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LIPSCHITZ STABILITY AND

EXPONENTIAL ASYMPTOTIC

STABILITY IN PERTURBED SYSTEMS

SUNG KyU CHOI+, KI SHIK Koo++ AND KEON-HEE LEE+

1. Introduction

Dannan and Elaydi [3] introduced a new notion of stability, which
is called uniform Lipschitz stability (ULS), for systems of differential
equations. This notion of ULS lies somewhere between uniform stabil­
ity (US) on one side and the notions of asymptotic stability in variation
(ASV) and uniform stability in variation (USV) on the other side. An
important feature of ULS is that the linearized system inherits the
property of ULS from the original nonlinear system [3, Theorem 3.4].

Also, Elaydi and Farran [5] introduced the notion of exponential
asymptotic stability (EAS) which is a stronger notion than that of
ULS. They investigated the properties of EAS dynamical systems on a
compact Riemannian manifold, and gave some analytic criteria for an
autonomous differential system and its perturbed systems to be EAS.

Athanassov [1] defined global exponential stability in variation
(GESV) and then showed that the existence of Liapunov functions
when the zero solution of a nonlinear system is GESV. The stronger
notion than that of GESV is generalized exponential asymptotic sta­
bility in variation (G EASV) appeared in [6].

Taniguchi [9] obtained various stability theorems of perturbed dif­
ferential systems. We use his technique to investigate ULS for linear
perturbed systems.

In this paper \ve investigate the problems of ULS, EAS and GEASV
for the following various perturbed differential systems of the nonlinear
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differential system x' = f (t, x):

(PI) y' = A(t)y +g(t,y),

(P2 ) y' = f(t,y) + g(t,y),

(P3) y' = f(t,y) + g(t,y,Ty),

(P4 ) y' = f(t, y) + get, y) + het, y, Ty).

2. Lipschitz stability
Let Rn and R + be the n-dimensional Euclidean space and the set of

all nonnegative real numbers, respectively. Let the symbol 1·1 denote
any convenient norm on Rn and the corresponding norm for n X n real
matrices. C(X, Y) denotes the set of all continuous mappings from a
topological space X to a topological space Y.

Consider the nonlinear differential system

(N) x' = f(t,x), x(to) = Xo,

where f E C(R+ x Rn,Rn) with f(t,O) = 0. If we assume that f
has continuous partial derivatives of/ox on R + x Rn and the solution
x(t) = x(t, to, xo) of (N) through (to, xo) E R+ X Rn exists for t ;::: to ;:::
0, then

o
<p(t, to, xo) = -;--x(t, to, xo)

uXo
exists and is the solution of the variational system

(VI) z' = :Xf(t,x(t,to,xo»z

such that <p(to,to,xo) is the identity matrix [6].

DEFINITION 1. The zero solution x = °of (N) is said to be
(S) stable if for any £ > °and to ;::: 0, there exists 6 = 6(to, c) > °

such that if Ixol < 6, then Ix(t,to,xo)1 < £ for all t 2: to;::: 0,
(US) uniformly stable if the 6 in (S) is independent of the time to,
(ULS) uniformly Lipschitz stable if there exist M > 0 and 6 > °

such that Ix(t, to, xo)1 ::; Mlxol whenever Ixol < 6 and t 2: to 2: 0,
(ULSV) uniformly Lipschitz stable in variation if there exist M > °

and 6> °such that I<p(t, to,xo)/ ::; M for Ixol < 6 and t 2: to 2: 0.

We recall Dannan and Elaydis' result [3, Theorem 2.1), emphasizing
that ULS coincides with US in linear systems.
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THEOREM 2.1. For the linear system

(L) x' = A(t)x, x(to) = xo,

where A(t) is a continuous n x n matrix defined on R +, the following
are equivalent:

(1) the zero solution x = 0 of (L) is ULSV,
(2) the zero solution x = 0 of (L) is ULS,
(3) the zero solution x = 0 of (L) is US.

REMARK. In definition 1.3 of [3], the word "in variation" was miss­
mg.

We consider a perturbed system

y' = A(t)y + g(t,y), y(to) = Yo,

where g E C(R+ x Rn, Rn) with g(t, 0) = 0, of (L). Then the solution
y(t) = y(t,to,yo) of (Pt) through (to,yo) E R+ X Rn is given by

y(t) = ep(t,to)yO + it ep(t,s)g(s,y(s))ds,
to

where ep(t, to) is the fundamental matrix solution of (L), from the vari­
ation of constants formula.

To show that y = 0 of (Pd is ULS, we need the following:

LEMMA 2.2 [6, THEOREM 5.1.1]. Suppose that h(t, u) E C(R+ x
R +, R +) is monotone nondecreasing in u for each fixed t ~ to ~ 0 with
the property that

x(t) -it h(s,x(s))ds < y(t) -it h(s,y(s))ds, t ~ to ~ 0
to to

for x, y E C(R+, R+). If x(to) < y(to), then x(t) < y(t) for all t ~

to ~ o.
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THEOREM 2.3. Assume that x = 0 of (L) is ULS. Let the following
condition hold for (PI):

Ig(t,y)l::; het, lyD, where h(t,u) E C(R+ x R+,R+) is mono­
tone nondecreasing in u for each fixed t ~ to ~ 0 with het, 0) =
o.

Consider the scalar differential equation

u' = Mh(t, u), M ~ 1, u(to) = Uo > 0

and suppose that u = 0 of (SI) is ULS.
Then the solution y = 0 of (PI) is ULS.

.Proof. For a solution yet) = yet, to, Yo), we have

ly(t)l::; 1<p(t,to)IIYol + t 1<p(t,s)llg(s,y(s»lds.ito

Since x = 0 of (L) is ULS, it is ULSV by Theorem 2.1. Thus there
exist M > 0 and SI > 0 such that l<p(t, to)1 ::; M for t ~ to ~ 0 and
Ixo I< SI. Therefore, by the assumption, we have

ly(t)1 ::; MIYol + M t h(s, ly(s)l)ds.ito
It follows that

ly(t)l- M t h(s, ly(s)l)ds ::; Mlyolito
< Uo if Mlyol < Uo

=u(t) - M t h(s, u(s»ds.ito

Hence ly(t)1 < u(t) by Lemma 2.2. Since u = 0 of (S) is ULS, it easily
follows that y = 0 of (PI) is ULS.
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COROLLARY 2.4. Suppose that the solution x = 0 of (L) is ULS.
Consider the scalar differential equation

u' = Ka(t)u, u(to) = Uo,

where u 2:: 0, K 2:: 1 and a E C(R+) satisfying the conditions

(1) If(t, y)1 ::; a(t)lyl, where f(t, y) is in (P),
(2) 10

00
a(s)ds < M for some M > O.

Then the solution y = 0 of (PI) is ULS.

Proof. Let u(t) = u(t, to, uo) be a solution of (Sd. Then u(t) =
uoe K

M by the condition (2). Thus we have

lu(t)\ ::; luoleKM = Lluo\,

where L = eKM > O. Therefore u = 0 of (S2) is ULS. This implies
that the solution y = 0 of (Pd is ULS by Theorem 2.3.

REMARK. Dannan and Elaydi [3, Theorem 2.14] showed ULS for
(Pd under the assumption that

If(t, y)l ::; ')'(t)lyl and 100 ')'(t)dt < 00 for all () 2:: o.

For the perturbation

y' = f(t,y)+g(t,y)

of (N), Dannan and Elaydi [3, Theorem 2.14] investigated ULS by using
the fundamental matrix <l'(t,to,xo) of (VI)'

Now we consider the perturbation

y' = f(t, y) + g(t, y, Ty), y(to) = Yo,

where 9 E C(R+ x Rn X Rn, Rn) and T : Rn ~ Rn is a continuous
operator, of (N).

First, we need an integral inequality which is a generalization of
Pachpatte's inequality [8).
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LEMMA 2.5. Hu(t), aCt), bet) and e(t) are elements ofC(R+) with
the property that

u(t) :::; Uo + t a(s)u(s)ds + t b(s) re(r)u(r)drds,ito ito ito
then

u(t) :::; Uo exp {l:[a(s) + b(s) 108

e(r)dr]ds} , 0:::; to :::; t < 00.

Proof. Let

U(t) = Uo + t a(s)u(s)ds + t b(s) re(r)u(r)drds.ito ito ito
Then u(t) :::; U(t) and thus

U'(t) = a(t)u(t) + bet) t e(s)u(s)dsito
:::; a(t)U(t) + bet) t e(s)U(s)dsito
:::; U(t)[a(t) + bet) t e(s)ds]ito

since U(t) is nondecreasing. Integrating both sides of the above in­
equality we can obtain the result.

THEOREM 2.6. For the perturbed system (P3), we assume that

(1) Ig(t,y,TY)I:::; a(t)ly(t)1 + bet) t e(s)ly(s)lds,ito
where a,b,c E C(R+),

(2) t[a(s) + b(s)18

e(r)dr]ds < 00.ito to
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Then the zero solution of (P3) is ULS whenever the zero solution of
(N) is ULSV.

Proof. By the nonlinear variation of constants fonnula of Alekseev,
we have

yet) = yet, to, yo)

= x(t,to,yo) + t !P(t,s,y(s))g(t,y(s),Ty(s))ds
ito

[6, Theorem 2.6.3]. Since there are M > 0 and fJ > 0 with I!p(t, to, xo)1
~ M for all t ~ to ~ 0 and Ixol < h, we have

ly(t)1 ~ Mlyol + M t a(s)ly(s)ldsito
+ M t b(s) r c(r)ly(r)ldrds

ito ito
by the assumption (1). Hence

ly(t)1 < MIYolexp t[a(s) + b(s) r c(r)dr]dsito ito
by Lemma 2.5. In view of (2), we have ly(t)1 ~ LIYol for some L > 0
whenever lyol < 8.

3. Exponential asymptotic stability

We recall some notions of stability.

DEFINITION 2. The zero solution of (N) is said to be
(EAS) exponentially asymptotically stable if there exist constants

K > 0, c > 0 such that

for t ~ to ~ 0,
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(EASV) exponentially asymptotically stable in variation if there
exist constants K > 0, c> 0 such that

1«p(t,to,xo)1 ~ Ke-c(t-to)

for t 2: to 2: 0,
(GEASV) generalized exponentially asymptotically stable in varia­

tion if
I«p( t, to, xo)1 ~ K(t)ep(to)-p(t)

for t 2: to 2: 0 where K > 0 is continuous on R+, pE'" and p(t) -+ 00

as t -+ 00. Here pE'" means pE C(R+), p(O) = 0, and pet) is strictly
increasing in t E R +.

Note that GEASV becomes EASV when K(t) = K > 0 and pet) =
at, a > O.

DEFINITION 3. The zero solution of (N) is said to be
(ASV) asymptotically stable in variation if there exists M > 0 such

that

t 1«p(t,s)lds ~ M
ito

for every t 2: to 2: 0, where «p(t, to) is the fundamental matrix solution
of the variational system

y' = fx(t, O)y, y(to) = Yo,

with «p(to, to) the unit matrix.

THEOREM 3.1. The solution x = 0 of (N) is ULS if it is EAS.

Proof. The solution y = 0 of (V2 ) is EAS. Then there are K > 0
and c > 0 such that

Thus we have

t 1«p(t,s)lds ~ Kit e-c(s-tO)ds = _K[e-c(t-to) -l]/c < K/c = M.
ito to

It follows that the solution x = 0 is ASV. Hence it is ULS by Theorem
2.8 in [3].
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EXAMPLE. EAS is not implied by ULS. Consider the scalar differ­
ential equation x' = _x3, x(to) = Xo, whose general solution is

x(t) = xo[l + 2x~(t - to)]-1/2, t 2 to 2 o.

Since
pet, to,xo) = [1 + 2x~(t - to)]-3/2, t 2 to 20,

we have Ip(t,to,xo)1 ::; 1 for all t 2 to 2 O. Therefore x = 0 is ULSV
and so it is ULS [3, Theorem 3.3]. However it is not EAS [7, Example
3].

REMARK. In [3], Figure 1 illustrated the possible known implica­
tions among various types of stability notions. It is very useful to
investigate various stabilities for differential systems.

Brauer [2, Theorem 2] examined EAS for the trivial solution of (P2)
and obtained EAS for the trivial solution of

y' = J(t, y) + g(t, y) + het, y),

where h E C(R+ x Rn, Rn) with h(t,O) = 0, as a corollary of his
Theorem 2. We obtain an asymptotic behavior of solutions of (P3 ).

THEOREM 3.2. For the system (P3) we assume the following con­
ditions:

(1) Ig(t, y)1 = o(lyl) as Iyl ~ 0 uniformly in t,
(2) there exists an Q' > 0 such that Ixl < Q' and t E R+

imply Ih(t,x)1 ::; ,et), where, E C(R+) with Jooo ,(t)dt < 00.

If the solution x = 0 of (N) is EAS, then there exist To 2 0 and
8 > 0 such that to 2 To and Ixol < 8 imply every solution yet) of (P3 )

tends to zero as t ~ 00.

Proof. By the assumption we have Ip(t,to,xo) ::; Ke-c(t-to) for
some K > 0 and c > O. We choose T 2 1 and 8 ::; c. Let To 2 T be so
large that t 2 To implies

it exp[-(c - Kc)(t - s)],(s)ds < 8/2K = 81 .
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This is possible by the fact

lim e-ct it eCS'Y(S )ds = 0
t-+oo 1

[6, Theorem 2.14.6].
Let to ~ To and IYol < 8/2K = 81 < 8. Then we have

ly(t)1 ~ 1q>(t,to,xo)IIYol + t 1q>(t,s,y(s»lIg(s,y(s»lto
+ h(s,y(s»lds

~ KIYole-c(t-to) + t Ke-c(t-s) [c:y(s) + 'Y(s)]ds
lto

by Theorem 2.6.3 in [6]. Thus

ly(t)lect
~ K\yo\exp(cto)exp[Kc:(t - to)]

+lt Kecs'Y(s)exp[Kc:(t - s)]ds
to

by the Gronwall's inequality. In other words, we have

ly(t)1 ::; K81 exp[-(c - Kc:)(t...:. to)]

+Kit exp[-(c-Kc:)(t-s)h(s)ds.

This inequality yields

ly(t)1 ::; K81 + K it exp[-(c - Kc:(t - s)h(s)ds

::; K81 + 8/2 < 8,

i.e., ly(t)1 < c: holds on [to, 00). This implies that the above inequality
is true for t ~ to. Hence y(t) ---+ 0 as t ---+ 00.

Now, we consider the perturbed system

y' = J(t, y) + get, y) + het, y, Ty),
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where h E C(R+ x Rn, Rn) and T: Rn -+ Rn is a continuous opera­
tor. Pachpatte [8, Theorem 2] obtained an asymptotic behavior of the
system

y' = J(t, y) + get, y, Ty).

As an adaptation of this, an asymptotic behavior of (P4) can be ob­
tained. To do this we need an integral inequality which is similar to
that of Lemma 2.5.

LEMMA 3.3. Hu(t), aCt), bet) and c(t) are nonnegative continuous
functions on R + with the property tha.t

u(t) s; U& + t u(s)ds + t 4{s)u(-8)6s + t b(s) t C{'r)d'r6S,
)to )to 1to 1to

where Uo is a nonnegative constant, then

u(t) $ Uo {1:l1 + a(s) + b(s) 1:C(r)dr]ds}.

THEOREM 3.4. For the system (P4), we assume that

(1) get, y) = o(lyl) as y -+ 0 uniformly in t,
(2) het, y, Ty) $ 'x(t)(lyl + ITyl), where'x E C(R+, R) with

f'X) >'(s)ds < 00.

1t o

(3) ITy(t)1 $ e-ct ft
t
o p(s)ly(s)lds, where pE C(R+ ,R), with

f'X) p(s )ds < 00.

1t o

Then evezy solution yet) of (P4 ) approaches to zero as t -+ 00 when­
ever x = 0 of (N) is EAS.

Proof. Note that

yet) = yet, to, yo)

= x(t, to, Yo) +1t

<pc t, s, y( s )[g(t, y(s) + het, y(s), Ty(s»]ds
to
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by the nonlinear variation of constants formula of Alekseev. Thus

ly(t)1 ~ Klyole-c(t-to)

+ Ke-c(t-s)lg(t,y(s» + het, yes), Ty(s»lds

~ Klyo\e-c(t-to) + eK t e-c(t-s)!y(s)lds
Jto

+ K t e-c(t-s) A(s)[Iy(s)1 + e-CS r p(r)ly(r)ldr)ds.
ho ho

Since \<p(t,to,xo)\ ::; Ke-cs(t-to) for all t ~ to ~ 0 and for any e > 0,
Ig(t, y)1 < elyl as long as Iyl < 8 for some 8 > 0, by letting u(t) =
ly(t)lect , we have

u(t) ~ Klyolecto + eK t eCSly(s)lds
Jto

+K t eCSA(sHly(s)l+e-cs r p(s)eCTly(r)ldr}ds
Jto Jto

= KIYolecto + cK t eCSly(s)ds
Jto

+K t eCSA(s)ly(s)lds+K t A(s)l
s

p(r)eCTly(r)ldrds
Jto Jto to

= Kuo +cKlt u(s)ds +Kl
t

A(s)u(s)ds
to to

+K t A(s)l
s

p(r)u(r)drds.
Jto to

In view of Lemma 3.3, we have

u(t)::; KuoexPlt[cK +KA(s)+KA(s)ls p(r)dr)ds.
~ ~

It follows that

ly(t)l::; K\yole-C(t-to)explt[cK + KA(S)+KA(s)l
s

p(r)dr)ds.
~ ~



Lipschitz stability and exponential asymptotic stability 187

Therefore the right-hand side of this inequality approaches to zero if
K and Iyo I are small enough.

Corresponding to the function V E C(R+ x Rn,R) we define the
total derivative V' with respect to (N) by

V('N)(t,X) = limsup -
h

1
[V(t + h,x + hf(t, x)) - V(t,x)]

h .......O+

and if x(t) is a solution on (N) we denote by V'(t, x(t)) the upper
right-hand Dini derivative of V(t,x(t)), i.e.,

V'(t,x(t)) = limsup-
h

1
[V(t + h,x(t + h)) - V(t,x)].

h .......O+

It is well-known that V('N)(t,x) = V'(t,x(t)) if V is Lipschitzian with
respect to x.

Athanassov [1] proved Massera type converse theorem for the kind
of EASV by constructing a suitable Liapunov function. We can obtain
a converse theorem for GEASV.

THEOREM 3.5. Assume that x = 0 of(N) is GEASV. !fp'(t) exists
and is continuous on R, then there is a function V E C(R+ x Rn,R)
satisfying

(1) Ix I ~ V (t, x) ~ K (t) Ix I for all (t, x) E R + x Rn,
(2) IV(t, x) - V (t, y) I ~ K (t) Ix - y I for all (t, x), (t, y) E R + x Rn,
(3) V('N)(t,X) ~ -p'(t)V(t,x) for all (t,x) E R+ X Rn.

Proof. We define

V( t, x) = sup Ix( t + r, t, x )!eP(t+T)-p(t).

r2: 0

Then the proof is the same as in [1, Theorem 2.2] and [6, Theorem
3.6.1].

Finally, we can obtain the GEASV for (P2) when x = 0 of (N) is
GEASV by using the following two basic comparison lemmas.
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LEMMA 3.6. Assume that V E C(R+ X Rn,R) is Lipschitzian in x
with Lipschitz constant L. If x(s) and yes) are differentiable functions
defined for s ~ t with x(t) = yet) = x, then

V'(t,y(t)) :s V'(t,x(t)) + Lly'(t) - x'(t)l·

Proof. It is straightforward.

LEMMA 3.7 [1, LEMMA 3.1]. Let x(t) = x(t,to,xo) be a solution
of(N) existing fort ~ to. Suppose that V E C(R+ x Rn, Rn), V(t,x)
is Lipschitzian in x and V'(t,x} $atisfies for all (t, x) E R+ x Rn,

V'(t,x) ~ w(t., V(t,x)),

where w E C(R+ x R, R). Let r(t) = r(t, to, uo) be the maximal
solution of the scalar differential equation

u' = w(t,u), u(to) = Uo ~ °
existing for t ~ to. Then, for t ~ to,

V(t,x(t)) ~ r(t)

whenever Veto, xo) :S Uo.

THEOREM 3.8. Let x = °of (N) be GEASV. Assume that in (pz)
the perturbing term g(t, y) satisfies

jg(t, y)1 :S <pet, Iyl), t ~ to ~ 0, Iyl < 00,

wherecp E C(R+ xR+, R) is increasing in x fort E R+. If the maximal
solution of the scalar differential equation

(8 3 ) U' = [-p'(t) + >.(t)]K(t)u, u(to) = Uo ~ 0,

where pet) and K(t) are the functions from the definition of GEASV,
is GEASV, then every solution of (Pz) is GEASV.

Proof. By the assumption, we have

Ix(t)1 ~ K(to)ep(to)-p(t), t ~ to ~ 0, Ixol < 00
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for some continuous function K(t) > 0 and pet) E K with pet) -t 00 as
t -t 00. Then, by Lemma 3.6, we have

V('Pt}(t, x) $; V('N)(t, x) +K( t)lg(t, x)1

$; -p'(t)V(t,x) + K(t)ep(t, Ixl)
$; -p'(t)K(t)lxl + K(t)ep(t, Ixl)

for all t ~ to ~ 0 and Ixl < 00.

Let r( t) = r(t, to, uo) be the maximal solution of (Sa) existing for
t ~ to ~ 0 with luol $; K(t)lyol, IYol < 00. Let yet) be any solution of
(P2) existing for t ~ t& ~ O. Then V(to~.l/Q) $; K(t)lyol $; Uo. In view
of Lemma 3.7, we have V(t,y) $; r(t). Thus we have

ly(t)1 $; Vet, y) $; r(t).

Consequently the result follows from the assumption that r(t) is GEASV.
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