J. Korean Math. Soc. 29 (1992), No. 1, pp. 141-151

WELLPOSEDNESS OF THE CAUCHY PROBLEMS

DAE HyeEoN PAHK AND Bu HYEON KANG

1. Introduction

Let D{,(R") denote the space of ultradistributions on R™ defined
by Beurling[l] and P(D) be a differential operator of order m with
constant coefficients. In [10] we have shown the following statements
are equivalent:

(a) P(D) is w-hyperbolic with respect to the given vector N, that
is, P(N) # 0 and there is a constant ¢ > 0 such that P({ +
tTN) # 0 for every £ € R and 7 < —¢(1 + w(£)).

(8) P(D) has a fundamental solution in D/,(R"™) whose support is
contained in a proper cone of the half space generated by N.

In this paper we show that the wellposedness of Cauchy problem
for P(D) in &, and the above properties in D/,(R") are equivalent for
some limited class of w's.

To show this result we denote by M(respectively, M.) the set of
all continuous real valued functions w on R" satisfying the following
conditions (i) - (vi)(respectively, (i) - (iv))

(1) 0=w(0) <w(l+n)<w()+w(mn), EneRr"

. w(¢)
(ZZ) -/I;" m)—'mdﬁ < 0

(222) w(&) > a+blog (1 +£]) for some constants a and b >0
(iv) w(&) =R(¢]) for some even concave function 2 on R
(v) logt=o0(t)) as t— oo

(vi) @ :t+— Q') is a convex function on R.
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Beurling and Bjorck [2] defined the test function space as the set
D.(U) of all $ € L'(R™) such that ¢ has compact support in the open
set U in R™ and

li$llx = / (ﬁ)ICAw(E)dS < oo forevery A>0
R™

and &,(U) the set of all complex valued functions ¢ on U such that ¢
is in D, (U) for every ¢ in D, (U). In this case they only require that
w satisfies the property (i) - (iv). The reader can find the definition
of other spaces and related properties in [2]. In this paper we add two
more conditions (v) and (vi) for our purpose, which are introduced by
Braun, Meise and Taylor|3].

With these conditions they proved the following representation of
D.(U) :

LEMMA 1.1. Ifw € M and U is an open set in R™, then

D(U)={¢ € C>U)|Vk e N,

sup sup |¢'*(z)|ezp(— k*I'*(l I)) < oo}
a€ENG zelU

where ®* denotes the Young’s conjugate of the convex function ®(t) =

Q(eh).

Using this representation we obtain the following lemma which we
need later.

LEMMA 1.2. Ifw € M and ¢ is in Du(R") with DI$(0,2') = 0 for -
allj =0,1,2,... and 2' = (22,...,&n) € R®?, then the function ¢ is
in D,(R™), where ¢q is given by

o(x if 2,20
o) = { ) ' 2
otherwise.

Proof. From the fact that ¢¢ € C°(R"™) and

|l

sup sup |¢0 )(1)|eap( k®*(— - ))
aENP r€R”

< sup_sup [¢(@)leap(~ke"(2])) < oo,
aGN” zER™

for every k = 1,2, ..., it follows, due to lemma 1.1, ¢g € D,(R").



Wellposedness of the cauchy problems 143

2. Wellposedness of the Cauchy Problems
Let a be any real number. Consider the following Cauchy problem:

PDyu=f for <z,N>>a
Diu=g; for <z,N>=a and 0<j<m,

™)
when f € £,(R") and gj € EL,(R™™!). Here P(D) is a partial differen-
tial operator of order m and of constant coefficients, and Dy denotes
the derivation along N € R™ — {0}.

For a given real number a, the Cauchy problem (*) is said to be
w-wellposed for P in the half-space < 2, N >> a if, for all f € E,(R™)
and all g; € E,(R"™!), there exists a unique function u in £,(R") such
that (*) holds. And the Cauchy problem is said to be w-wellposed for
P in the direction N if and only if it is w-wellposed in every half-space
< z,N >> a, a € R. But we note that this is equivalent to the
w-wellposedness in the half space < z, N >> 0.

We may consider our problem for N = (1,0,...,0). Then we can
wrtie

D= (Dy,...,D,)=(Dy,D"),
¢=(61,¢") = (& +im, & +1in'),
P(D)= P(Dy,D') and P(¢) = P((1,¢").
We now have the following lemma from the w-hyperbolicity.

LEMMA 2.1. Letw € M., and P(D) be of order m and w-hyperbolic
with respect to N = (1,0,...,0). Then, for0 <k <m and =z € R,
there is a distribution Hy(x,) € £ (R™ 1) such that

(1) DIHi(z1) € EL(R™Y) for every j > 0, P(Dy,D')Hi(z1) =
0,D}H(0) = 6 and DiH(0) =0 when k # j < m.

(2) {(2?,2")|z" € suppH (%)} C suppE N {z|z1 = 23} for 2§ > 0,
when E is the fundamental solution of P(D) given by the w-
hyperbolicity of P(D) with respect to N.

Proof. We write

P(¢) = P(G1,¢") =Y (7 g;(¢")

3=0
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and define
pr(G,¢) = Z G gi(¢).

j=0
Let T be a simple, positively oriented curve which for fixed ¢’ surrounds
the zeros (3 of P((1,¢'). Then the function Hk(xl, ¢'), defined by
_ iC1zy prn-—l-—k((l ) C )
Hk(w17<' ) 27(2 e P(CI,C’) dcl’

is an entire function of (' for every z; and every k by the continuity in
¢' of the solution curve. According to the w-hyperbolicity of P(D), we
have

Gl < CA+C)  and  m| < CQA+In'|+ QUED +Q(1€D)

for some constant C when P((1,(') = 0. And from the conditions (i)
and (ii) of w we also have

6] < CA+IC")) and  Jm| < C(1+In'| +K'D)

for some constant C when P((1,¢') = 0. In order to estimate D{ﬁk(a:l ,
¢'), we can then choose I' as the rectangle

(**) il =CA+1D);  Iml=C1+In'|+Q€')

Since |pm-1-£(¢1,¢’')| is majorized by a constant mutiple of
(1+]¢')™1-*, and both |¢;] and the length of T’ by constant multiples
of (1 +{¢']), we get

(**%) ID{I?L-(IM,C')I <C(1+ IC‘|)m-‘k+jeC(|$1|+1)[1+l1l'|+9(|€'l)]
for some constant C. In particular,

\Be(zs, ¢)| < CeCllss DI Hrela’ +Cz +1QAE D

for all € > 0 and some constant C. Hence, by Paley-Wiener Theorem,
H(z,,(’) is the Fourier-Laplace transform of an element Hp(z;) of
EL(R"1) given by

<Hy(en),6 >= 20 [ Bulen, €)3(-€)de
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when ¢ is in D,,(R"~!). We define < D Hi(z1),6 >= D) <Hi(z1),6> .

Then our estimates imply
< DiH(e1),¢>= (20" [ DIBu(er, €)0-€)ae"
Thus D! Hi(z,) € €,(R™) and [D! Hi(z))(¢") = DI Hi(z1,¢"). And
P(D1, €)Bx(e1,€) = (i)™ [ €6 prn1a(G1, )i = 0

since the integrand is analytic. So P(D;, D')Hi(z1) = 0. On the other
hand, we have

DIH(0,¢') = (2mi)™? /Fc{pm-l_k(Cl,c’)/P(Cl,C’)dG-
The integrand is
Epm1-(C1, ")/ PG, ¢) =¢F T 4+ T K p1 -k (61, C)
— P(¢1, /P61, <)

The degree of (i in the numerator of the second term is majorized by
J—k—1+k=j—1, hence, by m — 2 when j < m. Since the degree
of (; in the denominator is m, we get

D{?Ik(o,c)=(2m)-1/<{"'"’dg for 0<j<m.
r

Thus D¥Hi(0) = § and D] Hi(0) = 0 when k # j < m. Finally, we lo-
calize the support of Hi(2?). Let ¢ be in D,(R"™!) with {(z?,2')|2’ €
supp¢} N suppE = @ and take v € D,(R) satisfying suppy C [-1,1]
and frﬁdx = 1. We set

Xe(ml, vy Tn) = Xe(-'l'ha’l) = 5—1"/’(5_1(11 - .'E?))(ﬁ(x')

Then X(¢) = Xe(1,¢') = emp[—i(la:‘l’]zl;(ecl )q@((’) and, for small € > 0,
supp xNsupp E = §. Hence, for all small ¢ > 0,

0 = E(pm-1-£(=D1, =D')x)

= (2m)" / ey (G Y€ )(—C)/ PGy )G
e(N,1)
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where o(N,t) is the surface (&1 +it(1+Q2(|&:]) +Q(J€'))), €2, .-, € ) with
t < —C(N), where C(N) is the w-hyperbolicity constant of P(D) with
respect to N. From Paley-Wiener Theorem, we have, for all A > 0, and
some Cj,

ieiC1$2,‘/;(_EC1)| < Cye—meitelm|-2a(ele))

Integrating first with respect to £ for fixed &', this estimate and the
analyticity of the integrand show that the integration path can be
deformed to a positively oriented circle I' surrounding the zeros (3 of
P((1,¢") when 0 < € < z!. Hence, letting € — 0, we have

_ —n i¢1xgpm—1—k(C1,§')<5(—§') .
0= (27) /R /re PG, ey dad

=i < Hi(2Y),6 > for z9>0.

Thus, (29, suppHi(z9)) is contained in supp E and in {z|z; = 20}
when z? > 0. Since this is trivial for ¥ = 0, the proof of the existence
is complete.

We remark that < Hi{z1), ¢ >€ Eu(R).

THEOREM 2.2. Let w € M. Let P(D) be of order m which is w-
hyperbolic with respect to N = (1,0,...,0). Then the Cauchy problem

P(Dy,D"Y¢(z3,2") = f(a1,2') for z1>a
D{(ﬁ(a, z') = gj(z") for 0<7<m
i1s w-wellposed in the direction N.

Proof. By translation invariance it is enough to consider the hyper-
plane < z,N >= 0. Because of the w-hyperbolicity with respect to
N and —N, P(D) has a unique fundamental solution £, with support
in {z|z; > 0}, and a unique fundamental solution E, with support in
{z|z1 < 0}. Write f = fi + f> where supp fi is in {z|z; > -1}, and
supp f2 is in {z|z1 < 1} and fi, f2 are in E,(R™). Set

(By % f1)(21,2") + (Ez * fo)(@1,2") = V(z1,2").

We apply Lemma 2.1 and the notations there. Writing
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the function
¢(.’L’1,1")
= Z/ Hi(z1,9")lgr(2' —¢') = D*V(0,2' — y")ldy' + V(z1,2")
k=0 Rn—l

belongs to £,(R"™) and solves the given problem. Indeed, from Lemma
2.2 in [10], we have V € £,(R"™). When 8 € D (R""!), we get

[Hi(21) * Bl(2") =< Hy(:1)("), Bz’ — ¢') >
= (2m)~"H / Hi(zr, €)e <€ > B(e')de".

Let a(r) bein D, (R"), and put u(zy, 2') = (Hg(z1)*8)(z')a(z). Then,
for all 4 in R, we get

a(#)=(2m)‘"/ / /e-"“-“—“hf’»
R Rn-1 T

o(2)B(E )Pm-1-1(C1, €)dC1dE dx.

Hence, by Fubini’s Theorem, we have

<0 [ [l G enliBe)ldlde

SCA/ €=U n=(61 8D Al B 1) e
Rn-—1

and |&1], |m| < C(1 + Q(J¢']) for some constants C’, Cy, and C. Thus
we get

()| < Cye~ kD) Ln_l eB(1+Q(|e’|))lB(§,)|d€,

for some constants C and B. Since 4 is in D, (R™"!), we conclude
that u is in D,(R"™). We also have Hi(z;) * 8 € £,(R") when 8 €
E(R™1), using a local unit. Consequently, ¢(z;,z') € EL(R") since
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V(0,2') € E.(R™!). And we have
’ m-—1
P(D1, D)(e1,) = P(D1, D) Y. [ Huanslan(e = v)
k=0 YR"~

— D¥V(0,2' —y")|dy' + P(D1,D")V(z1,2")

= Y P(D)Hi(z:) * (gx — DEV(O) + fu + f
k=0
- f’
and
m-—1
Dj¢(0,a") = > DIHi(0) * (g — DFV(0)) + DIV(0,2")
k=o

= D{H;(0) * (g; — DiV(0)) + D]V (0,z")
= g;(z") - DiV(0) + D{V(0)
=gi(z') for 0<j<m.

In order to prove the uniqueness, let
P(D;,D")¢(z1,2') =0 for ;>0
Dig(0,2')=0, for 0<j<m,
where ¢ € £,(R™). Since Pr(N) = 0, this implies that Dj¢(0,z') = 0
for every integer j > 0 and ' € R"!. Hence, applying Lemma 1.2,

we can write ¢ = g; + g2 where supp g; is in {z|z; > 0} and supp g2
is in {z|r1 < 0}, and ¢1, g2 belong to £,(R"™). And then we get

g1 =aq1 *6 =g *P(D)Eg =P(D)g1 *E2 ’—’0.

We have the following converse:

THEOREM 2.3. Let w € M. If the Cauchy problem is w-wellposed
in the direction N = (1, 0, ..., 0), then P is w-hyperbolic with respect
to N.

Proof. Assuming Pp,(N) # 0, we first prove that for any hin £ (H),
the set of all functions in &,(R") with supprotsin H = {z| < z,N >>
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0}, there is a unique function v in &,(H) such that P(D)v = h in R™.
Let h be any function in £,(H). Then, from the hypothesis, there is a
function ¢ in £,(R") such that P(D)¢ = h for z; > 0 and Dj¢ = 0
for z; = 0,0 < j < m. Since Pp(N) = 0, this implies that D{"*’¢ =0
for z; = 0 and for all j > 0. Putting

_ _ ¢ ’Lf $1_>_0
”"¢““{0 if £21<0

we then have v € £,(H) and P(D)v = h in R" by Lemma 1.2. The
uniqueness follows from the w-wellposedness in the halfspace z; > 0.

‘We now prove that Pp(N) # 0. Suppose that Po(N) =0. Let £ be

a fixed non-zero vector in R™ for which P,,,({) = 0 and consider
P(sN+1t£)=0, s,teC.

Using Puiseux’s Theorem, we have that for some positive integer p the
solution of this equation is

(=]

Hs) =5 cj(s7)

J=1

which is analytic for Is%I > M, for some constant M. Therefore, we
have

[t(s)| < Cls|*"%  if |s|>M, M suitable.

Now we choose a number p such that 1 — 11: < p < 1 and set, with

T>M,

tr+oo
u(x) =/ i<z aN+1(e)E> ~(4)* 4o
i

T—00
Here we define ($)? so that it is real and positive when s is on the

positive imaginary axis, and we choose a fixed branch of s% in the upper
half plane. Then we can prove that P(D)u = 0 and v;(z) = u(~=z) is
in C*°(H) and by Theorem 1.7.3 in [2] the function v; * ¢ is in £,(H)
for all ¢ € D,(H). We can choose ¢y € D, (H) for which v; * #g does
not vanish identically. For if ¢ € D(H) and [ ¢dz = 1 with supp
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¢ C B(0,1), then the function ¢.(z) = e "@(£) belongs to D,(H).
But v; * ¢, — vy in R™. Since v; does not vanish identically, this
implies the assertion. Now the function v(z) = vy * ¢p is in E,(H) and
v does not vanish identically with P(D)v = 0, which contradicts the w-
wellposedness of the Cauchy problem. We have proved that P,(N) # 0
and for all h € £,(H), there is a unique function v in £,(H) such that
P(D)v = h. This implies that the mapping ¢ — P{D)4¢ is a bijection
from £,(H) onto itself. Hence, by Theorems 2.1 and 2.2 in [10], P(D)
is w-hyperbolic with respect to N. The proof is complete.

REMARK. Because of the condition (v), w(§) = log(1 + |£|) can not
be contained in M. But the results in Lemma 1.2 still holds in this case.
So our previous results hold when w(£) = log(1+|{|), which is the result

of Garding[5]. And the results of Larsson[8] for w(¢) = [¢]%,d > 1, is
included in our results.

We now give an example referring to [9]. Let a1, ..., Gn be n fixed
real numbers such that an, # 0. Let P(D) be a differential operator
defined by

62

a
P(D) =a1= + ... +an_15ﬁ —an5$—2.

3:::1

Andlet w(€) = |€]7 = (£2+...+€2)1. Then, by Example in [10], P(D) is
w-hyperbolic with respect to N = (0, ..., 0, 1), but not hyperbolic with
respect to N in the distribution spaces provided that a, # 0 and ax # 0
for some 1 < k£ < n — 1. Hence the Cauchy problem is w-wellposed in
the direction N but not C*®-wellposed in the direction N if a,, # 0 and
ar #0forsome 1 <k <n-1.
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