THE CANONICAL DECOMPOSITION OF SIEGEL MODULAR FORMS II*

MYUNG-HWAN KIM

0. Introduction

Let n, k, q be positive integers. Let Γ be a congruence subgroup of the symplectic group $\Gamma^n = Sp_n(\mathbf{Z})$ of level q and let χ be a congruence character on Γ . We introduced [1] the canonical decomposition of the space $\mathcal{M}_k^n(\Gamma,\chi)$ of Siegel modular forms of degree n, weight k, and character χ relative to Γ into n+1 subspaces $\mathcal{M}_k^{n,r}(\Gamma,\chi)$, $r=0,1,\ldots,n$.

In this article, we apply the canonical decomposition to the space $\mathcal{M}_k^n = \mathcal{M}_k^n(\Gamma^n, 1)$ to recapture the existence of an eigen-basis for the space [2, 3]. More precisely, we decompose \mathcal{M}_k^n into n+1 canonical subspaces $\mathcal{M}_k^{n,r}$, $r=0,1,\ldots,n$, and show that each $\mathcal{M}_k^{n,r}$ is invariant under the Hecke operators from a certain Hecke ring and has a simultaneous eigen-basis with respect to those Hecke operators.

Let **Z**, **Q**, **R**, and **C** be the ring of rational integers, the field of rational numbers, the field of real numbers, and the field of complex numbers, respectively.

Let $M_{m,n}(A)$ be the set of all $m \times n$ matrices over A, a commutative ring with 1, and let $M_n(A) = M_{n,n}(A)$. Let $GL_n(A)$ and $SL_n(A)$ be the group of invertible matrices in $M_n(A)$ and its subgroup consisting of matrices of determinant 1, respectively.

For $g \in M_m(A)$, $h \in M_{m,n}(A)$, let $g[h] = {}^thgh$, where th is the transpose of h. Let I_n and 0_n be the identity and the zero matrices, respectively. Let det g be the determinant of g. For $g \in M_{2n}(A)$, we let A_g , B_g , C_g , and D_g be the $n \times n$ block matrices in the upper left, upper right, lower left, and lower right corners of g, respectively, and we write $g = (A_g, B_g; C_g, D_g)$. Let $\operatorname{diag}(N_1, N_2, \ldots, N_r)$ be the matrix with block matrices N_1, N_2, \ldots, N_r on its main diagonal and

Received May 10, 1991.

^{*}This was partially supported by Korean Ministry of Education. (Grant No.ED 89-20)

zeroes outside. Let \mathcal{N}_m be the set of all semi-positive definite (eigenvalues ≥ 0), semi-integral (diagonal entries and twice of nondiagonal entries are integers), symmetric $m \times m$ matrices, and \mathcal{N}_m^+ be its subset consisting of positive definite (eigenvalues > 0) matrices.

Let $\mathcal{G}_n = GSp_n^+(\mathbf{R}) = \{g \in M_{2n}(\mathbf{R}); J_n[g] = rJ_n, r > 0\}$ where $J_n = (0_n, I_n; -I_n, 0_n)$ and r is a real number determined by g and we denote it by r(g). Let $\Gamma^n = Sp_n(\mathbf{Z}) = \{M \in M_{2n}(\mathbf{Z}); J_n[M] = J_n\}$ and $S^n = S_p^n = \{g \in M_{2n}(\mathbf{Z}[\frac{1}{p}]); J_n[g] = p^{\delta}J_n, \ \delta \in \mathbf{Z}\}$ where p is a prime number and δ is an integer determined by g, which we denote by $\delta(g)$. Let $\mathcal{H}_n = \{Z = X + iY \in M_n(\mathbb{C}); {}^tZ = Z, Y > 0\}$ where Y > 0 means Y is positive definite.

For an arbitrary complex-valued function F on \mathcal{H}_n and $g \in \mathcal{G}_n$, we set

$$(0.1) \qquad (F|_k g)(Z) = (\det g)^{k - (n+1)/2} (\det(C_g Z + D_g))^{-k} F(g\langle Z \rangle)$$

where $Z \in \mathcal{H}_n$ and $g(Z) = (A_g Z + B_g)(C_g Z + D_g)^{-1} \in \mathcal{H}_n$. Finally, for $Z \in M_n(\mathbb{C})$, we set $e(Z) = e^{2\pi i \sigma(Z)}$ where $\sigma(Z)$ is the trace of Z. For other standard notations and basic facts, we refer the readers [4, 5, 6].

1. Hecke Rings

In this section, we introduce some Hecke rings and the Ψ -operator. Let G be a multiplicative group and Γ be its subgroup. Let Γ be the commensurator subgroup of Γ in G, i.e., $\tilde{\Gamma} = \{g \in G; g^{-1}\Gamma g \cap \Gamma \text{ is of } G\}$ finite index in both $g^{-1}\Gamma g$ and Γ . Let S be a semi-group containing Γ and contained in $\tilde{\Gamma}$. Let (Γ, S) be a Hecke pair, i.e., $\Gamma S = S\Gamma = S$. Let $L(\Gamma, S)$ be the vector space over C spanned by the formal left cosets

$$(\Gamma g), \ g \in S. \ \text{For} \ X = \sum_{i=1}^{\mu} a_i(\Gamma g_i) \in L(\Gamma, S), \ a_i \in \mathbb{C}, \ \text{and} \ g \in S,$$

we set $X \cdot g = \sum_{i=1}^{\mu} a_i(\Gamma g_i g) \in L(\Gamma, S)$. We define $D(\Gamma, S) = \{X \in \mathcal{X} \}$ $L(\Gamma, S); X \cdot M = X$ for any $M \in \Gamma$. $D(\Gamma, S)$ is in fact a ring under the multiplication defined by $X \cdot Y = \sum_{i,j} a_i b_j (\Gamma g_i h_j) \in D(\Gamma, S)$ for any $X = \sum a_i(\Gamma g_i), Y = \sum b_j(\Gamma h_j) \in D(\Gamma, S), a_i, b_j \in \mathbb{C}. D(\Gamma, S)$ is called the Hecke ring of the Hecke pair (Γ, S) .

We define a formal double coset $(\Gamma g \Gamma)$, $g \in S$, by $(\Gamma g \Gamma) = \sum_{i=1}^{\mu} (\Gamma g_i)$ when $\Gamma g \Gamma$ is a disjoint union of $\Gamma g_1, \ldots, \Gamma g_{\mu}, g_i \in S$. Since S is contained in $\tilde{\Gamma}$, $g^{-1}\Gamma g \cap \Gamma$ is of finite index in Γ and the index is exactly μ . If M_1, \ldots, M_{μ} are the left coset representatives of $g^{-1}\Gamma g \cap \Gamma$ in Γ , then $\Gamma g \Gamma$ is a disjoint union of $\Gamma g M_1, \ldots, \Gamma g M_{\mu}, \ g M_i \in S$, so that $(\Gamma g \Gamma) = \sum_{i=1}^{\mu} (\Gamma g M_i)$.

It is known [7] that the formal left cosets $(\Gamma g\Gamma)$, $g \in S$, form a basis for $D(\Gamma, S)$.

Let (Γ, S) , (Γ', S') be Hecke pairs satisfying the conditions

(1.1)
$$\Gamma' \subset \Gamma, \ \Gamma S' = S, \text{ and } \Gamma \cap S' S'^{-1} \subset \Gamma'.$$

Then for $X = \sum a_i(\Gamma g_i) \in D(\Gamma, S)$, g_i can be replaced by $g_i' \in S'$ because of the second condition so that X can be written in the form $X = \sum a_i(\Gamma g_i')$. We define a map

$$(1.2) \quad \varepsilon: D(\Gamma, S) \to D(\Gamma', S') \text{ by } \varepsilon(X) = \sum a_i(\Gamma'g_i') \in D(\Gamma', S').$$

Then ε is an injective ring homomorphism. Moreover, ε is an isomorphism if $[\Gamma: g^{'-1}\Gamma g' \cap \Gamma] = [\Gamma': g^{'-1}\Gamma' g' \cap \Gamma']$ for every $g' \in S'$.

Let $\Gamma_0^n = \{M \in \Gamma^n; C_M = 0_n\}$ and $S_0^n = \{g \in S^n : C_g = 0_n\}$. It is well known [7] that (Γ^n, S^n) and (Γ_0^n, S_0^n) are Hecke pairs. Note that S^n , S_0^n are groups. We denote the Hecke rings $D(\Gamma^n, S^n)$ and $D(\Gamma_0^n, S_0^n)$ by $\mathcal{L}^n = \mathcal{L}_p^n$ and $\mathcal{L}_0^n = \mathcal{L}_{0,p}^n$, respectively.

Since (Γ^n, S^n) , (Γ^n_0, S^n_0) satisfy the conditions (1.1), we have an injective ring homomorphism

defined as in (1.2). We set

(1.4)
$$\mathbf{L}_0^n = \mathbf{L}_{0,p}^n = \varepsilon_0^n(\mathcal{L}^n),$$

which is a subring of \mathcal{L}_0^n .

We now introduce the Ψ -operator. Let $X = \sum a_i(\Gamma_0^n g_i) \in \mathcal{L}_0^n$. $g_i \in S_0^n$ can be written in the form $g_i = (p^{\delta_i} D_i^*, B_i; 0_n, D_i)$, where $D_i = \begin{pmatrix} D_i' & * \\ 0 & p^{d_i} \end{pmatrix}$ with $D_i' \in M_{n-1}(\mathbf{Z}[\frac{1}{p}])$, $d_i \in \mathbf{Z}$, and $D_i^* = {}^tD_i^{-1}$. We set for n > 1

$$(1.5) \qquad \Psi_0(X,u) = \sum a_i p^{-nd_i} (\Gamma_0^{n-1} g_i') u^{d_i - \delta_i} \in \mathcal{L}_0^{n-1} [u^{\pm 1}]$$

where $g_i' = (p^{\delta_i}(D_i')^*, B_i'; 0_{n-1}, D_i')$ with B_i' the $(n-1) \times (n-1)$ block in the upper left corner of B_i , and u is an independent variable. We make a convention that $\mathcal{L}_0^0 = \mathbb{C}$ so that $\Psi_0(X, u) = \sum_i a_i p^{-d_i} u^{d_i - \delta_i} \in \mathbb{C}[u^{\pm 1}]$ when n = 1. The map $\Psi_0(-, u) : \mathcal{L}_0^n \to \mathcal{L}_0^{n-1}[u^{\pm 1}]$ is a well-defined ring homomorphism.

It is known [8] that $\Psi_0(-,p^{n-k}): \mathbf{L}_0^n \to \mathbf{L}_0^{n-1}$ is a surjective ring homomorphism. We define

$$(1.6) \Psi: \mathcal{L}^n \to \mathcal{L}^{n-1}$$

to make the following diagram commutes:

$$(1.7) \quad X \in \mathcal{L}^{n} \xrightarrow{\varepsilon_{0}^{n}} \mathbf{L}_{0}^{n} \subset \mathcal{L}_{0}^{n} \ni \varepsilon_{0}^{n}(X)$$

$$\downarrow^{\Psi} \qquad \qquad \downarrow^{\Psi_{0}(-,p^{n-k})}$$

$$\Psi X \in \mathcal{L}^{n-1} \xrightarrow{\varepsilon_{0}^{n-1}} \mathbf{L}_{0}^{n-1} \subset \mathcal{L}_{0}^{n-1} \ni \Psi_{0}(\varepsilon_{0}^{n}(X),p^{n-k})$$

Obviously, Ψ is also a well-defined surjective ring homomorphism. We set Ψ^0 =the identity operator and $\Psi^r = \Psi \circ \Psi^{r-1}$ for $1 \le r \le n$.

2. The Canonical Decomposition

In this section, we briefly discuss on the canonical decomposition of Siegel modular forms (see [1]).

Let n, k, q be positive integers. Let $\Gamma^n(q) = \{M \in \Gamma^n; M \equiv I_{2n}(modq)\}$ and call it the principal congruence subgroup of Γ^n of level q. Let Γ be a congruence subgroup of Γ^n of level q, i.e., $\Gamma^n(q) \subset \Gamma \subset \Gamma^n$. Let χ be a congruence character on Γ , i.e., $\chi: \Gamma \to \mathbf{C}^{\times}$ is a character satisfying $\chi(\Gamma^n(q)) = 1$. We define $\mathcal{M}_k^n(\Gamma, \chi)$ to be the set of all $F: \mathcal{H}_n \to \mathbf{C}$ satisfying the conditions:

(2.1)
$$F$$
 is holomorphic on \mathcal{H}_n ,

(2.2)
$$F|_k M = \chi(M)F$$
 for any $M \in \Gamma$, and

when
$$n = 1, (cz + d)^{-k} F(M\langle z \rangle)$$
 is bounded as $\text{Im}(z) \to \infty$
(2.3) for any $M = (a, b; c, d) \in \Gamma^1 = SL_2(\mathbf{Z}), z \in \mathcal{H}_1$.

 $F \in \mathcal{M}_k^n(\Gamma, \chi)$ is called the Siegel modular form of degree n, weight k, level q, and character χ relative to Γ . $\mathcal{M}_k^n(\Gamma, \chi)$ is a finite dimensional vector space over \mathbb{C} [9]. The boundedness condition (2.3) for n > 1 follows from (2.1) and (2.2), which is known as Köcher's effect [10]. For the simplicity, we write $\mathcal{M}_k^n(\Gamma) = \mathcal{M}_k^n(\Gamma, 1)$, where 1 is the trivial character on Γ . In particular, we write $\mathcal{M}_k^n = \mathcal{M}_k^n(\Gamma^n)$ and $\mathcal{M}_k^n(q) = \mathcal{M}_k^n(\Gamma^n(q))$.

Note that if Γ' is a congruence subgroup of Γ^n of level q contained in Γ and if $\chi': \Gamma' \to \mathbb{C}^{\times}$ is the restriction of χ to Γ' , then $\mathcal{M}_k^n(\Gamma, \chi) \subset \mathcal{M}_k^n(\Gamma', \chi')$. In particular, $\mathcal{M}_k^n(\Gamma, \chi) \subset \mathcal{M}_k^n(q)$.

It is known [4] that every $F \in \mathcal{M}_k^n(q)$, hence every $F \in \mathcal{M}_k^n$ has a Fourier series expansion of the form

(2.4)
$$F(Z) = \sum_{N \in \mathcal{N}_n} f(N)e(NZ/q), \quad Z \in \mathcal{H}_n.$$

We now define the Siegel operator Φ . Let $F: \mathcal{H}_n \to \mathbb{C}$ be an arbitrary function with a Fourier series expansion (2.4). We define

(2.5)
$$(\Phi F)(Z') = \lim_{\lambda \to +\infty} F\begin{pmatrix} Z' & 0 \\ 0 & i\lambda \end{pmatrix}, \quad Z' \in \mathcal{H}_{n-1}.$$

The limit exists and

(2.6)
$$(\Phi F)(Z') = \sum_{N' \in \mathcal{N}_{n-1}} f \begin{pmatrix} N' & 0 \\ 0 & 0 \end{pmatrix} e(N'Z'/q), \ Z' \in \mathcal{H}_{n-1}.$$

We set Φ^0 = the identity operator and $\Phi^r = \Phi \circ \Phi^{r-1}$ for $1 \le r \le n$. We now consider the image of $\mathcal{M}_k^n(\Gamma, \chi)$ under Φ^r , $r = 0, 1, \ldots, n$ (see [11]).

Let G_r^n be the r-th Satake group [12] for $0 \le r \le n$, i.e.,

(2.7)

$$G_r^n = \left\{ M \in \Gamma^n; A_M = \begin{pmatrix} A_1 & 0 \\ A_{21} & A_2 \end{pmatrix}, B_M = \begin{pmatrix} B_1 & B_{12} \\ B_{21} & B_2 \end{pmatrix}, \\ C_M = \begin{pmatrix} C_1 & 0 \\ 0 & 0 \end{pmatrix}, D_M = \begin{pmatrix} D_1 & D_{12} \\ 0 & D_2 \end{pmatrix} \\ \text{where } A_1, B_1, C_1, D_1 \in M_r(\mathbf{Z}) \right\}.$$

Then the map

(2.8)
$$w_r^n: G_r^n \to \Gamma^r$$
 defined by $w_r^n(M) = M_1 = (A_1, B_1; C_1, D_1) \in \Gamma^r$

is a well-defined surjective group homomorphism. We set $\Gamma_r = w_r^n(\Gamma \cap G_r^n)$. Note that $(\Gamma^n)_r = \Gamma^r$ and $(\Gamma^n(q))_r = \Gamma^r(q)$. Therefore, Γ_r is again a congruence subgroup of Γ^r of level q.

Let $F: \mathcal{H}_n \to \mathbb{C}$ and $M \in \Gamma \cap G_r^n$ is of the form (2.7). It follows immediately from (0.1), (2.7), and (2.8) that

(2.9)
$$\Phi^{n-r}(F|_k M) = (\det D_2)^{-k} (\Phi^{n-r} F)|_k M_1.$$

So for $F \in \mathcal{M}_{r}^{n}(\Gamma, \chi)$ and $M_{1} \in \Gamma^{r}$, we have

$$(2.10) (\Phi^{n-r}F)|_{k}M_{1} = (\det D_{2})^{k}\chi(M)\Phi^{n-r}F$$

where $M \in \Gamma \cap G_r^n$ is of the form (2.7) such that $w_r^n(M) = M_1$. If we set $\chi_r(M_1) = (\det D_2)^k \chi(M)$, then since χ_r is independent of the choice of $M \in \Gamma \cap G_r^n$ with $w_r^n(M) = M_1$, $\chi_r : \Gamma_r \to \mathbb{C}^\times$ is a well-defined character such that $\chi_r(\Gamma^r(q)) = 1$. Therefore, from (2.10) we have

(2.11)
$$\Phi^{n-r}F \in \mathcal{M}_{k}^{r}(\Gamma_{r}, \chi_{r}) \text{ if } F \in \mathcal{M}_{k}^{n}(\Gamma, \chi).$$

For the case r=0, we make the convention that $\mathcal{M}_k^0(\Gamma,\chi)=\mathbb{C}$, $\Gamma^0=\Gamma^0(q)=\{1\}$, and \mathcal{H}_0 is a single point set.

For $M \in \Gamma^n$, let $\Gamma^M = M^{-1}\Gamma M$, which is again a congruence subgroup of Γ^n of level q, and let χ^M be the character: $\Gamma^M \to \mathbb{C}^\times$ defined by $\chi(\hat{M}) = \chi(M\hat{M}M^{-1})$ for $\hat{M} \in \Gamma^M$. Obviously $\chi^M(\Gamma^n(q)) = 1$ and

(2.12)
$$F|_k M \in \mathcal{M}_k^n(\Gamma^M, \chi^M) \text{ if } F \in \mathcal{M}_k^n(\Gamma, \chi).$$

Combining (2.11) and (2.12), we have for $M \in \Gamma^n$

(2.13)
$$\Phi^{n-r}(F|_k M) \in \mathcal{M}_k^r(\Gamma_r^M, \chi_r^M) \text{ if } F \in \mathcal{M}_k^n(\Gamma, \chi)$$

where $\Gamma_r^M = (\Gamma^M)_r$ and $\chi_r^M = (\chi^M)_r$. Note that if $\Gamma = \Gamma^n(q)$, then

(2.14)
$$\mathcal{M}_{k}^{r}(\Gamma_{r}^{M}, \chi_{r}^{M}) = \mathcal{M}_{k}^{r}(\Gamma_{r}, \chi_{r}) = \mathcal{M}_{k}^{r}(q),$$

and similary if $\Gamma = \Gamma^n$, then

(2.15)
$$\mathcal{M}_{k}^{r}(\Gamma_{r}^{M}, \chi_{r}^{M}) = \mathcal{M}_{k}^{r}(\Gamma_{r}, \chi_{r}) = \mathcal{M}_{k}^{r}$$

while χ is trivial in both (2.14) and (2.15).

Let $F \in \mathcal{M}_k^n(\Gamma, \chi)$. F is called a cusp form if $\Phi(F|_k M) = 0$ for all $M \in \Gamma^n$. For $F, G \in \mathcal{M}_k^n(\Gamma, \chi)$, at least one of which is a cusp form, we set

(2.16)
$$(F,G)_0 = \int_{D(\Gamma)} F(Z) \overline{G(Z)} (\det Y)^k \widetilde{dZ}$$

where $D(\Gamma)$ is a fundamental domain of Γ in \mathcal{H}_n , $Z \in X + iY \in \mathcal{H}_n$, and $\widetilde{dZ} = (\det Y)^{-n-1}dXdY$ is the \mathcal{G}_n -invariant volume element on \mathcal{H}_n . (2.16) is a well-defined positive definite Hermitian inner product [12] and is called the Maass-Petersson inner product on $\mathcal{M}_k^n(\Gamma,\chi)$. Unfortunately, however, (2.16) is meaningless if neither of F, G is a cusp form.

We now introduce a positive definite Hermitian inner product which is meaningful on the whole space $\mathcal{M}_k^n(\Gamma,\chi)$. Let $\mathcal{S}_k^n(\Gamma,\chi)$ be the subspace of $\mathcal{M}_k^n(\Gamma,\chi)$ consisting of all the cusp forms. Every $F \in \mathcal{M}_k^n(\Gamma,\chi)$ can be written in the form $F = F^* + F_n$ where $F_n \in \mathcal{S}_k^n(\Gamma,\chi)$ and F^* is contained in the orthogonal complement of $\mathcal{S}_k^n(\Gamma,\chi)$ in $\mathcal{M}_k^n(\Gamma,\chi)$ with respect to the Maass-Petersson inner product, which we denote by $\mathcal{E}_k^n(\Gamma,\chi)$. We call F_n the cusp part of F. We set

$$(2.17) (F,G) = \sum_{r=0}^{n} \sum_{M \in \Gamma \backslash \Gamma^{n}} [\Gamma^{r} : \Gamma_{r}^{M}]^{-1} \left((\Phi_{M}^{n-r} F)_{r}, (\Phi_{M}^{n-r} G)_{r} \right)_{0}$$

where $\Phi_M^{n-r}F = \Phi^{n-r}(F|_k M)$, $(\Phi_M^{n-r}F)_r$ is the cusp part of $\Phi_M^{n-r}F$, and $(-,-)_0$ is the Maass-Petersson inner product on $\mathcal{M}_k^r(\Gamma_r^M,\chi_r^M)$. We have the following theorem.

THEOREM 2.1. The pairing (2.17) is a well-defined positive definite Hermitian inner product on the whole space $\mathcal{M}_k^n(\Gamma,\chi)$, which is called the canonical inner product on the space.

Proof. See [1].

We set

(2.18)
$$\mathcal{M}_{k}^{n,n}(\Gamma,\chi) = \mathcal{S}_{k}^{n}(\Gamma,\chi)$$

and for $0 \le r < n$

(2.19) $\mathcal{M}_{k}^{n,r}(\Gamma,\chi) = \Big\{ F \in \mathcal{M}_{k}^{n}(\Gamma,\chi); \Phi_{M}^{n-r}F \text{ is a cusp form in } \\ \mathcal{M}_{k}^{r}(\Gamma_{r}^{M},\chi_{r}^{M}) \text{ for any } M \in \Gamma^{n} \text{ such that } \\ \Big(F, \bot_{s=r+1}^{n} \mathcal{M}_{k}^{n,s}(\Gamma,\chi) \Big) = 0 \Big\}.$

When n = 1, $\mathcal{M}_k^{1,0}(\Gamma, \chi)$ and $\mathcal{M}_k^{1,1}(\Gamma, \chi)$ coincide with the subspaces of classical Eisenstein series [13, 14] and cusp forms [15], respectively, which are orthogonal to each other with respect to the canonical inner product as well as the Maass-Petersson inner product. This can be extended to aribitrary n as the following:

THEOREM 2.2. The space $\mathcal{M}_k^n(\Gamma,\chi)$ is decomposed into n+1 subspaces $\mathcal{M}_k^{n,r}(\Gamma,\chi)$, $0 \leq r \leq n$, which are pairwise orthogonal with respect to the canonical inner product.

Proof. See [1].

We write

(2.20)
$$\mathcal{M}_{k}^{n}(\Gamma,\chi) = \perp_{r=0}^{n} \mathcal{M}_{k}^{n,r}(\Gamma,\chi)$$

and call it the canonical decomposition of $\mathcal{M}_k^n(\Gamma, \chi)$. The subspace $\mathcal{M}_k^{n,r}(\Gamma, \chi)$ is called the r-th canonical subspace of $\mathcal{M}_k^n(\Gamma, \chi)$ for each $r = 0, 1, \ldots, n$. Note that every $F \in \mathcal{M}_k^n(\Gamma, \chi)$ can be written in the form

$$(2.21) F = F_0 + F_1 + \dots + F_n$$

where $F_r \in \mathcal{M}_k^{n,r}(\Gamma,\chi)$. We call F_r the r-th canonical part of F. In particular, F_0 is called the Eisenstein series part and F_n the cusp part of F. Note that $F^* = F_0 + F_1 + \cdots + F_{n-1}$.

We close this section with the following theorem.

THEOREM 2.3. For $F, G \in \mathcal{M}_k^n(\Gamma, \chi)$, at least one of which is a cusp form, the canonical inner product coincide with the Maass-Petersson inner product.

Proof. See [1].

3. Main Theorems

In this section, we prove our main results:

- (1) For each $0 \le r \le n$, $\mathcal{M}_k^{n,r}$ is invariant under the Hecke operators in \mathcal{L}^n (Theorem 3.5.),
- (2) Hecke operators in \mathcal{L}^n are Hermitian with respect to the canonical inner product on \mathcal{M}_k^n (Theorem 3.6), and as a consquence
- (3) \mathcal{M}_k^n has a simultaneous eigen-basis with respect to all Hecke operators in \mathcal{L}^n (Theorem 3.7.).

Let $F \in \mathcal{M}_k^n$ and $X = \sum a_i(\Gamma^n g_i) \in \mathcal{L}^n$, $g_i \in S^n$. We set

$$(3.1) F|_k X = \sum a_i F|_k g_i.$$

The action (3.1) is independent of the choice of the left coset representatives g_i , and hence is well-defined. We call $X \in \mathcal{L}^n$ acting on \mathcal{M}_k^n as in (3.1) a Hecke operator.

Note that $F|_kX|_kY = F|_kX \cdot Y$ for any $X, Y \in \mathcal{L}^n$. It follows easily from the definition of \mathcal{M}_k^n that $F|_kX \in \mathcal{M}_k^n$.

Let t=0 or 1. We define $\mathcal{M}^n(t)$ to be the set of all $F:\mathcal{H}_n\to \mathbb{C}$ satisfying the conditions:

(3.2)
$$F$$
 is holomorphic on \mathcal{H}_n ,

$$(3.3)F(M\langle Z\rangle) = (\det D_M)^t F(Z), \ Z \in \mathcal{H}_n, \text{ for any } M \in \Gamma_0^n, \text{ and }$$

(3.4) when
$$n = 1$$
, $F(z)$ is bounded as $\text{Im} z \to \infty$, $z \in \mathcal{H}_1$.

 $F \in \mathcal{M}^n(t)$ is called an even or odd Siegel modular form when t = 0 or 1, respectively.

PROPOSITON 3.1. Let Γ be a congruence subgroup of Γ^n of level q containing Γ^n_0 and let $\chi: \Gamma \to \mathbb{C}^{\times}$ be a character such that $\chi(\Gamma^n(q)) =$

1 and $\chi(M) = (\det D_M)^{t-k}$ for any $M \in \Gamma_0^n$. Then $\mathcal{M}_k^n(\Gamma, \chi) \subset \mathcal{M}^n(t)$. In particular, $\mathcal{M}_k^n \subset \mathcal{M}^n(t)$ if k and t are of the same parity.

Proof. Let $F \in \mathcal{M}_k^n(\Gamma, \chi)$, $M = (A, B; 0_n, D) \in \Gamma_0^n$. $(F|_k M)(Z) = (\det D)^{-k} F(M\langle Z \rangle) = \chi(M) F(Z)$. So $F(M\langle Z \rangle) = (\det D)^k \chi(M) F(Z)$ = $(\det D)^t F(Z)$. Therefore, $F \in \mathcal{M}^n(t)$. The second assertion follows immediately because $\det D_M = \pm 1$ for any $M \in \Gamma_0^n$.

Let k and t have the same parity where t = 0 or 1. For $F \in \mathcal{M}^n(t)$ and $X = \sum a_i(\Gamma_0^n g_i) \in \mathcal{L}_0^n$, $g_i \in \mathcal{S}_0^n$, we set

$$(3.5) F|_{k}X = \sum a_{i}F|_{k}g_{i}.$$

The action (3.5) is well-defined and $F|_kX|_kY = F|_kX \cdot Y$ for any $X, Y \in \mathcal{L}_0^n$. Since $\mathcal{M}_k^n \subset \mathcal{M}^n(t)$, it follows easily from (3.1) and (3.5) that

$$(3.6) F|_{k}X = F|_{k}\varepsilon_{0}^{n}(X)$$

where ε_0^n is the injective ring homomorphism (1.3).

PROPOSITION 3.2. Let $F \in \mathcal{M}_k^n$ and $X \in \mathcal{L}^n$. Then $\Phi(F|_k X) = \Phi F|_k \Psi X$. More generally, $\Phi^r(F|_k X) = \Phi^r F|_k \Psi^r X$ for $0 \le r \le n$, where Φ and Ψ are the operators in (2.5) and (1.6), respectively.

Proof. Let $Y = \varepsilon_0^n(X) \in \mathbf{L}_0^n$. Regarding $F \in \mathcal{M}^n(t)$ where k and t and of the same parity with t = 0 or 1, we have [7] $\Phi(F|_kY) = \Phi F|_k \Psi_0(Y, p^{n-k})$ (see (1.5) and (1.7)). Since $\varepsilon_0^{n-1}(\Psi X) = \Psi_0(Y, p^{n-k})$ by (1.7) and $\Phi F \in \mathcal{M}_k^{n-1}$ by (2.11) and (2.15), it follows from (3.6) that $\Phi(F|_kX) = \Phi F|_k \Psi X$. The second assertion follows immediately.

We now give the following new discription of $\mathcal{M}_k^{n,r}(\Gamma,\chi)$.

Proposition 3.3. For $0 \le r < n$,

$$\mathcal{M}_{k}^{n,r}(\Gamma,\chi) = \Big\{ F \in \mathcal{M}_{k}^{n}(\Gamma,\chi); \Phi_{M}F \in \bot_{s=r}^{n-1}\mathcal{M}_{k}^{n-1,s}(\Gamma_{n-1}^{M},\chi_{n-1}^{M})$$
such that $\Big(F,\bot_{s=r+1}^{n}\mathcal{M}_{k}^{n,s}(\Gamma,\chi)\Big) = 0 \Big\}.$

Proof. Let the sets on the left and right be A and B, respectively (see 2.19). It is a well known result for n = 1 [13, 14, 15]. Assume n > 1.

Let $F \in B$. Since $\Phi_M F \in \perp_{s=r}^{n-1} \mathcal{M}_k^{n-1,s}(\Gamma_{n-1}^M, \chi_{n-1}^M)$, $\Phi_{L'}^{(n-1)-r}(\Phi_M F)$ is a cusp form for any $L' \in \Gamma^{n-1}$ by (2.18) and (2.19). But $\Phi_M F|_k L' = \Phi(F|_k M)|_k L' = d^k \Phi(F|_k M L)$ for some $L \in G_{n-1}^n$ such that $w_{n-1}^n(L) = L'$, where $D_L = \begin{pmatrix} D_{L'} & * \\ 0 & d \end{pmatrix}$ (see (2.7), (2.8), and (2.9)). So $\Phi_{ML}^{n-r} F = d^{-k} \Phi_{L'}^{(n-1)-r}(\Phi_M F)$ turns out to be a cusp form, which implies $F \in A$ by the definition (2.19).

Let $F \in A$ and $\Phi_M F = (\Phi_M F)_* + (\Phi_M F)_{**}$, where $(\Phi_M F)_* \in \bot_{s=0}^{r-1} \mathcal{M}_k^{n-1,s}(\Gamma_{n-1}^M, \chi_{n-1}^M)$ and $(\Phi_M F)_{**} \in \bot_{s=r}^{n-1} \mathcal{M}_k^{n-1,s}(\Gamma_{n-1}^M, \chi_{n-1}^M)$. Then $\Phi_{L'}^{(n-1)-r}(\Phi_M F)_* = \Phi_{L'}^{(n-1)-r}(\Phi_M F - (\Phi_M F)_{**}) = d^k \Phi_{ML}^{n-r} F - \Phi_{L'}^{(n-1)-r}(\Phi_M F)_{**}$ is a cusp form for any $L' \in \Gamma^{n-1}$ because $F \in A$. From the obvious fact that $(\Phi_M F)_*$ is orthogonal to $\bot_{s=r}^{n-1} \mathcal{M}_k^{n-1,s}(\Gamma_{n-1}^M, \chi_{n-1}^M)$, we have $(\Phi_M F)_* = 0$. Therefore $F \in B$ and the proposition follows.

Let $F,G \in \mathcal{M}_k^n(\Gamma,\chi)$, at least one of which is a cusp form. Then from the definition (2.16) of the Maass-Petersson inner product follows that

$$(3.7) (F,G)_0 = (F|_k g, G|_k g)_0$$

for any $g \in Sp_n(\mathbf{R})$ where the Maass-Petersson inner product on the right is on $\mathcal{M}_k^n(\Gamma^g, \chi^g)$, which can be defined similary to (2.12).

PROPOSITION 3.4. Let $F,G \in \mathcal{M}_k^n$, at least one of which is a cusp form, and let $X=(\Gamma^n g \Gamma^n) \in \mathcal{L}^n$, $g \in S^n$. Then $(F|_k X,G)_0=(F,G|_k X)_0$.

Proof. Recall that X can be written in the form $X = \sum_{i=1}^{\mu} (\Gamma^n g M_i)$, where $M_1, \ldots, M_{\mu} \in \Gamma^n$ are the left coset representatives of $g^{-1}\Gamma^n g \cap \Gamma^n$ in Γ^n . From (2.16) follows

$$(F|_{k}X,G)_{0} = \sum_{i=1}^{\mu} (F|_{k}gM_{i},G)_{0}$$

$$= \sum_{i=1}^{\mu} (F|_{k}g,G|_{k}M_{i}^{-1})_{0} = \sum_{i=1}^{\mu} (F|_{k}g,G)_{0}$$

because $G \in \mathcal{M}_k^n$ and $M_i^{-1} \in \Gamma^n$, where $(-,-)_0$ are the Maass-Petersson inner products on proper spaces. Let $\delta = \delta(g)$, i.e., $J_n[g] = p^\delta J_n$. Since $\det g = p^{\delta n}$, we have $p^{\delta/2}g^{-1} \in Sp_n(\mathbf{R})$. Therefore, $(F|_k g, G)_0 = (F|_k g \cdot p^{\delta/2}g^{-1}, G|_k p^{\delta/2}g^{-1})_0 = (F, G|_k p^\delta g^{-1})_0$ where the last equality follows from (0.1). So $(F|_k X, G)_0 = \sum_{i=1}^{\mu} (F, G|_k p^\delta g^{-1})_0$. But g and $p^\delta g^{-1}$ have the same diagonalization under the left and right multiplication of Γ^n so that $\Gamma^n g \Gamma^n = \Gamma^n p^\delta g^{-1} \Gamma^n$. Therefore, $X = (\Gamma^n p^\delta g^{-1} \Gamma^n) = \sum_{i=1}^{\mu} (\Gamma^n p^\delta g^{-1} L_i)$ for some $L_i \in \Gamma^n$ so that $(F|_k X, G)_0 = \sum_{i=1}^{\mu} (F|_k L_i, G|_k p^\delta g^{-1} L_i)_0 = (F, G|_k X)_0$.

We now prove our main theorems.

THEOREM 3.5. Let $F \in \mathcal{M}_k^{n,r}$, $0 \le r \le n$ and $X \in \mathcal{L}^n$. Then $F|_k X \in \mathcal{M}_k^{n,r}$.

Proof. We may assume that $X=(\Gamma^n g \Gamma^n), g \in S^n$, because such double cosets form a basis for \mathcal{L}^n . We use induction on n and u=n-r. When n=1, it is a well known result [13, 14, 15]. Assume n>1. Let u=0. Since F is a cusp form in this case, we have $\Phi F=0$ and hence $\Phi(F|_kX)=\Phi F|_k\Psi X=0$, which means $F|_kX$ is also a cusp form. This proves the theorem for r=n. We now assume u>0, i.e., $0 \le r < n$. From Proposition 3.2 follows that $\Phi^{n-r}(F|_kX)=\Phi^{n-r}F|_k\Psi^{n-r}X$ is a cusp form since $\Phi^{n-r}F$ is. Let $G\in \bot_{s=r+1}^n\mathcal{M}_k^{n,s}$. From the definition (2.17) of the canonical inner product, we have $(F|_kX,G)=\sum_{s=0}^n \left((\Phi^{n-s}(F|_kX))_s,(\Phi^{n-s}G)_s\right)_0$. For each s,

$$\begin{split} \left((\Phi^{n-s}(F|_kX))_s,(\Phi^{n-s}G)_s\right)_0 &= \left(\Phi^{n-s}(F|_kX),(\Phi^{n-s}G)_s\right)_0 \\ &= \left(\Phi^{n-s}F|_k\Psi^{n-s}X,(\Phi^{n-s}G)_s\right)_0 \\ &= \left(\Phi^{n-s}F,(\Phi^{n-s}G)_s|_k\Psi^{n-s}X\right)_0 \end{split}$$

where the last two equalities follow from Propositions 3.2 and 3.4, respectively. From Propositions 3.2, 3.3, and the induction hypothesis, we have $(\Phi^{n-s}G)_s|_k\Psi^{n-s}X = (\Phi^{n-s}G|_k\Psi^{n-s}X)_s = (\Phi^{n-s}(G|_kX))_s$. Thus $(F|_kX,G) = \sum_{s=0}^n \left(\Phi^{n-s}F,(\Phi^{n-s}(G|_kX))_s\right)_0 = \sum_{s=0}^n \left((\Phi^{n-s}F)_s,(\Phi^{n-s}(G|_kX))_s\right)_0 = (F,G|_kX)$ by (2.17). Again by the induction hypothesis, we have $(F,G|_kX) = 0$. From (2.19) follows the theorem.

THEOREM 3.6. Let $F, G \in \mathcal{M}_k^n$ and $X \in \mathcal{L}^n$. Then $(F|_k X, G) = (F, G|_k X)$. In other words, Hecke operators $X \in \mathcal{L}^n$ are Hermitian with respect to the canonical inner product on \mathcal{M}_k^n .

Proof. Again we may assume that $X=(\Gamma^n g \Gamma^n), g \in S^n$. From (2.17), we have $(F|_k X,G)=\sum_{s=0}^n \left((\Phi^{n-s}(F|_k X))_s,(\Phi^{n-s}G)_s)_0$. We have $\left((\Phi^{n-s}(F|_k X))_s,(\Phi^{n-s}G)_s\right)_0=\left(\Phi^{n-s}F,(\Phi^{n-s}G)_s|_k\Psi^{n-s}X\right)_0$ for each s by the same reasoning as in Theorem 3.5. But here, the next step $(\Phi^{n-s}G)_s|_k\Psi^{n-s}X=(\Phi^{n-s}G|_k\Psi^{n-s}X)_s=(\Phi^{n-s}(G|_k X))_s$ follows from Theorem 3.5 and Proposition 3.2. Therefore, we have $(F|_k X,G)=(F,G|_k X)$ as asserted.

We now obtain the following theorem as an easy corollary of Theorems 3.5 and 3.6.

THEOREM 3.7. For each $r, 0 \le r \le n$, $\mathcal{M}_k^{n,r}$ has a simultaneous eigen-basis with respect to all the Hecke operators $X \in \mathcal{L}^n$, and hence so does \mathcal{M}_k^n .

Proof. See [5, Theorem 4.2.20].

Above results on \mathcal{M}_k^n are proved by Maass [2] and Andrianov [3] in a different manner: They decomposed \mathcal{M}_k^n into n+1 subspaces $M_k^{n,r}$, $0 \le r \le n$, which were defined inductively by using Φ -operator, so that $\mathcal{M}_k^n = \bigoplus_{r=0}^n M_k^{n,r}$. More precisely, $M_k^{n,n} = \{F \in \mathcal{M}_k^n; \Phi F = 0\}$ and $M_k^{n,r} = \{F \in \mathcal{M}_k^n; \Phi F \in M_k^{n-1,r} \text{ such that } (F, M_k^{n,n})_0 = 0\}$ for $0 \le r < n$. Maass proved that Hecke operators $X \in \mathcal{L}^n$ are Hermitian and Andrianov proved that for any $0 \le r \le n$, $M_k^{n,r}$ is invariant under the Hecke operators and that $M_k^{n,r}$, hence \mathcal{M}_k^n has a simultaneous eigen-basis with respect to them. The Maass-Petersson inner product, however, is meaningless on $\bigoplus_{r=0}^{n-1} M_k^{n,r}$ so that the orthogonality between subspaces $M_k^{n,r}$ cannot be determined except that $M_k^{n,r} \perp_0 M_k^{n,n}$ for $0 \le r < n$, where \perp_0 is the orthogonality with respect to the Maass-Petersson inner product.

The following quesiton arises naturally: $M_k^{n,r} = \mathcal{M}_k^{n,r}$? At the present time, we know:

(1) $M_k^{n,n} = \mathcal{M}_k^{n,n}$ and $\bigoplus_{r=0}^{n-1} M_k^{n,r} = \mathcal{E}_k^n = \perp_{r=0}^{n-1} \mathcal{M}_k^{n,r}$ (see Theorem 2.3),

(2) $M_k^{n,r} = \mathcal{M}_k^{n,r}$ for any $0 \le r \le n$ if Φ is surjective. (Φ is surjective, for example, when k is even > 2n [4].)

Evdokimov [11] erroneously claimed the proof of the above theorems for a general space $\mathcal{M}_k^n(\Gamma,\chi)$. His mistake was on the definition of the canonical inner product (2.17), where he used $(\Phi^{n-r}F_r, \Phi^{n-r}G_r)_0$, as he noticed later. We adopt, however, many of his ideas in this article.

References

- M.-H. Kim, The Canonical Decomposition of Siegel Modular Forms I, J. Korean Math. Soc. 26(1989), 57-65.
- H. Maass, Die Primzahlen der Theorie der Siegelschen Modulfunktionen, Math. Ann. 124(1951), 87-122.
- 3. A.N. Andrianov, Euler Products Corresponding to Siegel Modular Forms of Genus 2, Uspeki Mat. Nauk 29:3(1974), 43-110 (Russian); Russian Math. Surveys 29:3(1974), 45-116(English).
- H. Maass, Siegel's Modular Forms and Dirichlet Series, LNM 216, Springer 1971.
- A.N. Andrianov, Quadratic Forms and Hecke Operators, GMW 286, Springer 1987.
- G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press 1971.
- A.N. Andrianov, Multiplicative Arithmetic of Siegel Modular Forms, Uspeki Math. Nauk 34:1 (1979), 67-135 (Russian); Russian Math. Surveys 34:1(1979), 75-148 (English).
- N.A. Zharkovskaya, The Siegel Operator and Hecke Operators, Funkt. Anal. Prilozh. 8:2 (1974), 30-38(Russian); Funct. Anal. Appl. 8 (1974), 113-120 (English).
- C.L. Siegel, Einführung in die Theorie der Modulfunktionen n-ten Grades, Math. Ann. 116(1938/39), 617-657.
- M. Köcher, Zur Theorie der Modulformen n-ten Grades I, II, Math. Zeit. 59(1954), 399-416; ibid. 61(1955), 455-466.
- S.A. Evdokimov, A Basis of Eigenfunctions of Hecke Operators in the Theory of Modular Forms of Genus n, Mat. Sb. 115(157)(1981), 337-363(Russian); Math. USSR Sbornik 43(1982), 299-322 (English).
- Séminaire Henri Cartan, 10e année: 1957-1958, Fonctions Automorphes, Vols. I, II, Secrétariat Math. 1958.
- E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionen Theorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5(1927), 199-224.
- 14. _____, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung I, II, Math. Ann. 114(1937), 1-28, 316-351.
- 15. H. Petersson, Konstruktion der sämtlichen Lösungen einer Riemannschen Funktionalgleichung durch Dirichlet-Reihen mit Eulerscher Produktentwick-

lung I, II, III, Math. Ann. 116(1938/39), 401-412; ibid. 117(1939/41), 39-64, 277-300.

Department of Mathematics Seoul National University Seoul 151-742, Korea

.