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THE CANONICAL DECOMPOSITION

OF SIEGEL MODULAR FORMS 11*

MYUNG-HWAN KIM

o. Introduction

Let n, k, q be positive integers. Let r be a congruene subgroup of
the symplectic group r n = SPn(Z) of level q and let X be a congruence
character on f. We introduced [1] the canonical decomposition of the
space MI:(r, X) of Siegel modular forms of degree n, weight k, and char­
acter X relative to r into n + 1 subspaces M;,r(r, X), r = 0,1, ... , n.

In this article, we apply the canonical decomposition to the space
Mi: = Mi:(rn

, 1) to recapture the existence of an eigen-basis for the
space [2, 3J. More precisely, we decompose M k into n + 1 canonical
subspaces M;,r, r = 0,1, ... , n, and show that each M;,r is invari­
ant under the Hecke operators from a certain Hecke ring and has a
simultaneous eigen-basis with respect to those Hecke operators.

Let Z, Q, R, and C be the ring of rational integers, the field of
rational numbers, the field of real numbers, and the field of complex
numbers, respectively.

Let Mm,n(A) be the set of all m x n matrices over A, a commutative
ring with 1, and let Mn(A) = Mn,n(A). Let GLn(A) and SLn(A) be
the group of invertible matrices in Mn(A) and its subgroup consisting
of matrices of determinant 1, respectively.

For 9 E Mm(A), h E Mm,n(A), let g[h] = thgh, where th is the
transpose of h. Let In and On be the identity and the zero matrices,
respectively. Let detg be the determinant of g. For 9 E M 2n (A), we
let Ag, B g, Cg, and Dg be the n x n block matrices in the upper
left, upper right, lower left, and lower right corners of g, respectively,
and we write 9 = (Ag,Bg;Cg,Dg). Let diag(NI ,N2 , ... ,Nr ) be the
matrix with block matrieces NI, N 2 , .•• N r on its main diagonal and
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zeroes outside. Let Nm be the set of all semi-positive definite (eigen­
values ~ 0), semi-integral (diagonal entries and twice of nondiagonal
entries are integers), symmetric m x m matrices, and N;;;, be its subset
consisting of positive definite (eigenvalues > 0) matrices.

Let On = GSp;t(R) = {g E Mzn(R); In[g] = rJn, r > O} where
In = (On, In; -In, On) and r is a real number determined by 9 and we
denote it by r(g). Let fn = SPn(Z) = {M E Mzn(Z); In[M] = I n}
and sn = S;: = {g E Mzn(Z[il); In[g] = p6 I n, 8 E Z} where p is a
prime number and 8 is an integer determined by g, which we denote
by 8(g). Let 1in = {Z = X + iY E Mn(C); tz = Z, Y > O} where
Y > 0 means Y is positive definite.

For an arbitrary complex-valued function F on 1in and 9 E On, we
set

(0.1) (Flk9)(Z) = (detg/-(n+l)/2(det(Cg Z + Dg))-kF(g(Z))

where Z E 1in and g(Z) = (AgZ + Bg)(CgZ + Dg)-1 E 1in .

Finally, for Z E Mn(C), we set e(Z) = eZ1riu(Z) where u(Z) is the
trace of Z. For other standard notations and basic facts, we refer the
readers [4, 5, 6].

1. Hecke Rings
In this section, we introduce some Hecke rings and the W-operator.
Let G be a multiplicative group and f be its subgroup. Let f be the

commensurator subgroup of f in G, i.e., f' = {g E G; g-1 fg n f is of
finite index in both g-lfg and f}. Let S be a semi-group containing f
and contained in f. Let (f, S) be a Hecke pair, i.e., fS = sr = S. Let
L(f, S) be the vector space over C spanned by the formal left cosets

p

(fg), 9 E S. For X = Lai(fgi) E L(f,S), ai E C, and 9 E S,
i=l

we set X . 9 = I:r=1 ai(fgig) E L(f, S). We define D(f, S) = {X E
L(f, S); X . M = X for any M E f}. D(f, S) is in fact a ring under
the multiplication defined by X . Y = L,i,j aibj(fgihj) E D(f, S) for
any X = I:ai(fgi), Y = I:bj(fhj) E D(f,S), ai,bj E C. D(f,S) is
called the Hecke ring of the Hecke pair (f, S).

We define a formal double coset (fgr), 9 E S, by (fgf) = I:r=1 (fgi)
when fgf is a disjoint union of fg1 , •.• , fgp , gi E S. Since S is
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contained in f, g-l rg n r is of finite index in r and the index is
exactly j.1.. IT M1 , ••• , Mp are the left coset representatives of 9 -1 r 9 nr
in r, then rgr is a disjoint union of rgM1, ... , rgMp , gMi E S, so
that (rgr) = L:r:=l (rgMi).

It is known [7] that the formal left cosets (fgr), 9 E S, form a basis
for D(r, S).

Let (r, S), (f', S') be Hecke pairs satisfying the conditions

(1.1 ) r' c f, rs' = S, and r n S'S,-l c f'.

Then for X = L: ai(fgi) E D(f, S), gi can be replaced by g: E S'
because of the second condition so that X can be written in the form
X = L: ai(rgD· We define a map

(1.2) €: D(r,S) -+ D(r',S') by €(X) = .I:ai(r'gD E D(r',S').

Then € is an injective ring homomorphism. Moreover, € is an isomor­
phism if [r : g'-l rg' n r] = [f' : g'-l f' g' n r'] for every g' E S'.

Let rg = {M E rn;CM = On} and Sr; = {g E sn : Cg = On}.
It is well known [7] that (rn, sn) and (r(I, Sr;) are Hecke pairs. Note
that sn, Sr; are groups. We denote the Hecke rings D(rn, sn) and
D(ro,Sr;) by £n = £; and £0 = £o,p, respectively.

Since (rn, sn), (rg, Sr;) satisfy the conditions (1.1), we have an
injective ring homomorphism

(1.3)

defined as in (1.2). We set

(1.4 )

which is a subring of £0'
We now introduce the 'IJ-operator. Let X = L:ai(r(igi) E £0' gi E

Sr; can be written in the form gi = (pO; Di, Bi; On, Di), where Di =

(~: p:;) with D: E Mn-1(Z[~]), di E Z, and Di = t Di1. We set

for n ~ 1
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where g~ = (pSi (DD*, B~;On-l,DD with B~ the (n-l) x(n-l) block in
the upper left corner of Bi' and u is an independent variable. We make
a convention that.cg = C so that Wo(X, u) = L; aiP-diudi-Si E C[u±l]
when n = 1. The map '1'o(-,u) :.c~ -+ .c~-l[U±I] is a well-defined
ring homomorphism.

It is known [8] that \}fo(_,pn-k) : L~ -+ L~-l is a surjective ring
homomorphism. We define

(1.6)

to make the following diagram commutes:
n

X E .cn eo
L~ C.cl: 3~

(1.7) lw 1Wo(_,pn-k)

n-l

'1'X E .cn - l eo Ln - l C .cn - l 3~ o 0

c:~(X)

Obviously, '1' is also a well-defined surjective ring homomorphism. We
set '1'0 =the identity operator and '1'r = '1' 0 '1'r-l for 1 ::; r ::; n.

2. The Canonical Decomposition

In this section, we briefly discuss on the canonical decomposition of
Siegel modular forms (see [1]).

Let n, k, q be positive integers. Let rn(q) = {M E rnj M ==
Izn(modq)} and call it the principal congruence subgroup of r n of level
q. Let r be a congruence subgroup ofrn oflevel q, i.e., rn(q) ere r n

.

Let X be a congruence character on r, i.e., x: r -+ C x is a character
satisfying X(rn

( q» = 1. We define M;:(r, X) to be the set of all
F : 'Hn -+ C satisfying the conditions:

(2.1)

(2.2)

F is holomorphic on 'Hn ,

FlkM = X(M)F for any MEr, and

when n = 1, (cz + d)-k F(M(z) is bounded as Im(z) -+ 00

(2.3) for anyM = (a,b;c,d) E r 1 = SL2 (Z), z E 'HI.
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F E M~(r, X) is called the Siegel modular form of degree n, weight k,
level q, and character X relative to r. M;;(r, X) is a finite dimensional
vector space over C [9]. The boundedness condition (2.3) for n > 1
follows from (2.1) and (2.2), which is known as KOcher's effect [10].
For the simplicity, we write M~(r) =M;;(r, 1), where 1 is the trivial
character on r. In particular, we write M;; = Mi:(rn) and Mi:(q) =
Mi:(rn(q)).

Note that if r' is a congruence subgroup of r n of level q contained
in r and if X' : r' --. C x is the restriction of X to r', then Mi:(r, X) c
Mi:(r', X')· In particular, Mi:(r, X) c Mi:(q).

It is known [4] that every FE M;;(q), hence every F E Mi: has a
Fourier series expansion of the form

(2.4) F(Z) = L j(N)e(NZjq), Z E 'Hn.
NENn

We now define the Siegel operator tP. Let F : 'Hn --. C be an
arbitrary function with a Fourier series expansion (2.4). We define

(2.5) (tPF)(Z') = >.~~oo F (~' i~)' Z' E 'Hn - 1 .

The limit exists and

(2.6) (tPF)(Z')= L j(~' ~)e(N'Z'jq), Z'E'Hn- 1 .

N'eNn _ 1

We set tP° = the identity operator and tP r = tP 0 tP r
- 1 for 1 ~ r ~ n.

We now consider the image of Mi:(r, X) under tP r
, r = 0,1, ... , n

(see [11]).
Let G~ be the r-th Satake group [12] for 0 ~ r ~ n, i.e.,

(2.7)

G~ = {M E rnjAM = (1211 12) ,BM = (~11

C = (Cl 0) D = (D1 D12)
MOO ' M 0 D2

where A1,B1,Cl,D1E Mr(Z)}.
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Then the map
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is a well-defined surjective group homomorphism. We set r r = w:(r n
G~). Note that (rn)r = rr and (rn(q))r = rr(q). Therefore, r r is
again a congruence subgroup of rr of level q.

Let F : 'Hn -+ e and MEr n G: is of the form (2.7). It follows
immediately from (0.1), (2.7), and (2.8) that

(2.9) <pn-r(F\kM) = (detD2)-k(<pn-rF)!kMl.

So for F E Mk(r,x) and M I Err, we have

(2.10)

where MEr n G~ is of the form (2.7) such that w~(M) = M I . If
we set Xr(MI ) = (detD2 )kx(M), then since Xr is independent of the
choice of MEr n G~ with w~(M) = Ml, Xr : rr -+ ex is a well­
defined character such that Xr(rr(q» = 1. Therefore, from (2.10) we
have

(2.11)

For the case r = 0, we make the convention that M~(r,X) = e,
rO = rO(q) = {1}, and 'Ho is a single point set.

For M E rn, let r M = M-I r M, which is again a congruence sub­
group of r n of level q, and let XM be the character : rM -+ e x defined
by X(M) = X(MMM- I) for M E r M . Obviously XM(rn(q» = 1 and

(2.12)

Combining (2.11) and (2.12), we have for M E r n

(2.13)

(2.14)



The Canonical Decomposition of Siegel Modular Forms II 215

and similary if f = fn, then

(2.15)

while X is trivial in both (2.14) and (2.15).
Let FE Mi:(f, X). F is called a cusp fonn if <p(FlkM) = 0 for all

M E fn. For F, GEMk(f, X), at least one of which is a cusp fonn,
we set

(2.16) (F, G)o = f F(Z)G(Z)(det y)kdZ
JD(f')

where D(r) is a fundamental domain of r in 'Hn , Z E X + iY E 'H n ,

and dZ = (det y)-n-1dXdY is the gn-invariant volume element on
'H n . (2.16) is a well-defined positive definite Hermitian inner product
[12] and is called the Maass-Petersson inner product on Mi:(f, X)·
Unfortunately, however, (2.16) is meaningless if neither of F, G is a
cusp form.

We now introduce a positive definite Hermitian inner product which
is meaningful on the whole space MI:(r, X). Let s;:(r, X) be the
subspace of Mi:(f, X) consisting of all the cusp forms. Every F E
Mk(f, X) can be written in the form F = F* +Fn where Fn E S;:(f, X)
and F* is contained in the orthogonal complement of S;:(f, X) in
Mk(f, X) with respect to the Maass-Petersson inner product, which
we denote by £k(f, X). We call Fn the cusp part of F. We set

(2.17)
n

(F, G) = L L [rr: f~]-l ((<p~rF)r, (<p~-rG)r)0
r=O M Ef'\f'n

where <p~lrF = <pn-r(FlkM), (<p~-rF)r is the cusp part of <p~-rF,
and (-, -)0 is the Maass-Petersson inner product on Mk(f~,X~)·

We have the following theorem.

THEOREM 2.1. The pairing (2.17) is a well-defined positive definite
Hermitian inner product on the whole space Mi:(f, X), which is called
the canonical inner product on the space.

Proof. See [1].
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We set

(2.18)

and for 0 S r < n

(2.19)

Myung-Hwan Kim

M~,rcr,x)= {F E M~cr,x);<p~rF is a cusp form in

Mk(r~,X~) for any M E r n such that

(F, .L:=r+IM:,8(r,x)) = O}.

When n = 1, Mi,ocr,x) and Mi,Icr,X) coincide with thesubspaces
of classical Eisenstein series [13, 14} .and cusp forms [151, respectively,
which are orthogonal to each other with respect to the canonical inner
product as well as the Maass-Petersson inner product. This can be
extended to aribitrary n as the following: .

THEOREM 2.2. Tbe space Mkcr, X) is decomposed into n +1 sub­
spaces M~,rcr,X), 0 S r S n, which are pairwise orthogonal with
respect to the canonical inner product.

Proof. See [11.

We write

C2.20)

and call it the canonical decomposition of MkCr, X). The subspace
M~,rCf,X) is called the r-th canonical subspace of MkCf,X) for each
r = 0,1, ... , n. Note that every F E MkCf, X) can be written in the
form "

(2.21) F = Fo + FI + ... + Fn

where Fr E M;,rCf, X). We call Fr the r-th canonical part of F. In
particular, Fo is called the Eisenstein series part and Fn the cusp part
of F. Note that F* = Fo +Ft + ... + Fn - I.

We close this section with the following theorem.
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THEOREM 2.3. For F, G E Mi:(r, X), at least one of which is a cusp
form, the canonical inner product coincide with the Maass-Petersson
inner product.

Proof. See [1].

3. Main Theorems

In this section, we prove our main results:

(1) For each 0 ~ r ~ n, M:,r is invariant under the Hecke opera­
tors in £n (Theorem 3.5.),

(2) Hecke operators in £n are Hermitian with respect to the canon­
ical inner product on Mi: (Theorem 3.6), and as a consquence

(3) Mi: has a simultaneous eigen-basis with respect to all Hecke
operators in £n (Theorem 3.7.).

Let FE Mi: and X = L: ai(rngi) E £n, gi E sn. We set

(3.1)

The action (3.1) is independent ofthe choice of the left coset represen­
tatives 9i, and hence is well-defined. We call X E £n acting on Mi: as
in (3.1) a Hecke operator.

Note that FlkXlkY = FlkX, Y for any X, YE £n. It follows easily
from the definition of Mi: that F/kX E Mi:.

Let t = 0 or 1. We define Mn(t) to be the set of all F: 1in -t e
satisfying the conditions:

(3.2) F is holomorphic on 1in ,

(3.3)F(M(Z) = (detDM)tF(Z), Z E 1in , for any M E r~, and

(3.4) when n = 1, F(z) is bounded as Imz -t 00, z E 1ii .

F E Mn(t) is called an even or odd Siegel modular form when t = 0
or 1, respectively.

PROPOSITON 3.1. Let r be a congruence subgroup of r n of level q
containing r(j and let X : r -t ex be a character such that X(rn(q» =
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1 and X(M) (detDM)t-k for any M E r~. Then M;:(r,x) C
Mn(t). fu particular, M;: C Mn(t) if k and t are of the same parity.

Proof. Let FE Mi:(r,X), M = (A,B;On,D) E r~. (FlkM)(Z) =
(detD)-kF(M(Z» = X(M)F(Z). SoF(M(Z» = (detD)kx(M)F(Z)
=(detDlF(Z). Therefore, FE Mn(t). The second assertion follows
immediately because det DM = ±1 for any M E r~.

Let k and t have the same parity where t = 0 or 1. For F E Mn(t)
and X = L: ai(r09i) E £0, 9i E Sr;, we set

(3.5)

The action (3.5) is well-defined and FlkXlkY = FlkX . Y for any
X, Y E £0. Since M;: c Mn(t), it follows easily from (3.1) and (3.5)
that

(3.6)

where Co is the injective ring homomorphism (1.3).

PROPOSITION 3.2. Let F E Mi: and X E £n. Then ep(FlkX) =
epFlk'l1X. More generally, epr(F\kX) = eprFlk'l1rx for 0 ::; r ;:; n,
where ep and 'l1 are tbe operators in (2.5) and (1.6), respectively.

Proof. Let Y = e~(X) E Lo. Regarding F E Mn(t) where k and
t and of the same parity with t = 0 or 1, we have [7] ep(FlkY) =
epFlk'l10(¥;pn-k) (see (1.5) and (1.7». Since e~-l('l1X) = 'l1o(Y,pn-k)
by (1.7) and epF E M~-l by (2.11) and (2.15), it follows from (3.6)
that ep(FlkX) = epFlk'l1X. The second assertion follows immediately.

We now give the following new discription of M;,r(r, X).

PROPOSITION 3.3. For 0 ~ r < n,

M~,r(r,X) = {F E Mi:(r, X); epMF E l..:::-~M~-l,S(r~l' X~l)

such that (F,l.:=r+lM~,S(r,x»)= a}.

Proof. Let the sets on the left and right be A and B, respectively (see
2.19). It is a well known result for n = 1 [13, 14, 15]. Assume n > 1.
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L F B S· n. F .In-1M n- 1,8(rM M) n.(n-ll-r(n. F)et E . Ince ~M E 8=r k n-l,Xn-l , ~L' ~M

is a cusp form for any V E r n
-

1 by (2.18) and (2.19). But ~MFlkV =
~(FlkM)lkL' = dk~(FlkML) for some LE G:_ 1 such that w:_1(L) =

V, where DL = (D{ ;) (see (2.7), (2.8), and (2.9)). So ~~-lF=

d-k~~~-I)-r(~MF) turns out to be a cusp fonn, which implies F EA
by the definition (2.19).

Let F E A and ~MF = (~MF). + (~MF)**, where (~MF). E
..i r-lMn-l,8(rM M) d (n. F) .In-1M n- 1,8(rM M)8=0 k n-l,Xn-l an ~M •• E 8=r k n-l,Xn-l'
Then ~~~-I)-r(~MF).= ~~~-l)-r(~MF - (~MF)**) = dk~MIF-

~~~-I)-r(~MF)** is a cusp fonn for any L' E r n- 1 because F E A.
From the obvious fact that (~MF). is orthogonal to .l:~;M~-J.9(r~I'

X~-I)' we have (CPMF). = O. Therefore F E B and the proposition
follows.

Let F, G E Mi:(r, X), at least one of which is a cusp form. Then
from the definition (2.16) of the Maass-Petersson inner product follows
that

(3.7)

for any 9 E Spn(R) where the Maass-Petersson inner product on the
right is on Mi:(r9 , X9 ), which can be defined similary to (2.12).

PROPOSITION 3.4. Let F, G E Mi:, at least one of which is a cusp
form, and let X = (rngrn

) E £n, 9 E sn. Then (FlkX,G)O =

(F, GlkX)O'

Proof. Recall that X can be written in the fonn X = 2::;=1 (rngMi ),

where M1, ... , Mp. E r n are the left coset representatives of g-1 r n 9 n
r n in r n

. From (2.16) follows

P.

(FlkX, G)o = L(Flk9Mi, G)o
i=1

p. P.

= L(Flk9, GlkMi-1)0 = L(Flkg, G)o
i=1 i=1
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because G E Mi: and M i-
1 E T n

, where (-, -)0 are the Maass­
Petersson inner products on proper spaces. Let S = S(g), i.e., In(g] =
pO I n. Since det g = pon, we have pO/2g-l E SPn(R). Therefore,
(Flkg, G)o = (Flkg·pO/2g-1, Gl kp8/2g-1)0 = (F, GlkPog-l)O where the
last equality follows from (0.1). So (FlkX, G)o = L:f=l (F, Glkp8g-1 )0.
But g and p8g-l have the same diagonalization under the left and
right multiplication of r n so that rngrn = rnpOg-lrn. Therefore,
X = (rnp6g-l r n) = L:f=l(rnp6g-lLi) for some Li E r n so that
(FlkX,G)O = L:f=1(FlkLi,Glkp8g- 1Li)0 = (F,GlkX)O.

We now prove our main theorems.

THEOREM 3.5. Let F E M:,r, 0 ~ r ~ n and X E £n. Then
FlkX E M~,r.

Proof. We may assume that X = (rngrn), g E sn, because such
double cosets form a basis for £n. We use induction on nand u = n-r.
When n = 1, it is a well known result [13, 14, 15]. Assume n > 1. Let
u = O. Since F is a cusp form in this case, we have cPF = 0 and
hence cP(ElkX) = cPFlk\I1X = 0, which means FlkX is also a cusp
form. This proves the theorem for r = n. We now assume u > 0,
i.e., 0 ~ r < n. From Proposition 3.2 follows that cPn-r(FlkX) =
cPn- rFlk\I1n-rX is a cusp form since cPn- rF is. Let G E ..L~=r+l M~'s.

From the definition (2.17) of the canonical inner product, we have

(FlkX,G) = L::=o ((cPn-s(FlkX»s,(cPn-sG)s)o' For each s,

((cPn-s(FlkX»s, (cPn-sG)s) 0 = (cPn-s(FlkX ), (cPn-sG)s) 0

= (cPn- sFlk \I1n-sX, (cPn-sG)s) 0

= (cPn- sF, (cPn-sG)slk \I1n-sX) 0

where the last two equalities follow from Propositions 3.2 and 3.4, re­
spectively. From Propositions 3.2, 3.3, and the induction hypothesis,
we have (cP n- sG)slk\I1n-sx = (cPn- sGlk\I1n- sx)s = (cPn-s(GlkX»s.

Thus (FlkX,G) = L::=o (cP n- sF,(cPn-s(GlkX»s) 0= 2::=0 ((cP n- sF)s,

(cPn-s(GlkX»S)o = (F,GlkX) by (2.17). Again by the induction hy­

pothesis, we have (F, GlkX) = O. From (2.19) follows the theorem.
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THEOREM 3.6. Let F,G E Mi: and X E r,n. Then (FlkX,G) =
(F, GlkX). In other words, Hecke operators X E r,n are Hennitian
with respect to the canonical inner product on MI:.

Proof. Again we may assume that X == (rngrn), 9 E sn. From

(2.17), we have (FlkX, G) == E:=o ((iI~n-s(FlkX») s' (<pn-sG)s)o. We

have (<pn-s(FlkX»S,(<pn-sG)s)o == (<pn-sF,(<pn-sG)slk'l1n-sx)o

for each s by the same reasoning as in Theorem 3.5. But here, the
next step (<pn-"G),,!k 'I1n- sX == (<Pn-sGlk 'I1 n- sX)s == (<p n - s ( GlkX»s
follows from Theorem 3.5 and Proposition 3.2. Therefore, we have
(FlkX, G) == (F, GlkX) as asserted.

We now obtain the following theorem as an easy corollary of Theo­
rems 3.5 and 3.6.

THEOREM 3.7. For each r, 0 ::; r ::; n, M~,r has a simultaneous
eigen-basis with respect to all the Hecke operators X E r,n, and hence
so does Mi:.

Proof. See (5, Theorem 4.2.20].

Above results on Mi: are proved by Maass [2] and Andrianov [3J in
a different manner: They decomposed Mi: into n + 1 subspaces M;·r,
o ::; r ::; n, which were defined inductively by using <P-operator, so
that Mi: == EB~=oM;,r. More precisely, M;,n == {F EM/:; <pF == O}
and M;·r == {F E Mi:; <PF E M;-l,r such that (F, M;,n)o == O} for
o ::; r < n. Maass proved that Hecke operators X E r,n are Hermitian
and Andrianov proved that for any 0 ::; r ::; n, M;·r is invariant un­
der the Hecke operators and that M;,r, hence Mi: has a simultaneous
eigen-basis with respect to them. The Maass-Petersson inner product,
however, is meaningless on EB~':~M;,r so that the orthogonality be­
tween subspaces M;,r cannot be determined except that M;,r -loM;,n
for 0 ::; r < n, where -lo is the orthogonality with respect to the
Maass-Petersson inner product.

The following quesiton arises naturally: M;,r == M~,r? At the
present time, we know:

(1) M n,n Mn,n d mn-1Mn,r con I n-1Mn,r ( Th
k == k an 'J.7r=O k = "k == ...L.r=o k see eorem

2.3),
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(2) M:,r = M~,r for any 0 ~ r ~ n if cl> is surjective. (cl> is
surjective, for example, when k is even> 2n [4J.)

Evdokimov [11] erroneously claimed the proof of the above theorems
for a general space Mi:(r, X). His mistake was on the definition of the
canonical inner product (2.17), where he used (cl>n-rFr, cl>n-rcr)o, as
he noticed later. We adopt, however, many of his ideas in this article.
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