WELLPOSEDNESS OF THE CAUCHY PROBLEMS

DAE HYEON PAHK AND BU HYEON KANG

1. Introduction

Let $\mathcal{D}'_{\omega}(R^n)$ denote the space of ultradistributions on R^n defined by Beurling[1] and P(D) be a differential operator of order m with constant coefficients. In [10] we have shown the following statements are equivalent:

- (a) P(D) is ω -hyperbolic with respect to the given vector N, that is, $P_m(N) \neq 0$ and there is a constant c > 0 such that $P(\xi + i\tau N) \neq 0$ for every $\xi \in \mathbb{R}^n$ and $\tau < -c(1 + \omega(\xi))$.
- (β) P(D) has a fundamental solution in $\mathcal{D}'_{\omega}(R^n)$ whose support is contained in a proper cone of the half space generated by N.

In this paper we show that the wellposedness of Cauchy problem for P(D) in \mathcal{E}_{ω} and the above properties in $\mathcal{D}'_{\omega}(\mathbb{R}^n)$ are equivalent for some limited class of $\omega's$.

To show this result we denote by $M(\text{respectively}, M_c)$ the set of all continuous real valued functions ω on \mathbb{R}^n satisfying the following conditions (i) - (vi)(respectively, (i) - (iv))

(i)
$$0 = \omega(0) \le \omega(\xi + \eta) \le \omega(\xi) + \omega(\eta), \quad \xi, \eta \in \mathbb{R}^n$$

$$(ii) \quad \int_{\mathbb{R}^n} \frac{\omega(\xi)}{(1+|\xi|)^{n+1}} d\xi < \infty$$

- (iii) $\omega(\xi) \ge a + b\log(1 + |\xi|)$ for some constants a and b > 0
- (iv) $\omega(\xi) = \Omega(|\xi|)$ for some even concave function Ω on R
- (v) $log t = o(\Omega(t))$ as $t \to \infty$
- (vi) $\Phi: t \longmapsto \Omega(e^t)$ is a convex function on R.

Received March 28, 1991. Revised July 11, 1991.

This research is supported by KRF, KOSEF and the Ministry of Education.

Beurling and Björck [2] defined the test function space as the set $\mathcal{D}_{\omega}(U)$ of all $\phi \in L^1(\mathbb{R}^n)$ such that ϕ has compact support in the open set U in \mathbb{R}^n and

$$\|\phi\|_{\lambda} = \int_{\mathbb{R}^n} |\hat{\phi}(\xi)| e^{\lambda \omega(\xi)} d\xi < \infty \quad \text{for every} \quad \lambda > 0$$

and $\mathcal{E}_{\omega}(U)$ the set of all complex valued functions ψ on U such that $\phi\psi$ is in $\mathcal{D}_{\omega}(U)$ for every ϕ in $\mathcal{D}_{\omega}(U)$. In this case they only require that ω satisfies the property (i) - (iv). The reader can find the definition of other spaces and related properties in [2]. In this paper we add two more conditions (v) and (vi) for our purpose, which are introduced by Braun, Meise and Taylor[3].

With these conditions they proved the following representation of $\mathcal{D}_{\omega}(U)$:

LEMMA 1.1. If $\omega \in M$ and U is an open set in \mathbb{R}^n , then

$$\mathcal{D}_{\omega}(U) = \{ \phi \in C_c^{\infty}(U) | \forall k \in \mathbf{N},$$

$$\sup_{\alpha \in N_c^n} \sup_{x \in U} |\phi^{(\alpha)}(x)| exp(-k\Phi^*(\frac{|\alpha|}{k})) < \infty \}$$

where Φ^* denotes the Young's conjugate of the convex function $\Phi(t) = \Omega(e^t)$.

Using this representation we obtain the following lemma which we need later.

LEMMA 1.2. If $\omega \in M$ and ϕ is in $\mathcal{D}_{\omega}(R^n)$ with $D_1^j\phi(0,x')=0$ for all $j=0,1,2,\ldots$ and $x'=(x_2,\ldots,x_n)\in R^{n-1}$, then the function ϕ_0 is in $\mathcal{D}_{\omega}(R^n)$, where ϕ_0 is given by

$$\phi_0(x) = \begin{cases} \phi(x) & \text{if } x_1 \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$

Proof. From the fact that $\phi_0 \in C^{\infty}(\mathbb{R}^n)$ and

$$\sup_{\alpha \in N_0^n} \sup_{x \in R^n} |\phi_0^{(\alpha)}(x)| exp(-k\Phi^*(\frac{|\alpha|}{k}))$$

$$\leq \sup_{\alpha \in N_0^n} \sup_{x \in R^n} |\phi^{(\alpha)}(x)| exp(-k\Phi^*(\frac{|\alpha|}{k})) < \infty,$$

for every k = 1, 2, ..., it follows, due to lemma 1.1, $\phi_0 \in \mathcal{D}_{\omega}(\mathbb{R}^n)$.

2. Wellposedness of the Cauchy Problems

Let a be any real number. Consider the following Cauchy problem:

$$(*) \qquad P(D)u = f \qquad \text{for} \qquad \langle x, N \rangle > a$$

$$D_N^j u = g_j \qquad \text{for} \qquad \langle x, N \rangle = a \quad \text{and} \quad 0 \leq j < m,$$

when $f \in \mathcal{E}_{\omega}(\mathbb{R}^n)$ and $g_j \in \mathcal{E}_{\omega}(\mathbb{R}^{n-1})$. Here P(D) is a partial differential operator of order m and of constant coefficients, and D_N denotes the derivation along $N \in \mathbb{R}^n - \{0\}$.

For a given real number a, the Cauchy problem (*) is said to be ω -wellposed for P in the half-space $< x, N > \geq a$ if, for all $f \in \mathcal{E}_{\omega}(\mathbb{R}^n)$ and all $g_j \in \mathcal{E}_{\omega}(\mathbb{R}^{n-1})$, there exists a unique function u in $\mathcal{E}_{\omega}(\mathbb{R}^n)$ such that (*) holds. And the Cauchy problem is said to be ω -wellposed for P in the direction N if and only if it is ω -wellposed in every half-space $< x, N > \geq a, \quad a \in \mathbb{R}$. But we note that this is equivalent to the ω -wellposedness in the half space $< x, N > \geq 0$.

We may consider our problem for N = (1, 0, ..., 0). Then we can write

$$D = (D_1, ..., D_n) = (D_1, D'),$$

$$\zeta = (\zeta_1, \zeta') = (\xi_1 + i\eta_1, \xi' + i\eta'),$$

$$P(D) = P(D_1, D') \quad \text{and} \quad P(\zeta) = P(\zeta_1, \zeta').$$

We now have the following lemma from the ω -hyperbolicity.

LEMMA 2.1. Let $\omega \in M_c$, and P(D) be of order m and ω -hyperbolic with respect to N=(1,0,...,0). Then, for $0 \leq k < m$ and $x_1 \in R$, there is a distribution $H_k(x_1) \in \mathcal{E}'_{\omega}(R^{n-1})$ such that

- (1) $D_1^j H_k(x_1) \in \mathcal{E}'_{\omega}(\mathbb{R}^{n-1})$ for every $j \geq 0$, $P(D_1, D') H_k(x_1) = 0$, $D_1^k H_k(0) = \delta$ and $D_1^j H_k(0) = 0$ when $k \neq j < m$.
- (2) $\{(x_1^0, x')|x' \in supp H_k(x_1^0)\} \subset supp E \cap \{x|x_1 = x_1^0\} \text{ for } x_1^0 \geq 0,$ when E is the fundamental solution of P(D) given by the ω -hyperbolicity of P(D) with respect to N.

Proof. We write

$$P(\zeta) = P(\zeta_1, \zeta') = \sum_{j=0}^{m} \zeta_1^{m-j} q_j(\zeta')$$

and define

$$p_k(\zeta_1,\zeta')=\sum_{j=0}^k\zeta_1^{k-j}q_j(\zeta').$$

Let Γ be a simple, positively oriented curve which for fixed ζ' surrounds the zeros ζ_1 of $P(\zeta_1, \zeta')$. Then the function $\widehat{H}_k(x_1, \zeta')$, defined by

$$\widehat{H}_k(x_1,\zeta') = \frac{1}{2\pi i} \int_{\Gamma} e^{i\zeta_1 x_1} \frac{p_{m-1-k}(\zeta_1,\zeta')}{P(\zeta_1,\zeta')} d\zeta_1,$$

is an entire function of ζ' for every x_1 and every k by the continuity in ζ' of the solution curve. According to the ω -hyperbolicity of P(D), we have

$$|\zeta_1| \le C(1+|\zeta'|)$$
 and $|\eta_1| \le C(1+|\eta'|+\Omega(|\xi'|)+\Omega(|\xi_1|))$

for some constant C when $P(\zeta_1, \zeta') = 0$. And from the conditions (i) and (ii) of ω we also have

$$|\xi_1| < C(1+|\zeta'|)$$
 and $|\eta_1| < C(1+|\eta'|+\Omega(|\xi'|))$

for some constant C when $P(\zeta_1, \zeta') = 0$. In order to estimate $D_1^j \widehat{H}_k(x_1, \zeta')$, we can then choose Γ as the rectangle

(**)
$$|\xi_1| = C(1+|\zeta'|); \qquad |\eta_1| = C(1+|\eta'|+\Omega(|\xi'|)).$$

Since $|p_{m-1-k}(\zeta_1,\zeta')|$ is majorized by a constant mutiple of $(1+|\zeta'|)^{m-1-k}$, and both $|\zeta_1|$ and the length of Γ by constant multiples of $(1+|\zeta'|)$, we get

$$|D_1^j \widehat{H}_k(x_1, \zeta')| \le C(1 + |\zeta'|)^{m-k+j} e^{C(|x_1|+1)[1+|\eta'|+\Omega(|\xi'|)]}$$

for some constant C. In particular,

$$|\widehat{H}_k(x_1,\zeta')| < Ce^{C(|x_1|+1)|\eta'|+\epsilon|\eta'|+C(|x_1|+1)\Omega(|\xi'|)}$$

for all $\epsilon > 0$ and some constant C. Hence, by Paley-Wiener Theorem, $\widehat{H}_k(x_1, \zeta')$ is the Fourier-Laplace transform of an element $H_k(x_1)$ of $\mathcal{E}'_{\omega}(\mathbb{R}^{n-1})$ given by

$$< H_k(x_1), \phi> = (2\pi)^{-n+1} \int_{R^{n-1}} \widehat{H}_k(x_1, \xi') \widehat{\phi}(-\xi') d\xi'$$

when ϕ is in $\mathcal{D}_{\omega}(R^{n-1})$. We define $< D_1^j H_k(x_1), \phi> = D_1^j < H_k(x_1), \phi>$. Then our estimates imply

$$< D_1^j H_k(x_1), \phi> = (2\pi)^{-n+1} \int D_1^j \widehat{H}_k(x_1, \xi') \widehat{\phi}(-\xi') d\xi'.$$

Thus $D_1^j H_k(x_1) \in \mathcal{E}'_{\omega}(\mathbb{R}^{n-1})$ and $[D_1^j H_k(x_1)](\zeta') = D_1^j \widehat{H}_k(x_1, \zeta')$. And

$$P(D_1,\xi')\widehat{H}_k(x_1,\xi') = (2\pi i)^{-1} \int_{\Gamma} e^{i\zeta_1 x_1} p_{m-1-k}(\zeta_1,\xi') d\zeta_1 = 0$$

since the integrand is analytic. So $P(D_1, D')H_k(x_1) = 0$. On the other hand, we have

$$D_1^j \widehat{H}_k(0,\zeta') = (2\pi i)^{-1} \int_{\Gamma} \zeta_1^j p_{m-1-k}(\zeta_1,\zeta') / P(\zeta_1,\zeta') d\zeta_1.$$

The integrand is

$$\zeta_1^j p_{m-1-k}(\zeta_1, \zeta') / P(\zeta_1, \zeta') = \zeta_1^{j-k-1} + \zeta_1^{j-k-1} [\zeta_1^{k+1} p_{m-1-k}(\zeta_1, \zeta') - P(\zeta_1, \zeta')] / P(\zeta_1, \zeta').$$

The degree of ζ_1 in the numerator of the second term is majorized by j-k-1+k=j-1, hence, by m-2 when j < m. Since the degree of ζ_1 in the denominator is m, we get

$$D_1^j \widehat{H}_k(0,\zeta') = (2\pi i)^{-1} \int_{\Gamma} \zeta_1^{j-k-1} d\zeta_1 \quad \text{for} \quad 0 \le j < m.$$

Thus $D_1^k H_k(0) = \delta$ and $D_1^j H_k(0) = 0$ when $k \neq j < m$. Finally, we localize the support of $H_k(x_1^0)$. Let ϕ be in $\mathcal{D}_{\omega}(R^{n-1})$ with $\{(x_1^0, x') | x' \in supp \phi\} \cap supp E = \emptyset$ and take $\psi \in \mathcal{D}_{\omega}(R)$ satisfying $supp \psi \subset [-1, 1]$ and $\int \psi dx = 1$. We set

$$\chi_{\epsilon}(x_1,...,x_n) = \chi_{\epsilon}(x_1,x') = \epsilon^{-1}\psi(\epsilon^{-1}(x_1-x_1^0))\phi(x').$$

Then $\hat{\chi}_{\epsilon}(\zeta) = \hat{\chi}_{\epsilon}(\zeta_1, \zeta') = exp[-i\zeta_1x_1^0]\hat{\psi}(\epsilon\zeta_1)\hat{\phi}(\zeta')$ and, for small $\epsilon > 0$, supp $\chi_{\epsilon} \cap \text{supp } E = \emptyset$. Hence, for all small $\epsilon > 0$,

$$0 = E(p_{m-1-k}(-D_1, -D')\chi_{\epsilon})$$

$$= (2\pi)^{-n} \int_{\sigma(N,t)} e^{i\zeta_1 x_1^0} p_{m-1-k}(\zeta_1, \zeta') \hat{\psi}(-\epsilon\zeta_1) \hat{\phi}(-\zeta') / P(\zeta_1, \zeta') d\zeta$$

where $\sigma(N,t)$ is the surface $(\xi_1+it(1+\Omega(|\xi_1|)+\Omega(|\xi'|)), \xi_2,...,\xi_n)$ with $t \leq -C(N)$, where C(N) is the ω -hyperbolicity constant of P(D) with respect to N. From Paley-Wiener Theorem, we have, for all $\lambda > 0$, and some C_{λ} ,

$$|e^{i\zeta_1x_1^0}\hat{\psi}(-\epsilon\zeta_1)| \leq C_{\lambda}e^{-\eta_1x_1^0+\epsilon|\eta_1|-\lambda\Omega(\epsilon|\xi_1|)}.$$

Integrating first with respect to ξ_1 for fixed ξ' , this estimate and the analyticity of the integrand show that the integration path can be deformed to a positively oriented circle Γ surrounding the zeros ζ_1 of $P(\zeta_1,\zeta')$ when $0<\epsilon< x_1^0$. Hence, letting $\epsilon\longrightarrow 0$, we have

$$0 = (2\pi)^{-n} \int_{R^{n-1}} \int_{\Gamma} e^{i\zeta_1 x_1^0} \frac{p_{m-1-k}(\zeta_1, \xi') \hat{\phi}(-\xi')}{P(\zeta_1, \xi')} d\zeta_1 d\xi'$$

= $i < H_k(x_1^0), \phi >$ for $x_1^0 > 0$.

Thus, $(x_1^0, supp H_k(x_1^0))$ is contained in supp E and in $\{x|x_1 = x_1^0\}$ when $x_1^0 > 0$. Since this is trivial for $x_1^0 = 0$, the proof of the existence is complete.

We remark that $\langle H_k(x_1), \phi \rangle \in \mathcal{E}_{\omega}(R)$.

THEOREM 2.2. Let $\omega \in M$. Let P(D) be of order m which is ω -hyperbolic with respect to N = (1, 0, ..., 0). Then the Cauchy problem

$$P(D_1, D')\phi(x_1, x') = f(x_1, x')$$
 for $x_1 > a$
 $D_1^j \phi(a, x') = g_j(x')$ for $0 \le j < m$

is ω -wellposed in the direction N.

Proof. By translation invariance it is enough to consider the hyperplane $\langle x, N \rangle = 0$. Because of the ω -hyperbolicity with respect to N and -N, P(D) has a unique fundamental solution E_1 with support in $\{x|x_1 \geq 0\}$, and a unique fundamental solution E_2 with support in $\{x|x_1 \leq 0\}$. Write $f = f_1 + f_2$ where supp f_1 is in $\{x|x_1 \geq -1\}$, and supp f_2 is in $\{x|x_1 \leq 1\}$ and f_1, f_2 are in $\mathcal{E}_{\omega}(\mathbb{R}^n)$. Set

$$(E_1 * f_1)(x_1, x') + (E_2 * f_2)(x_1, x') = V(x_1, x').$$

We apply Lemma 2.1 and the notations there. Writing

$$< H_k(x_1), \psi > = \int_{\mathbb{R}^{n-1}} H_k(x_1, x') \psi(x') dx'$$

the function

$$\phi(x_1, x') = \sum_{k=0}^{m} \int_{R^{n-1}} H_k(x_1, y') [g_k(x' - y') - D^k V(0, x' - y')] dy' + V(x_1, x')$$

belongs to $\mathcal{E}_{\omega}(R^n)$ and solves the given problem. Indeed, from Lemma 2.2 in [10], we have $V \in \mathcal{E}_{\omega}(R^n)$. When $\beta \in \mathcal{D}_{\omega}(R^{n-1})$, we get

$$\begin{split} [H_k(x_1) * \beta](x') = & < H_k(x_1)(y'), \beta(x' - y') > \\ & = (2\pi)^{-n+1} \int \widehat{H}_k(x_1, \xi') e^{i < x', \xi' >} \widehat{\beta}(\xi') d\xi'. \end{split}$$

Let $\alpha(x)$ be in $\mathcal{D}_{\omega}(\mathbb{R}^n)$, and put $u(x_1, x') = (H_k(x_1) * \beta)(x')\alpha(x)$. Then, for all μ in \mathbb{R}^n , we get

$$\hat{u}(\mu) = (2\pi i)^{-n} \int_{R^n} \int_{R^{n-1}} \int_{\Gamma} e^{-i\langle x, \mu - (\zeta_1, \xi') \rangle}$$
$$\alpha(x) \hat{\beta}(\xi') p_{m-1-k}(\zeta_1, \xi') d\zeta_1 d\xi' dx.$$

Hence, by Fubini's Theorem, we have

$$\begin{aligned} |\hat{u}(\mu)| &\leq C' \int_{R^{n-1}} \int_{\Gamma} |\hat{\alpha}(\mu - (\zeta_1, \xi'))| |\hat{\beta}(\xi')| |d\zeta_1| d\xi' \\ &\leq C_{\lambda} \int_{R^{n-1}} e^{-\lambda \Omega(|\mu - (\xi_1, \xi')|)} e^{A|\eta_1|} |\hat{\beta}(\xi')| d\xi' \end{aligned}$$

and $|\xi_1|, |\eta_1| \leq C(1 + \Omega(|\xi'|))$ for some constants C', C_{λ} , and C. Thus we get

$$|\hat{u}(\mu)| \le C_{\lambda} e^{-\lambda\Omega(|\mu|)} \int_{R^{n-1}} e^{B(1+\Omega(|\xi'|))} |\hat{\beta}(\xi')| d\xi'$$

for some constants C_{λ} and B. Since β is in $\mathcal{D}_{\omega}(R^{n-1})$, we conclude that u is in $\mathcal{D}_{\omega}(R^n)$. We also have $H_k(x_1) * \beta \in \mathcal{E}_{\omega}(R^n)$ when $\beta \in \mathcal{E}_{\omega}(R^{n-1})$, using a local unit. Consequently, $\phi(x_1, x') \in \mathcal{E}_{\omega}(R^n)$ since

 $V(0,x') \in \mathcal{E}_{\omega}(\mathbb{R}^{n-1})$. And we have

$$P(D_1, D')\phi(x_1, x') = P(D_1, D') \sum_{k=0}^{m-1} \int_{R^{m-1}} H_k(x_1, y') [g_k(x' - y') - D_1^k V(0, x' - y')] dy' + P(D_1, D') V(x_1, x')$$

$$= \sum_{k=0}^{m-1} P(D) H_k(x_1) * (g_k - D_1^k V(0)) + f_1 + f_2$$

$$= f,$$

and

$$\begin{split} D_1^j \phi(0, x') &= \sum_{k=0}^{m-1} D_1^j H_k(0) * (g_k - D_1^k V(0)) + D_1^j V(0, x') \\ &= D_1^j H_j(0) * (g_j - D_1^j V(0)) + D_1^j V(0, x') \\ &= g_j(x') - D_1^j V(0) + D_1^j V(0) \\ &= g_j(x') \quad \text{for} \quad 0 \le j < m. \end{split}$$

In order to prove the uniqueness, let

$$P(D_1, D')\phi(x_1, x') = 0$$
 for $x_1 > 0$
 $D_1^j \phi(0, x') = 0$, for $0 \le j < m$,

where $\phi \in \mathcal{E}_{\omega}(\mathbb{R}^n)$. Since $P_m(N) = 0$, this implies that $D_1^j \phi(0, x') = 0$ for every integer $j \geq 0$ and $x' \in \mathbb{R}^{n-1}$. Hence, applying Lemma 1.2, we can write $\phi = g_1 + g_2$ where supp g_1 is in $\{x | x_1 \geq 0\}$ and supp g_2 is in $\{x | x_1 \leq 0\}$, and g_1, g_2 belong to $\mathcal{E}_{\omega}(\mathbb{R}^n)$. And then we get

$$g_1 = g_1 * \delta = g_1 * P(D)E_2 = P(D)g_1 * E_2 = 0.$$

We have the following converse:

THEOREM 2.3. Let $\omega \in M$. If the Cauchy problem is ω -wellposed in the direction $N=(1,\,0,\,...,\,0)$, then P is ω -hyperbolic with respect to N.

Proof. Assuming $P_m(N) \neq 0$, we first prove that for any h in $\mathcal{E}_{\omega}(H)$, the set of all functions in $\mathcal{E}_{\omega}(\mathbb{R}^n)$ with supprots in $H = \{x \mid \langle x, N \rangle \geq 1\}$

0}, there is a unique function v in $\mathcal{E}_{\omega}(H)$ such that P(D)v = h in \mathbb{R}^n . Let h be any function in $\mathcal{E}_{\omega}(H)$. Then, from the hypothesis, there is a function ϕ in $\mathcal{E}_{\omega}(\mathbb{R}^n)$ such that $P(D)\phi = h$ for $x_1 > 0$ and $D_1^j\phi = 0$ for $x_1 = 0, 0 \le j < m$. Since $P_m(N) = 0$, this implies that $D_1^{m+j}\phi = 0$ for $x_1 = 0$ and for all $j \ge 0$. Putting

$$v = \phi_0 = \begin{cases} \phi & if \quad x_1 \ge 0 \\ 0 & if \quad x_1 \le 0 \end{cases}$$

we then have $v \in \mathcal{E}_{\omega}(H)$ and P(D)v = h in \mathbb{R}^n by Lemma 1.2. The uniqueness follows from the ω -wellposedness in the halfspace $x_1 \geq 0$.

We now prove that $P_m(N) \neq 0$. Suppose that $P_m(N) = 0$. Let ξ be a fixed non-zero vector in \mathbb{R}^n for which $P_m(\xi) = 0$ and consider

$$P(sN + t\xi) = 0, \qquad s, t \in C.$$

Using Puiseux's Theorem, we have that for some positive integer p the solution of this equation is

$$t(s) = s \sum_{j=1}^{\infty} c_j (s^{-\frac{1}{p}})^j$$

which is analytic for $|s^{\frac{1}{p}}| > M$, for some constant M. Therefore, we have

$$|t(s)| \le C|s|^{1-\frac{1}{p}}$$
 if $|s| > M$, M suitable.

Now we choose a number ρ such that $1 - \frac{1}{p} < \rho < 1$ and set, with $\tau > M$,

$$u(x) = \int_{i\tau - \infty}^{i\tau + \infty} e^{i\langle x, sN + t(s)\xi \rangle} e^{-(\frac{s}{i})^{\rho}} ds.$$

Here we define $(\frac{s}{i})^{\rho}$ so that it is real and positive when s is on the positive imaginary axis, and we choose a fixed branch of $s^{\frac{1}{\rho}}$ in the upper half plane. Then we can prove that P(D)u = 0 and $v_1(x) = u(-x)$ is in $C^{\infty}(H)$ and by Theorem 1.7.3 in [2] the function $v_1 * \phi$ is in $\mathcal{E}_{\omega}(H)$ for all $\phi \in \mathcal{D}_{\omega}(H)$. We can choose $\phi_0 \in \mathcal{D}_{\omega}(H)$ for which $v_1 * \phi_0$ does not vanish identically. For if $\phi \in \mathcal{D}_{\omega}(H)$ and $\int \phi dx = 1$ with supp

 $\phi \subset \overline{B(0,1)}$, then the function $\phi_{\epsilon}(x) = \epsilon^{-n}\phi(\frac{x}{\epsilon})$ belongs to $\mathcal{D}_{\omega}(H)$. But $v_1 * \phi_{\epsilon} \longrightarrow v_1$ in R^n . Since v_1 does not vanish identically, this implies the assertion. Now the function $v(x) = v_1 * \phi_0$ is in $\mathcal{E}_{\omega}(H)$ and v does not vanish identically with P(D)v = 0, which contradicts the ω -wellposedness of the Cauchy problem. We have proved that $P_m(N) \neq 0$ and for all $h \in \mathcal{E}_{\omega}(H)$, there is a unique function v in $\mathcal{E}_{\omega}(H)$ such that P(D)v = h. This implies that the mapping $\phi \longmapsto P(D)\phi$ is a bijection from $\mathcal{E}_{\omega}(H)$ onto itself. Hence, by Theorems 2.1 and 2.2 in [10], P(D) is ω -hyperbolic with respect to N. The proof is complete.

REMARK. Because of the condition (v), $\omega(\xi) = log(1 + |\xi|)$ can not be contained in M. But the results in Lemma 1.2 still holds in this case. So our previous results hold when $\omega(\xi) = log(1+|\xi|)$, which is the result of G_{α}^{o} rding[5]. And the results of Larsson[8] for $\omega(\xi) = |\xi|^{\frac{1}{d}}$, d > 1, is included in our results.

We now give an example referring to [9]. Let $a_1, ..., a_n$ be n fixed real numbers such that $a_n \neq 0$. Let P(D) be a differential operator defined by

$$P(D) = a_1 \frac{\partial}{\partial x_1} + \dots + a_{n-1} \frac{\partial}{\partial x_{n-1}} - a_n \frac{\partial^2}{\partial x_n^2}.$$

And let $\omega(\xi) = |\xi|^{\frac{1}{2}} = (\xi_1^2 + ... + \xi_n^2)^{\frac{1}{4}}$. Then, by Example in [10], P(D) is ω -hyperbolic with respect to N = (0, ..., 0, 1), but not hyperbolic with respect to N in the distribution spaces provided that $a_n \neq 0$ and $a_k \neq 0$ for some $1 \leq k \leq n-1$. Hence the Cauchy problem is ω -wellposed in the direction N but not C^{∞} -wellposed in the direction N if $a_n \neq 0$ and $a_k \neq 0$ for some $1 \leq k \leq n-1$.

References

- 1. A. Beurling, On quasi-analyticity and general distributions, Lectures 4 and 5. A.M.S. Summer Institute, Stanford (1961).(mimeographed).
- G. Björck, Linear partial differential operators and generalized distributions, Arkiv. Math. 6 (1966), 351-407.
- 3. R. W. Braun, R. Meise and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, manuscript.
- 4. J. Chazarain and A. Piriou, Introduction to the theory of linear partial differential equations, Tonbridge, England (1981), 325-378.

- 5. L. Gårding, Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85 (1950), 1-62.
- L. Hörmander, Linear partial differential operators, Band 116, Berlin, Germany (1969), 114-155.
- 7. _____, The analysis of linear partial differential operators II, Grundlehren der Mathematischen Wissenschaften 257, Berlin, Germany (1983), 112-181.
- 8. E. Larsson, Generalized hyperbolicity, Arkiv för Mathematik, Band 7 nr 2, Inst. of Mathematics, Lund, Sweden (1967), 11-32.
- 9. S. Mizohata, On the Cauchy problem, 3, Notes and Reports in Mathematics in Science and Engineering (1985), 60-62.
- 10. D. H. Pahk and B. H. Kang, Hyperbolicity in the Beurling's generalized distribution spaces, Journal of Korean Math. Soc. 27 (1990), 33-45.
- 11. M. C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Ec. Norm. Sup. 77, France (1960), 41-121.

Department of Mathematics Yonsei University Seoul 120-749, Korea

Department of Mathematics Pusan University of Foreign Studies Pusan 608–738, Korea