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Let B, () be the class of functions of the form
a_ e ,
f@) =2+ at (ap #0,p€N={1,2,..})
k=0

which are regular in the punctured disk E = {z : 0 < |z|] < 1} and
satisfying

"’+1f(2)

Re{ 1) (p—l—l)} < —pa (n€ Np={0,1,2,..},|z| < ,0< a < 1),
where .
D f(z) = % + Y (0 + m)aporz™
m=1

It 1s proved that B,4i(ea) C B.(a). Since By(a) is the class of p-valent
meromorphically starlike functions of order «, all functions in B,(«) are
p-valent starlike. Futher property preserving integrals are considered.
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1. Introduction

Let 3, denote the class of functions of the form

(1.1) flz)=—2L+ Zakz (a_p #0,pe N ={1,2,..})

which are regular in the punctured disk E = {2 : 0 < |z| < 1}. Define

(1.2) D°f(z) = f(=2),
(13) D'f(z) = 2+ @+1)ao+(p+2arz+(p+3)as’ +- -
(21 f(2))

zP

(14) D*f(x) = D(D'f(2)),

ard forw = 1,2,.4,

(1.5) Dj(z) = D(D"f(2)
= 224 ) (p+m)apaz

m=1

(D))

zP

3

In this paper, we shall show that a function f(z) in 3°,, which satisfies
one of the conditions

D+1f(2)

(1.6) R{D,,f —(p+1)} < —pa (z€U={z:]z| < 1})

for some a(0 €< a@ < 1) and n € Ny = {0,1,2,...}, is meromorphically p-

valent starlike in E. More precisely, it is proved that, for the class B,(a)
of functions in ), satisfying (1.6),

(17) B,H.](Q') - Bn(a)

holds. Since By(a) equals ¥7(a)(the class of meromorphically p-valent
starlike functions of order a [4]), the starlikeness of members of B, («a) is
a consequence of (1.7). Further properties preserving integrals are consid-
ered and some known results of Bajpai [1],Goel and Sohi [2] and Uralegaddi
and Somanatha [6] are extended.
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2. Properties of the class B,(a)

In proving our main results(Theorem 1 and Theorem 2 below), we shall
need the following lemma due to LS. Jack [3].

Lemma. Let w be non-constant regular in U = {z : |z| < 1} with w(0) =
0. If |w| attains its mazimum value on the circle |z| =7 < 1 al zy, we
have zgw'(zo) = kw(z) where k is a real number, k > 1.

Theorem 1. B,,i(a) C B.(a) for each integer n € Np.
Proof. Let f(z) € Bn41(e). Then

Dn+2f

(2.1) Re {Dwf —(p+1)} < —po.
We have to show that (2.1) implies the inequality
Dn+1f(z)

2.2 Re{=—2) _(p4+ 1)} < —pa.
(2.2) {Trjey — e+ 1}
Define w(z) in U = {2z : |z| < 1} by

Ll ) 14+ (20 — 1)w(z)
2.3 il | o N NE, P :
(23) D) PTYE PTG
Clearly w(z) is regular and w(0) = 0. The equation (2.3) may be written
as
B D) 1 (14 2p = 2ap)u()

' D7) el
Differentiating (2.4) logarithmically and using the identity
(2.5) 2(D"f(2)) = D" f(2) = (p+1)D" f(2),
we obtain

Dnt2¢(z
(2.6) DTxf((;%—(P"I'l)*i-Pa
l—o
1 —w(z) 2pzw'(2)

T w() T T+ w(@)( + (1 +2p - 2ap)u(2))

We claim that |w(z)| < 1 in U. For otherwise (by Jack’s lemma) there
exists zp in U such that

(2.7) zow'(20) = kw(z0),
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where |w(zp)| =1 and k > 1. From (2.6) and (2.7), we obtain

(2.8) %ﬁ-ﬂ%—(rﬁl)ﬂm
’ l—a
1 —w(z) 2pkw(zo)
T3 w(z0) T (T4 w(z0))( + (1 + 2p — 20p)w(z0))
Thus —
(29) Re{mﬁ%_(p+l)+7’a}> 1 1
l—a ~2(2-a) ’

which contradicts (2.1). Hence |w(z)| < 1 in U and from (2.3) it follows
that f(z) € B.(a).

Theorem 2. Let f(z) € 1, satisfy the condition

D™*1f(2) p(l —a)
2.10) Re +ipp<—-pat+——"-—— (z€U
( { ) ~(p+1)}<-p 2(p_(_erc)( )
for a given n € Ny and ¢ > 0. Then

C

= c+p—1
= [ e

belongs to B, (a).
Proof. Using the identities

(2.12) z(D"F(z)) = D" f(2) — (c+ p) D" F(z)
and
(213) A(D"F(z))' = D" F() - (p+ 1)D"F(2),

the condition (2.10) may be written as

D“+2F!z!+ 1 .
(2.14) Re{ -ZF0) (e~ pl— g

- —(p+1)} < —pa+ )
1 +(c— V) pmiipes ) 2(p—ap+c))

We have to prove that (2.14) implies the inequality

(2.15) Re{%;ﬁ%—;) ~(p+1)} < —pa.
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Define w(z) in U by

D F(2) 14 (2a — 1)w(z)
@10 TEe PHUE TG
Clearly w(z) is regular and w(0) = 0. The equation (2.16) may be written
as
n+1 _
(2.17) DF(z) 14+(1+42p 2ap)w(z)'

D"F(z) - 1 4+ w(z)

Differentiating (2.17) logarithmically , after simple computation we obtain

Bz + (c+ 1) —(p+1) = —[pa+p(1 - a)3 “’(z)]
1+ (c— 1) ZFe ~ T HU=TpaTs 1+ w(z

DoHIE(z)
2p(1 — a)zw'(2)
(e + (2p — 20p + cJw(2))(1 + w(2))’
The remaining part of the proof is similar to that of Theorem 1.

(2.18) +

Remarks. (1) A result of Bajpai [1, Theorem 1] turns out to be a particular
case of the above Theorem 2 whenp=1,a_1=1,n=0,a=0and c= 1.
(2) For p=1,a_; = 1,n = 0 and a = 0, the above Theorem 2 extends a
result of Goel and Sohi [2, Corollary 1].

Theorem 3. f(z) € B,(a) if and only if
(2.19) F(z) = 211+p /0 " f(t)dt

belongs to B, +1(a).
Proof. From the definition of F(z), we have

(2.20) D" (2F'(z)) + (p+1)D*F(z) = D™ f(2).
That is,
(2.21) z2(D"F(2)) + (p+ 1)D"F(2) = D" f(2).

By using the identity(2.5), equation (2.21) reduces to D" f(z) = D"t F(z).
Hence D"*! f(z) = D™"*?F(z). Therefore
Dn+1 n+2
- fz) _ DE()
Duf(z)  D™'F(2)

and the result follows.

Remark. Taking p = 1 in above theorems, we have the results of Urale-
gaddi and Somanathal6].
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