WREATH PRODUCT OF REGULAR *-SEMIGROUPS

Jong Moon Shin

Dedicated to Professor Younki Chae on his 60th birthday

1. Introduction

The concept of algebraic regular * - semigroup was introduced by McAlister ([2]). In recent years, some authers established many characterizations of such object [2], [9], [10], [11], and [12]. In this paper, we first discuss a topological regular * - semigroup of continuous functions from a locally compact space into a topological regular * - semigroup. And we establish the wreath product of topological regular * - semigroups as one of the semidirect products of topological semigroups. Many properties concerned with the wreath product of algebraic semigroups are well known in [8], [13] and related papers.

2. Preliminaries

Throughout, all topological spaces will assume Hausdorff spaces. A semigroup is a nonempty set S together with an associative multiplication. An element e of a semigroup S is called an *idempotent* if $e^2 = e$.

A $topological\ semigroup$ is a Hausdorff space S together with a continuous associative multiplication.

Definition([10]). A semigroup S with a unary operation $*: S \to S$ is called a *-semigroup if it satisfies

- $(1) (x^*)^* = x \text{ for all } x \in S,$
- (2) $(xy)^* = y^*x^* \text{ for all } x, y \in S.$

Received March 21, 1992.

A * - semigroup S is called a regular * - semigroup if $x = xx^*x$ for all $x \in S$.

Let S be a * - semigroup. An idempotent $e \in S$ is called a *projection* if $e^* = e$. We denote the set of all projections of S by P(S).

Note that if S is a regular * - semigroup then xx^* and x^*x are projections of S for each $x \in S$.

Definition. A topological regular * - semigroup is a topological semigroup S which is a regular * - semigroup and the unary operation * on S is a continuous function.

3. Regular * - semigroup of Continuous Functions

If X and Y are Hausdorff spaces, then C(X,Y) denotes the set of all continuous functions from X into Y. For Hausdorff spaces X and Y, we will be assumed the remainder that C(X,Y) is assigned the compact open topology.

Let S and T be topological semigroups. The pointwise multiplication on C(S,T) is defined by (fg)(x) = f(x)g(x) for all $x \in S$.

Theorem 3.1([6]). Let S be a locally compact space and let T be a topological semigroup. Then C(S,T) with the pointwise multiplication is a topological semigroup.

Theorem 3.2. Let S be a locally compact space and let T be a topological regular * - semigroup. Then C(S,T) with the pointwise multiplication is a topological regular * - semigroup.

Proof. In view of Theorem 3.1., C(S,T) is a topological semigroup. We establish that C(S,T) is a regular * - semigroup and the unary operation on C(S,T) is continuous; Let $\phi:T\to T$ be the unary operation. For each $f\in C(S,T)$, let $f^*=\phi\circ f$, that is $f^*(x)=(\phi\circ f)(x)=\phi(f(x))=f(x)^*$ for all $x\in S$. Then $f^*\in C(S,T)$. For $x\in S$, $(f^*)^*(x)=(\phi\circ (\phi\circ f))(x)=(f(x)^*)^*=f(x)$. So $(f^*)^*=f$. Let $g\in C(S,T)$. Then $(fg)^*(x)=(\phi\circ (fg))(x)=((fg)(x))^*=(f(x)g(x))^*=g(x)^*f(x)^*=(\phi\circ g)(\phi\circ f)(x)=(g^*f^*)(x)$ for all $x\in S$. So, $(fg)^*=g^*f^*$. Thus C(S,T) is a * - semigroup. Moreover, for $x\in S$, $(ff^*f)(x)=f(x)f^*(x)f(x)=f(x)f(x)^*f(x)=f(x)$. So $ff^*f=f$ for all $f\in C(S,T)$. Hence C(S,T) is a regular * - semigroup. To prove that the unary operation on C(S,T) is continuous, let $\rho:C(S,T)\to C(S,T)$ be the unary operation. Then $\rho(f)=f^*=\phi\circ f$. Let K be a compact subset of S,W

an open subset of T, $f \in C(S,T)$, and $f^* = \rho(f)(K) \in N(K,W)$. Then $(\phi \circ f)(K) = f^*(K) = \rho(f)(K) \subset W$. Hence $f(K) \subset \phi^{-1}(W)$, and hence $f \in N(K, \phi^{-1}(W))$, where $\phi^{-1}(W)$ is open subset of T because the unary operation ϕ is continuous. If $g \in N(K, \phi^{-1}(W))$, then $g(K) \subset \phi^{-1}(W)$. So $\rho(g)(K) = g^*(K) = (\phi \circ g)(K) \subset W$, and so $\rho(g) \in N(K,W)$. Thus $\rho(N(K, \phi^{-1}(W))) \subset N(K,W)$. Hence ρ is continuous. Therefore C(S,T) is a topological regular * - semigroup.

4. Wreath Product of Regular * - semigroups

If S is a [topological] semigroup, then we use End (S) to denote the set of [continuous] endomorphisms of S. Note that if S is a [locally compact] semigroup then End (S) [with the relative topology of C(S,T)] is a [topological] semigroup under the composition of [continuous] homomorphisms ([4]).

Definition. Let S be a [locally compact] semigroup, T a [topological] semigroup. If there exist a [continuous] homomorphism $\phi: T \to End(S)$, then we define the semidirect product $S \times_{\phi} T$ of S and T to be $S \times T$ [with the product topology] together with multiplication $((s_1, t_1), (s_2, t_2)) \to (s_1\phi(t_1)(s_2), t_1t_2)$.

Lemma 4.1. Let S be a [locally compact] simigroup, T a [topological] semigroup, and $\phi: T \to End(S)$ a [continuous] homomorphism. Then $S \times_{\phi} T$ is a [topological] semigroup. (See [4]).

Definition. Let S and T be semigroups and let S^T be the set of all functions from T into S. The wreath product $S \odot T$ of S and T is the set $S^T \times T$ with multiplication defined by $((f,a),(g,b)) \to (fg_a,ab)$ for all $f,g \in S^T$ and $a,b \in T$, where $(fg_a)(x) = f(x)g(xa)$ for all $x \in T$.

Remark. Suppose S and T are semigroups. Then the set S^T of all functions from T into S is a semigroup under the pointwise multiplication. Define $\phi: T \to End(S^T)$ by $\phi(t) = \phi \circ \rho_t$, where ρ_t is a right translation by t in T. Then ϕ is a homomorphism. Hence the wreath product $S \odot T$ of S and T is $S^T \times_{\phi} T$, and hence $S \odot T = S^T \times T$ with multiplication given by $((f, a), (g, b)) \to (fg \circ \rho_a, ab)$.

In view of Lemma 4.1 and Remark, the following theorems are easily obtained.

Theorem 4.2([6]). Let S and T be semigroups. Then the wreath product

 $S \odot T$ of S and T is a semigroup.

Theorem 4.3([6]). Let S be a topological semigroup and let T be a locally compact topological semigroup. Suppose that the semigroup S^T of all continuous functions from T into S is locally compact and suppose $\phi: T \to End(S^T)$ given by $\phi(a)(f) = f \circ \rho_a$ is continuous. Then the wreath product $S \odot T$ of S and T is a topological semigroup.

Theorem 4.4. Let S and T be regular * - semigroups. If f(xe) = f(x) for all $e \in P(T), x \in T$ and $f \in S^T$, then the wteath product $S \odot T$ of S and T is a regular * - semigroup.

Proof. In view of Lemma 4.1., $S \odot T$ is a semigroup. Let $(f, a) \in$ $S \odot T = S^T \times T$. Define $(f,a)^* = (g,a^*)$ such that $g(x) = (f(xa^*))^*$ for all $x \in T$. Then $(f, a)^* = (g, a^*)^* = (h, (a^*)^*)$ such that g(x) = $f(xa^*)^*$ and $h(x) = g(x(a^*)^*)^*$ for all $x \in T$. So, $h(x) = g(xa)^* =$ $(f(xaa^*)^*)^* = (f(x)^*)^* = f(x)$ for all $x \in T$, and so h = f. Hence $((f,a)^*)^* = (f,a)$. And let $(g,b) \in S \odot T = S^T \times T$. Then $((f,a)(g,b))^* =$ $(fg_a, ab)^* = (h, (ab)^*) = (h, b^*a^*)$ such that $h(x) = fg_a(x(ab)^*)^*$ for all $x \in T$. So $h(x) = (f(x(ab)^*)g(x(ab)^*a))^* = (f(xb^*a^*)g(xb^*a^*a))^* =$ $g(xb^*)^*f(xb^*a^*)^*$. On the other hand, $(g,b)^*(f,a)^* = (k,b^*)(l,a^*) =$ (kl_{b^*}, b^*a^*) such that $k(x) = g(xb^*)^*$ and $l(x) = f(xa^*)^*$ for all $x \in T$. So, $(kl_{b^*})(x) = k(x)l(xb^*) = g(xb^*)^*f(xb^*a^*)^*$ for all $x \in T$. Hence $h = kl_{b^*}$, and hence $((f,a)(g,b))^* = (g,b)^*(f,a)^*$ for all $(f,a),(g,b) \in S \odot T$. Thus $S \odot T$ is a * - semigroup. Next, $let(f, a) \in S \odot T = S^T \times T$ and let $(f, a)^* =$ (g,a^*) such that $g(x)=f(xa^*)^*$ for all $x\in T$. Then $(f,a)(f,a)^*(f,a)=$ $(f,a)(g,a^*)(f,a) = (fg_a,aa^*)(f,a) = (fg_af_{aa^*},aa^*a) = (fg_af_{aa^*},a),$ where $(fg_a f_{aa^*})(x) = f(x)g(xa)f(xaa^*) = f(x)f(xaa^*)^*f(xaa^*) = f(x)f(x)^*f(x) = f(x)f(x)^*f(x)$ f(x) for all $x \in T$. Hence $(f,a)(f,a)^*(f,a) = (f,a)$ for all $(f,a) \in S \odot T$. Therefore $S \odot T = S^T \times T$ is a regular * - semigroup.

Theorem 4.5. Let S be a topological regular * - semigroup and let T be a locally compact topological regular * - semigroup. Suppose that the semigroup S^T of all continuous functions from T into S is locally compact and suppose $\phi: T \to End(S^T)$ given by $\phi(a)(f) = f \circ \rho_a$ is continuous. If f(xe) = f(x) for all $x \in T$ and $f \in S^T$, then the wreath product $S \odot T$ of S and T is a topological regular * - semigroup.

Proof. In view of Theorem 4.3., $S \odot T$ is a topological semigroup. In view of Theorem 4.4., $S \odot T$ is a regular * - semigroup. We need to show that the unary operation on $S \odot T = S^T \times T$ is continuous. To prove this, we adopt the following notations;

- (1) Uni_{S^T} and Uni_T are unary operations on S^T and T respectively,
- (2) $\pi_1: S^T \times T \to S^T$ is the first projection, and
- (3) $\pi_2: S^T \times T \to T$ is the second projection. Then the unary operation on $S \odot T$ is $(Uni_{S^T} \circ \phi(a^*) \circ \pi_1) \times (Uni_T \circ \pi_2)$. Hence it is continuous. Therefore $S \odot T$ is a topological regular * semigroup.

References

- C. Eberhart and J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc., 144(1969), 115 - 126.
- [2] D. B. McAlister, Regular semigroups, fundermental semigroups and groups,
 J.Austral Math. Soc. (Series A) 29(1980), 475 503.
- [3] J. Dugundji, Topology, Allyn and Bacon Inc. Boston (1968).
- [4] J. H. Carruth, J. A. Hildebrant and R. J. Koch, The theory of topological semigroups, Marcel Dekker Inc. New York and Basel (1983).
- [5] J. M. Howie, An introduction to semigroup theory, Academic Press Inc. (1976).
- [6] J. M. Shin, Wreath product of topological inverse semigroups, Comm. of Korean Math. Soc. 2(1987), No.1.
- [7] J. M. Shin, Some results on topological regular * semigroup, Dongnuk J. at Kyongju, 9(1990).
- [8] L. A. Skornjakov, Regularity of the wreath product of monoids, Semigroup Forum 18 (1978), 83 86.
- [9] T. Imaoka, On fundamental regular * semigroups, Mem. Fac. Sci., Shimane Univ. 14 (1980), 19-23.
- [10] T. Imaoka, Some remarks on fundamental regular * semigroups, Rectnt development in the algebraic, analytical and topological theory of semigroups, Springer Verlag (1981), 270 280.
- [11] T. E. Hall, On regular semigroups, J. algebra 24(1973), 1-24.
- [12] T. E. Nordahl and H. E. Scheiblich, Regular * semigroups, Semigroup Forum 16(1978), 369 - 377.
- [13] U. Knauer and A. Mikhalev, Wreath product of ordered semigroups, Semigroup Forum 27(1983), 331 - 350.

DEPARTMENT OF MATHEMATICS, DONGGUK UNIVERSITY, GYEONGJU 780-714, KOREA.