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THE GAUSS EQUATIONS AND ELLIPTICITY

OF ISOMETRIC EMBEDDINGS1

CHUNG KI CHO AND CHONG KyU HAN

o. Introduction

In this paper we are concerned with the ellipticity of isometric em­
beddings of Riemannian manifolds into Euclidean spaces. The notion
of ellipticity of embeddings was first defined by N. Tanaka [6] for the
purpose of studying the rigidity of embeddings. He defined an isometric
embedding F to be elliptic if for each normal direction the second fun­
damental form has two eigenvalues of the same sign. In [6] he showed
that if F is an elliptic embedding, then the linear system of partial
differential equations associated with infinitesimal deformations of F
is elliptic, so that the space of infinitesimal deformations of an elliptic
embedding of a compact Riemannian manifold is of finite dimension.
It follows that an elliptic embedding F of a compact Riemannian man­
ifold into a Euclidean space is rigid.

In §1 of this paper, we construct compatibility equations of isomet­
ric embedding equations by a method due to A. Finzi [1] and show
that the classical equation of Gauss is a compatibility equation of this
type. In §2 we show that under certain conditions these compatibility
equations form an elliptic system. Theorem 4 proves that if an isomet­
ric embedding F is elliptic in Tanaka's sense then F is elliptic in our
sense, in the case of codimension 1. (We do not know yet whether this
is true for higher codimensions.) An immediate consequence is that if
M is an analytic Riemannian manifold and F an elliptic embedding of
M into a Euclidean space, then F is analytic provided F is twice con­
tinuously differentiable (Corollary 5). The authors thank the referee
for his interest and for pointing out several mistakes.
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1. Compatibility equations of Finzi type

In this section we adopt the definitions and notations of Olver [5]:
Let X be an open subset of RP and for each x E X let (x, u(n») denote
the n-jet of a function u, namely, u and all the partial derivatives of
u up to order n at x . . We denote by X X u(n) the space of n-jets
over X. Suppose we are considering a system of n-th order differential
equations

(1) ~k(X, u(n») = 0, k = 1, ... , l,

for unknown functions u = (u l , . .. , uq ) of p independent variables x =
(xl ... ,xP), where ~k is a polynomial in u(n) with coefficients which
are Coo functions of x.

By a compatibility equation for (1) we mean a partial differential
equation which is satisfied by any solution u = I(x) of (1). Suppose
that there exist homogeneous m-th order differential operators

L:k=L BI(x,u(n»)DJ, k=l, ... ,l,
IJI=m

not all zero at any point (x, u(n») in the n-jet space X x u(n), such that

the combination L:i=l £k~k depends only on derivatives of order at
most m +n - 1, where DJ denotes total differentiation. Such operators
exist when the principal part of each £II~II cancels out in the process
of summation. We then obtain equations which reveal the properties
of solutions that are due to the lower order terms of (1). We shall call
such an equation a compatibility equation of Finzi type for (1).

A sufficient condition on ~ for such a compatibility equation to exist
is found in the following

THEOREM 1 (FINZI [1]). Let ~k(X,U(n») = 0, k = 1, ... ,q be an
n-th order determined system of differential equations. Suppose that
~ has no noncharacteristic directions at (xo, u~n»). Then there exist
homogeneous m-th order differential operators L:k = L:IJ\=m Bf(x,

u(n»)DJ, k = 1, ... , q, not all zero at (xo, u~n»), such that at (xo, u~n»)
the combination L:i=l L:k~k depends only on derivatives of u of order
at most n + m - 1.
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Moreover, if there are no noncharacteristic directions for Ll for all
(x, u(n») in some relatively open subset {(x, u(n») E X X u(n) : Ll(x, u(n»)
= O} n V, with V open in X x u(n), then the differential operators £k
depend smoothly on (x, u(n»).

The key to the proof is the observation of the fact that Ll has no
noncharacteristic directions at (xQ, u~n») if and only if the determinant
of the principal symbol matrix M(~) is identically zero for all ~ E RP
at (xQ, u~n»). So we can state the same existence theorem for overde­
termined systems by replacing the condition of nonexistence of non­
characteristic directions with the one that the principal symbol matrix
M(O is not of maximal rank for any choice of ~.

Now let (M,g) be an n-dimensional Riemannian manifold, and F:
M -+ En+p be an isometric embedding of M into a Euclidean space
En+p.

Let P be a point of Al and let M = F( M). We may assume
that F(P) = 0, where 0 is the origin of En+p. Let (yl, ... , yn+p)

be the standard coordinates of En:p so that To(M) is spanned by

a~l'" . , a:n, and ay~+l"'" ay~+p form a basis of To(M)J... We write
F = (/1, ... , jn+p ) coordinatewise, and choose a coordinate system

(xl, ... , Xn) on a neighborhood n of P such that F*( ~o .Ip) = ~o .10.
VXI vyl

Then we have

(2) ojk { 1-.(P) =ox l 0

if i = k

otherwise

(3)

On n the Riemannian metric 9 is represented by a positive definite
symmetric matrix [gij]nxn, where each gij is a real valued Coo function
on n. Then the function F = (il, ... , jn+p ) satisfies the following
system:

n+p ouk ouk. "
~~~ =gij, l=l, ... ,n, J =z, ... ,n,L VXI vJ.')
k=l

which is called a local isometric embedding equation. Let

(4)
n+p a k a k

Llij(X,u(l»)=~ aU' ~u. -gij(X),, L Xl vx)
k=l
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then the isometric embedding equations are written as

(5) ~i,j(x,u(l» = 0, i = 1, ... ,n, j = i, ... ,n.

This is a system of first order non-linear partial differential equations.
From now on we assume p :::;; n(n;l), so that the system (5) is deter­

mined if p = n(n
2
-1) or overdetermined if p < n(n

2
-O. Furthermore,

noting (2), we see that the last p columns of the symbol matrix M(e)
of (5) at 0 are identically zero, so M(e) is not of maximal rank at
(P, F(P» for any eE Rn. Thus we can find Finzi type compatibility
equations for (5).

THEOREM 2. For each pair ofintegers i < j = 2, ... , n, the equation

1
(6) -'2 {Dj,j.6.i,i - 2Di,j.6.i,j + Di,i.6.j,j} == Ki,i = 0,

where Di,i is the total differentiation with respect to xi and xi, is a
compatibility equation of Finzi type for (5).

Proof. This is a result of direct calculation of the left hand side of
the equation. Substitute .6.i,j in (6) by (4), then all the third order
partial derivatives of u's cancel out and we have

From the compatibility equation Ki,j = 0 we obtain n(n - 1)/2
differential functions

n+p {fPuk fJ2uk [82
U

k
] 2}

Ii,j == {; (8Xi)2 (8Xi )2 - 8xi8xi '

which are invariant under choice of solution u. Now we will show that
(6) is equivalent to the Gauss curvature equations. These state that
the sectional curvatures are given by

(7) (X Y)
_ (a(X, X), a(Y, Y») - (a(X, Y), a(X, Y»)

KM 1\ - ,
(X, X)(Y, Y) - (X, Y)(X, Y)
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for any pair of linearly independent vectors X and Y of Tx(M), \:Ix E
M. Here a is the second fundamental form of M, K-M denote the
sectional curvature in 111 and (".) denote the usual Euclidean inner
product. In local coordinates, (7) is represented by a system of second
order partial differential equations. In particular at the reference point
PE M, the equation (7) with X = -1xr and Y = I;; becomes

which turns out to be the expression at P of Ki,j = O. To see this, we
define two real valued functions <P and W on n by

where V denotes the covariant differentiation of M. Then both <P
and W describe quantities intrinsic to M, i.e., they are independent of
embedding. Observe that

Then

Therefore the relation between the Finzi type invariants and the sec­
tional curvatures in AI is given by

a a
Ii j(P) = <P(P) + K-M (-a. /\ -a.)(P).

, Xl xJ
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On the other hand, for each i ~ j = 1, ... , n, differentiating D..i,i
with respect to xi and xi also produce compatibility equations for (5).

Consequently we obtain a system of compatibility equations for (5):

(8)
Hi,i(x, u(2») = 0, i = 1, , n, j = 1, ... , n,

Ki,j(x, U (2») = 0, i = 1, ,n, j = i + 1, ... , n.

2. The ellipticity of isometric embeddings

The isometric embedding equation (3) is not elliptic if p 2: 1. How­
ever, the system (8) of compatibility equations is elliptic under certain
conditions. In [2], it is shown that in the cases of embeddings of codi­
mension 1, the first equation of (8) and the Gauss curvature equations
(7) form an elliptic system if the second fundamental form has three
nonzero eigenvalues. In this section we generalize this result :

Let (M,g) be an n-dimensional Riemannian manifold and F: M-+
En+p be an isometric ~mbeddingwith M = F(M). For any vector N
normal to M at x E A1, we define a symmetric bilinear form E> N on
Tx(M) by .

E>N(X,Y) = (N, \lx\lyF), for X,Y E Tx(M).

This symmetric bilinear form E> N is called the second fundamental
form of F corresponding to the normal vector N. Our main result is
the following

THEOREM 3. Suppose that (lv[,g) is a Riemannian manifold of di­
mension n and F : A1 -+ En+p (p < n) is a local isometric embedding.
Suppose that for any vector N normal to M at 0 = F(P) E M, all
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eigenvalues ofe N are of tbe same sign or zero and at least two of tbem
are nonzero. Tben tbe system (8) of compatibility equations is elliptic
at F.

Proof. Consider the principal symbol matrix M(O,O of (8) at P,
which is of size {n 2 + tn(n - I)} x (n + p). We decompose this into
n + 1 blocks as

where Mi( 0, ~), i = 1, ... , n is the principal symbol of the system
consisting of n equations, Hi,i = 0, j = I, ... ,n, and Mn+1(O,e) is
that of the system Ki,i = 0, i = 1, ... ,n, j = i + 1, ... , n. Then, for
each i = 1, ... , n'

a 0 0 6ei 0·· ·0 0 O· .0]
M;(O,{l ~ [:

~~ 0 6ei 0·· ·0 0 0·· ·0

0 0 enei 0·· ·0 a 0···0 nx(n+p)

i i
i-th column n-th column

It is easy to see that for any nonzero ~ ERn the first n columns of
M(0,0 are linearly independent. The point of the proof is to show
that the last p columns of Mn+1(0,O are linearly independent. Let
M~+l be the (n +j )-th column of M n +1(0,0 and for a given nonzero

p-tuple (al, ... , ap ), consider linear combination A = 'L.J=l ai M~+l'
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Then A can be rewritten as

eN" (6 a~2 - 6 a~l ,6 a~2 - 6 a~l )
eN" (6 a~3 - 6 a~l ,6 a~3 - 6 a~l )

eN,,(6a~n -Ena~1,6a~n -Ena~l)
eN" (6 a~3 - 6 a~2 ,6 a~3 - 6 a~2 )

eN,,(En-la~n -Enax~-l,En-la~n -Enax~-l) n(n
2
-1)xl

8 8 - .Lwhere Na = al ayn+l + ... + ap 8 yn+p E To(M) . Let.AI, ... ,.An be

eigenvalues of eN" and let the vectors Zl, ... , Zn E To(M) be corre­
sponding orthonormal eigenvectors. Then there is an orthogonal ma­
trix B = [bij] n X n such that

a n

axilp = LbijZj, i = 1, ... ,n,
j=l

and A is written by

2.:~=1(En-1bnk - Enb(n-l)k?.Ak
Let us assume that .AI and .A2 are nonzero. Since all the eigenvalues of
eN" are of the same sign or zero, 2.:~=1 ajM~+l = 0 implies

Eibj1 - Ejbi1 = 0,

Eibj2 - Ejbi2 = 0,
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for i = 1, ... , n, j = i + 1, ... , n. It follows from the independence
of the first two columns of B that ~ = O. In other words, the last p
columns of Mn+I(O,O are linearly independent unless ~ = O. It then
follows that the principal symbol matrix is of maximal rank.

IT p = 1, we have the following

THEOREM 4. Suppose that (M,g) is a Riemannian manifold of
dimension n and F : M --. E n +l is an isometric embedding with
M = F(M). Suppose that the submanifold M has two nonzero prin­
cipal curvatures of the same sign at 0 = F(P). Then (8) is elliptic at
F.

Proof. It suffices to show that for any nonzero eERn, the last
column of the principal symbol matrix Mn+l (O,~) never vanishes un­

der the condition. Let N be the unit normal vector field of M with
Nlo = - ay~+l 10. (Recall that we are assuming M is tangent to
yn+I = 0 at 0.) The eigenvalues AI, ... , An of the second funda­
mental form 8 No of F corresponding to No are called the principal
curvatures at O. Since the eigenvectors corresponding to these eigen­
values are known to be orthononnal, we may assume that 1xr Ip is the
eigenvector corresponding to Aj, so that

(9)
if i = j

otherwise

Then using (2) and (9), the last column of Mn+I(O,O is

Aza + Al~?

A3a + AI~i

Ana + AI~~
A3~? + Az~i
A4a +Az~~
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which is a non-zero vector unless ~ = o. (Here, the condition on the
principal curvatures is needed). Therefore the principal symbol matrix
M(O,~) is of maximal rank. This completes the proof.

From the theory on the regularity of elliptic partial differential equa­
tions (cf. [4]), it follows the following

COROLLARY 5. Suppose that M is a real analytic Riemannian man­
ifold of dimension n and F : M -+ En+p is an isometric embedding.
If F is twice continuously differentiable and satisfies the conditions of
Theorem 3 or Theorem 4, then F is real analytic.
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