fz are in &w(Rn ). Set

(El * fl)(Xl, Xl) + (Ez * h)(x}, Xl) = Vex}, x').

We apply Lemma 2.1 and the notations there. Writing

< Hk (:t: 1 ), tt' >= [ Hk(Xl, X')'I/J(x')dx'JRn-l
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<fJ(x}, x')

= f f H k(X1, y')[gk(X' - y') - DkV(O, x' - y')]dy' + V(X1, x')
JRn-l

k=O

belongs to £w(Rn ) and solves the given problem. Indeed, from Lemma
2.2 in [10], we have V E £w(Rn ). When (3 E V w(Rn - 1 ), we get

[Hk (X1) * (3](x') =< Hk(xx)(y'),(3(x' - y') >

= (27r)-n+1 Jih(x1,e')e i <x',e'>S(e')de'.

Let a(x) be in Vw(Rn
), and put U(.l·l, x') = (Hk(xI}*(3)(x')a(x). Then,

for all J.l in Rn, we get

U(J.l) = (27ri)-U f f f e-i<X,P.-(Cl,e'»
iRn iRn-l ir

a(:1' )S(~' )Pm -l-d (1, ()d(l de' dx.

Hence, by Fubini's Theorem. we have

IU(J.l)1 ~ c' f f 1&(J.l- «(l,(»II~(e')lld(llde'i Rn-l ir
~ CA f e-AI1(II.-(el,e')j)eAllllll~(e)lde

JRn-l

and 161, 17]11 ~ C(1 + n(lel) for some constants C', CA' and C. Thus
we get

for some constants CA and B. Since (3 is in V w (Rn - 1 ), we conclude
that u is in Vw(Rn

). V'le also have Hk(xI} * (3 E £w(Rn
) when (3 E

£w(Rn
-

1), using a local unit. Consequently, <fJ(Xl,X') E £w(Rn ) since



148 Dae Hyeon Pahk and Bu Hyeon Kang

V(O, x') E ew(Rn-1). And we have

. m-1

P(D1,D')4>(x1,X') = P(D1,D') 2:1 Hk(X1,y')[gk(X' - y')
k=O Rn-l

- D:V(O,x' - y')]dy' + P(D1, D')V(x1, x')
m-1

= 2: P(D)Hk(X1) * (gk - D:V(O» + h + fz
k=o

= f,
and

m-1

D{ 4>(0, x') = 2: D{Hk(O) * (gk - D:V(O» + D{V(O, x')
k=o

= D{Hj(O) * (gj - Div(o» + D{V(O, x')

= gj(X') - D{V(O) + D{V(O)

= gj(x') for 0::; j < rn.

In order to prove the uniqueness, let

P(D1,D')4>(X1,X') =0 for Xl >0

D{ 4>(0, x') = 0, for 0::; j < rn,

where 4> E ew(Rn). Since Pm(N) = 0, this implies that D{4>(O,x') = 0
for every integer j ~ 0 and x' E Rn-l. Hence, applying Lemma 1.2,
we can write 4> = gl + g2 where supp gl is in {xlx1 ~ O} and supp g2
is in {xlx1 ::; O}, and g1,g2 belong to £w(Rn). And then we get

gl =gl *b =gl *P(D)E2 =P(D)gl *E2 =0.

We have the following converse:

THEOREM 2.3. Let w E M. If tbe Caucby problem is w-wellposed
in tbe direction N = (1, 0, ... , 0), tben Pis w-byperbolic witb respect
toN.

Proof. Assuming Pm(N) i= 0, we first prove that for any h in ew(H),
the set of all functions in ew ( Rn) with supprots in H = {x I < x, N >2:
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O}, there is a unique function v in £",(H) such that P(D)v = h in Rn.
Let h be any function in £",(H). Then, from the hypothesis, there is a
function t/> in £",(Rn ) such that P(D)t/> = h for Xl > 0 and Dft/> = 0
for Xl = 0,0:5 j < m. Since Pm(N) = 0, this implies that D,:+it/> = 0
for Xl = 0 and for all j 2: O. Putting

{
t/> if Xl 2: 0

v = t/>o = 0 if XI:5 0

we then have v E £",(H) and P(D)v = h in Rn by Lemma 1.2. The
uniqueness follows from the w-wellposedness in the halfspace Xl ? O.

.WeIl<?w.pIQY~_.tlljl._tPm (NJ:/::. Q,...s.1JP1!Q.l?~ ..that Pm(N)..=JU&t...' ..be
a fixed non-zero vector in Rn for which Pm(O = 0 and consider

P(sN +to = 0, s,t E C.

Using Puiseux's Theorem, we have that for some positive integer p the
solution of this equation is

which is analytic for Is'; I > M, for some constant M. Therefore, we
have

if Isl > M, M suitable.

Now we choose a number p such that 1 - 1 < P < 1 and set, with
p

r>M,

j
iT+OO

u(x) =. ei<x,sN+t(s)e> e-(1Y ds.
tT-OO

Here we define (';)P so that it is real and positive when s is on the
1

positive imaginary axis, and we choose a fixed branch of spin the upper
half plane. Then we can prove that P(D)u = 0 and VI (x) = u( -x) is
in COO(H) and by Theorem 1.7.3 in [2] the function VI * 4> is in £",(H)
for all t/> E 1J..,(H). We can choose 4>0 E 1J..,(H) for which VI * 4>0 does
not vanish identically. For if if> E 1J..,(H) and J4>dx = 1 with supp
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<P c B(O,l), then the function <p,,(x) = cn<p(7) belongs to 'Dw(H).
But VI * 4>" ---+ VI in Rn. Since VI does not vanish identically, this
implies the assertion. Now the function vex) = VI * <Po is in &IN(H) and
v does not vanish identically with P(D)v = 0, which contradicts the w­
wellposedness of the Cauchy problem. We have proved that Pm (N) :j:. 0
and for all h E &w(H), there is a unique function v in &w(H) such that
P(D)v = h. This implies that the mapping <p 1----+ P(D)<p is a bijection
from &w(H) onto itself. Hence, by Theorems 2.1 and 2.2 in [10], P(D)
is w-hyperbolic with respect to N. The proof is complete.

REMARK. Because of the condition (v), wee) = 10g(1 + leD can not
be contained in M. But the results in Lemma 1.2 still holds in this case.
So our previous results hold when wee) = 10g(1+lel), which is the result
of Ggrding[5]. And the results of Larsson[8] for w(€) = lel't,d > 1, is
included in our results.

We now give an example referring to [9]. Let aI, ... , an be n fixed
real numbers such that an :j:. O. Let P(D) be a differential operator
defined by

And let w(e) = lel! = (€~+ ...+€;):t. Then, by Example in [10], P(D) is
w-hyperbolic with respect to N = (0, ... ,0, 1), but not hyperbolic with
respect to N in the distribution spaces provided that an :j:. 0 and ak :j:. 0
for some 1 ::; k ::; n - 1. Hence the Cauchy problem is w-wellposed in
the direction N but not Coo-wellposed in the direction N if an :j:. 0 and
ak :j:. 0 for some 1 ::; k ::; n - 1.
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