미국·일본의 정보통신분야 전략기술 비교

김주성* 박정우*

목 차

I. 서 론
II. 일본의 정보통신분야 전략기술 선정
III. 미국의 정보통신분야 전략기술 선정
IV. 국내 정보통신분야 개발기술 과제와의 비교

* 기술경제연구부 기술정책연구실, 산업연구원

1. 서 론

최근들어 미국, 일본을 위시한 선진제국에 서도 정보통신분야에 있어서의 핵심전략기술 평가, 선정에 관한 관심이 크게 높아지고 있다. 이러한 기술경쟁력이 곧 산업의 국제경쟁력과 직결되지만, 기술의 고도화에 따라 연구개발의 규모가 커지는 반면 기술개발에 대한 위협은 높아지고 있어 중대와 같은 전방위적 대응으로는 사회의 성과를 거두기 어렵다는 인식을 바탕으로 하고 있다.

이에 따라 각국 정부는 심한 경제적 임팩트를 가져올 잠재력이 큰 전략기술의 예측·평가 및 선정에 많은 투자를 아끼지 않고 있다. 이러한 경향은 특히 성장잠재력이 매우 높은 정보통신분야에서 두드러지고 있다. 여기에서는 주로 일본, 미국에 있어서의 정보통신관련 전략기술 선정기준 및 선정된 기술과
제에 대해 살펴보고, 우리나라의 정보통신산업의 경우와 비교·분석하여 보기로 한다.

II. 일본의 정보통신분야 전략 기술 선정

일본의 경우 정보통신분야의 기술개발은 주로 우수성을 주도로 이루어지고 있으며, 일부 대형·기초과학의 경우 통신에서 간여하고 있다. 따라서 여기서는 우정성 산하 "전기통신 프로젝트 기술연구회"의 《프로젝트 기술과제》와 "전기통신에 관한 기술정책 간담회"의 《제21기 기술정책 간담회》의 추진상에서 주관하고 있는 《대형공업기술 연구개발과제》 및 《차세대 산업기반 기술과제》에 대해 살펴보기로 한다.

1. 우정성

가. 프로젝트 연구과제

1) 개요

전기통신 프로젝트 기술연구회는 전기통신 프로젝트 기술영역 및 연구과제의 추출, 연구 개발체제의 기본방향, 국제 공동연구의 기본 방향 등을 검토하기 위해 우정성 통신정책국에 설치되었다. 이 연구회는 전기통신의 고도화를 이루기 위해서는 전송능력의 강화, 통신 접속의 고도화, 단말 통신서비스의 고도화, 다양화 등의 필수적이라고 보았으며 이에 따라 초고속 통신기술, 고기능 네트워크기술, 바이오·지적 통신기술을 중요한 프로젝트 연구과제로 선정하였다.

2) 연구과제의 선정

전기통신의 주요 역할은 국제화사회의 기반 형성, 산업경제활동의 효율화, 사회생활의 쾌적, 교육·문화·여가의 쾌적, 재해·범죄에 대한 안전·신뢰성 확보 등이며 이에 따라 전기통신이 요구되는 기능은 고도화상통신기능, 멀티미디어 환경기능, 연여정보 고도변환 처리, 퍼스널화, 인텔리전트 인터페이스 기능, 커뮤니케이션 창출기능 등이다. 이러한 기능을 실현하기 위해서는 전송, 접속, 단말·인터넷 인터페이스 기술의 고도화가 필요하며, 전기통신 기술의 발전상 전송능력 강화, 통신접속의 고도화, 단말·인터넷의 다양화, 고도화가 요구된다.

이에 따라 아래의 3영역이 프로젝트 연구분야로 선정되었다.

○ 화상을 중심으로 하는 새로운 복합 서비스를 실현하기 위한 대용량이고 경제적인 하드웨어개발로서 초고속 디바이스, 양자 현상을 이용한 광통신의 초고속 통신기술
○ 각 이용자에 대한 다양화에 대한 융통성, 향상 안정된 통신을 제공할 수 있는 고성능성, 진전하는 지식처리기술을 이용한 고도의 엑세스 기능을 가진 고기능 네트워크 기술
○ 시청각기구의 해명, 보다 고차원적 지적 기능의 해명에 기초하고 생체기능을 모방한 고도의 패턴정보처리, 병렬분산처리에 의한 고도 지적처리 등의 바이오·지적 통신기술.

연구 분야별 구체적 연구과제선정을 위해 적용한 연구과제 선정기준은 다음과 같다.
○ 개발에 장기간을 요하고,
○ 리스크가 높으며,
○ 전기통신의 고도화를 목적으로 하며,
○ 기초과학과 전기통신의 접점을 계속 모색하고 새로운 연구영역을 개척할 혁신적,

창조적 기초연구.

3) 연구과정
앞에서 선정된 3개 연구분야별로 선정된 구체적인 연구과정내용을 정리하면 (표 1)과 같다.

<table>
<thead>
<tr>
<th>연구분야</th>
<th>연구 과제 내용</th>
</tr>
</thead>
</table>
| 초고속통신기술 | ○ 솔리톤 전송 (Soliton transmission) 기술
○ 광위성공역을 이용한 통신기술
○ 초다세널 통신기술
○ 정보의 병렬처리기술 |
| 양자통신기술 | ○ 비고전적 광자의 발생 관리기술
○ 비고전적 광자의 전송 (감쇄) 관련 기술
○ 비고전적 광자의 중폭 및 검출 관련 기술 |
| 광통신처리기술 | ○ 빛의 병렬정보전달 · 처리기능을 실현하기 위한 재료 및 디바이스의 개발
○ 빛의 병렬정보전달 · 처리기능을 실현하기 위한 아키텍처 및 병렬처리 알고리즘 · 소프트웨어의 개발
○ 위에서 기술한 디바이스, 시스템 양면에서의 연구를 종합한 대규모의 광 병렬통신 처리시스템의 개발 |
| 초전도 용용디바이스 | ○ 고온초전도 박막 조셉슨소자의 개발을 위한 고주파 믹싱기구 에 의한 테라 헤르츠대 전자파의 초고감도 수신기술
○ 초전도 공진기에 의한 송신주파수의 고안정화 기술
○ 고이득 초전도 어레이 안테나기술
○ 초전도 도파로 등에 의한 고효율 출력합성기술
○ 초전도체에 의한 고효율 전자기 차폐기술 |
| 양자구조디바이스기술 | ○ 초고속 중폭소자 (RHET, TBT) 등
○ 고주파 발진소자 (Broch 발진소자, Tunnet 발진소자, IMPATT 발진소자 등)
○ 양자구조 디바이스용 재료, 프로세서기술 (초다막 박막형성기술, 초미세 가공기술) |
(표 1) 계속

<table>
<thead>
<tr>
<th>연 구</th>
<th>분 야</th>
<th>연 구 과 제 내 용</th>
</tr>
</thead>
<tbody>
<tr>
<td>미개발 영역</td>
<td>전자파기술</td>
<td>○ 밀리파에서 X선 영역에 걸친 동조가능한 코허런트 발진기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 주파수의 초안정화기술(주파수 로경기술)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ X선 영역까지 도달하는 초고속 머신, 검출기</td>
</tr>
<tr>
<td>고기능 네트워크 기술</td>
<td>종합통신망기술</td>
<td>○ 방송망을 포함하는 초광대역, 초대역 광역 네트워크 구성을기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 이용자에 의한 망구성 제어가 가능한 네트워크 구성을기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 인텔리전트 망 서비스의 운용, 관리기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 초고속 네트워크 구성을기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 유무선망 고도 통합화기술</td>
</tr>
<tr>
<td>통신서비스</td>
<td>개성화기술</td>
<td>○ 이용자 요구특특기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 서비스 요구표현의 사양 기술화(指定화) 기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 자율적으로 이용자 요구를 검정하는 기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 서비스기술 자동합성기술</td>
</tr>
<tr>
<td>고도통신 처리 기술</td>
<td>○ Syntax 변환처리기술</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○ Semantic 추출처리기술</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○ 분산형 통신처리방식</td>
<td></td>
</tr>
<tr>
<td>망의 접속기능</td>
<td>고도화/고속화 기술</td>
<td>○ 접속기능시간 1초 이하의 품질을 실현하기 위한 망채어 아키텍처(프로세서의 기능분산법, 공간적 배치법, 프로세서간 통신법)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 이상의 품질을 충족시키기 위한 새로운 신호방식</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 이상의 제어계를 실현하기 위한 단위 프로세서의 아키텍처, 소자</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 이상의 제어계를 실현하기 위한 소프트웨어 구성법</td>
</tr>
<tr>
<td>새로운 이동무선 시스템</td>
<td>○ 황대역 누설선로(LCX)에 의한 이동통신 시스템</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○ 무인 항공기에 의한 육상이동 통신용 데이터 중계시스템</td>
<td></td>
</tr>
<tr>
<td>바이오 지적 통신기술</td>
<td>시청각 정보처리</td>
<td>○ 시각감각·지각기구(시각 초기·중기과정의 해명과 모델화)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 시각감각기구(고차시각기구의 해명과 모델화)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 음성지각기구(청각 초기·중기과정의 해명과 모델화)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 음성언어 인지기구(고차 청각기구의 해명과 모델화)</td>
</tr>
<tr>
<td>고차원의 지적 기능(인식, 사고, 이해, 지적처리 기술)</td>
<td>○ 학습기구 및 연상처리기구</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 상식 데이터베이스</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 문법·상황처리기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 유추기구</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 분산형 기억방식</td>
</tr>
</tbody>
</table>
나. 21세기를 지향한 전기통신 기술개발 과제

1) 개 요
1987년 일본 우정성 산하 “전기통신에 관한 기술개발정책 간담회”는 ‘21세기를 지향하는 전기통신 기술개발정책’이라는 보고서를 발표하였으며, 우정성은 이를 토대로 하여 ‘전기통신에 관한 연구개발지침’을 제정하였다. 본 지침은 21세기를 향한 전기통신기술의 연구개발목표를 인프라스트럭처를 지향한 광대역 ISDN 및 고도서비스기술, 지적통신을 지향한 프로니어 기술, 전기통신과 사회·인간과의 조화를 지향한 광범한 학계적 기술로 보고 이를 실현하기 위해 정부가 특히 공적 지원을 적극적으로 추진하여야 할 연구개발과제를 제시하고 있다.

2) 연구과제의 선정
본 간담회는 21세기의 고도정보사회를 전망하여 금후 일본이 지향해야 할 전기통신 기술 개발의 방향을 사회적(니드) 측면과 기술적 (시드) 측면에서 검토하여 금후 21세기를 지
항한 전기통신기술의 연구개발목표를 도출했다. 도출된 연구개발목표를 달성하기 위하여 국가가 적극적으로 관여하여야 할 연구개발과제를 다음과 같은 기준에서 선정하였다.

- 개발단계가 주로 기초적·응용적 단계일 것
- 리드타임이 길어 실현에 시간이 걸릴 것
- 개발위험도가 클 것

3) 연구개발과제

이상의 선정기준을 적용하여 국가가 공적 지원을 적극적으로 추진하여야 할 것으로 선정된 연구개발과제를 연구개발목표에 따라 분류하면 (표 2)와 같다.

(표 2) 공적지원을 적극적으로 추진하여야 할 연구과제

<table>
<thead>
<tr>
<th>연구개발목표</th>
<th>연구개발과제</th>
<th>연구내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>인프라스트럭처를 지향한 광대역 ISDN 및 고도 서비스 기술</td>
<td>광통신기술</td>
<td>광현 전기통신기술의 실현을 목적으로 하여 광을 전기신호로 변환하지 않고 직접증폭 등 스위칭을 행하는 소자 등 광통신기술의 연구개발</td>
</tr>
<tr>
<td>광대역교환, 망기술</td>
<td>광대역 ISDN의 중요한 구성요소의 하나로서 영상 등 광 대역의 정보를 다루는 것이 가능한 교환기 등에 관한 연구개발</td>
<td></td>
</tr>
<tr>
<td>우주통신기술</td>
<td>통신서비스, 통신용량, 신뢰성, 경제성 등의 비약적 향상이 가능한 정치 플랫폼형 통신위성기술 및 방송위성기술. 우주통신시스템의 이용촉진을 목표로 하여 고도우성기술 및 관련 연구개발</td>
<td></td>
</tr>
<tr>
<td>이동통신기술</td>
<td>이용자 니트의 고도화, 다양화에 적절하게 대응하고 관리성을 높이기 위한 전파간섭제거기술, 액티브 안테나기술, 해중통신기술 등에 관한 연구개발</td>
<td></td>
</tr>
<tr>
<td>방송기술</td>
<td>대량의 정보전달이 가능한 신주파수대를 이용하는 방송 기술, 기존 방송미디어를 보다 유효하게 활용하는 각종의 다중방송기술, 영상·음성의 고품질화, 다양화를 목표로 하여 디지털화기술 등에 관한 연구개발. CATV의 다목적, 쌍방향서비스 등의 고도 이용을 위한 초광대역 전송기술, 데이터·음성통신 등의 쌍방향이용 기술의 연구개발</td>
<td></td>
</tr>
</tbody>
</table>

23
<table>
<thead>
<tr>
<th>연구개발목표</th>
<th>연구개발과제</th>
<th>연구내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>소프트웨어기술</td>
<td>전기통신 서비스의 융합화에 따라 각종 전기통신 서비스를 통합적으로 처리하기 위한 미디어변환, 속도변환 등의 고도변환 서비스를 위한 소프트웨어기술의 연구개발. 통신서비스의 구축 및 운용·보수를 위한 전문가시스템에 필요한 지식처리를 응용한 소프트웨어의 연구개발</td>
<td>주파수차원 관련기술 중대하고 있는 전파이용 니트에 대응하기 위해 주파수의 유효이용기술과 밀리파 등의 새로운 주파수대 등에 관한 연구개발. 기타 지원기술 전기통신을 고도화하여 그 보급을 촉진시키기 위한 지원 기술 etc에 관한 연구개발.</td>
</tr>
<tr>
<td>지적통신을지향한 프론티어기술</td>
<td>지적통신처리기술</td>
<td>인간이 갖고 있는 지식을 통신시스템에 도입함으로써 추론·판단 등 지적통신처리를 가능하게 하는 기술의 연구개발. 자동변역전화시스템</td>
</tr>
<tr>
<td></td>
<td>생체기능의통신에의응용기술</td>
<td>생체기능을 모방·응용하여 전송, 통신처리 등 새로운 방식 및 바이오칩 등 생물기능소자의 연구개발. 신재료 및 신기능소자</td>
</tr>
<tr>
<td></td>
<td>미래통신미디어기술</td>
<td>인간생활권의 확대, 이동의 확대, 이동의 활발화에 따른 새로운 통신미디어 및 이를 이용한 통신방식의 연구. 전기통신과 사회·인간과의조화를지향한광범한 학계적연구</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

資料：電気通信に関する技術開発政策懇談会，21世紀を目指した電気通信技術開発政策，昭和61年.
한편 1991년 6월 전기통신기술협회가 우정상에 답신한 보고서인 “21세기를 장난한 정보통신기술개발에 관한 기본시책에 대해”에서는 국가가 긴급하게 추진하여야 할 선도적 연구개발과제로서 (표 3)과 같은 과제를 제시하고 있다.

(표 3) 국가가 추진하여야 할 선도적 연구개발 과제

<table>
<thead>
<tr>
<th>기술과제</th>
<th>기술</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>고도복지형 정보통신기술</td>
<td>고도전단의료정보시스템</td>
<td>○ 고도화상 제약전단 통신기술 ○ 마이크로머신 원격진단 통신기술</td>
</tr>
<tr>
<td></td>
<td>고령자・신체장애인 지원 정보통신기술</td>
<td>○ 고령자・신체장애인 등을 위한 휴먼인터페이스 정보통신기술 ○ 신체장애인 보행유도 지원시스템</td>
</tr>
<tr>
<td>정보통신의 신뢰성・ 안전성 향상기술</td>
<td>정보통신 시큐리티기술</td>
<td>○ 본인인증기술 ○ 정보보호기술 ○ 프라이버시 보호기술</td>
</tr>
<tr>
<td></td>
<td>우주통신의 고성뢰화기술</td>
<td>○ 클러스터 위성기술 ○ 자기감시・회복기술</td>
</tr>
<tr>
<td>미래형 정보통신기술</td>
<td>현장감・인공현실감 통신기술</td>
<td>○ 3차원 임체영상 정보통신기술 ○ 인공현실감 통신기술</td>
</tr>
<tr>
<td></td>
<td>고도지적 정보통신기술</td>
<td>○ 대규모 분산협조형 지적 데이터베이스 네트워크기술 ○ 멀티미디어 자동번역 국제협조지원시스템(전자정상사회망) ○ 전자비서 등 지적활동 대행보조시스템</td>
</tr>
<tr>
<td></td>
<td>초고능률 주파수 유호이용기술</td>
<td>○ 초고능률 전송로변조기술 ○ 초고능률 정보부호화기술 ○ 이동통신을 위한 지적 주파수 다이아나 민한물기술</td>
</tr>
<tr>
<td></td>
<td>고도우주・성충권 통신시스템기술</td>
<td>○ 고도우주 통신시스템 ○ 성충권 무선중계시스템</td>
</tr>
<tr>
<td>환경대응 정보통신기술</td>
<td>환경대응 정보통신기술(고감도 원격 센싱기술 등)</td>
<td>○ 전파・광기술 등을 이용한 환경보전・정보통신기술(고감도 원격센싱기술)</td>
</tr>
</tbody>
</table>

資料: 전기통신기술협회, 21세기를 전망한 정보기술개발에 관한 기본시책에 대해, 평3년.
2. 통산성

가. 대형공업기술 연구개발과제

1) 개요

일본 통산성의 대형공업기술 연구개발제도는 1966년 "대형 공업기술 연구개발 제도 실시운영요령"의 결정에 따라 발족되었다. 이 제도는 국민경제상 중요하고 긴급하게 필요한 대형 공업기술이면서 연구개발에 여력의 자금과 장기의 기간을 요하고, 또한 상당한 위험을 동반하기 때문에 민간업계에서는 개발을 주체적으로 추진할 수 없는 것으로서 국가가 소요자금을 부담하고 산업계, 학계 등과의 밀접한 협력체제하에서 자원개발, 환경보전기술의 개발 및 국민생활 및 복지향상에 이바지하는 기술의 개발 등 혁신적·첨단적 기술의 연구개발을 계획적이고도 효율적으로 추진하려는 것이다.

2) 연구과제의 선정

대형공업기술 연구개발과제를 선정하기 위해 적용한 선정기준은 다음과 같다.

(표 4) 대형 공업기술과제

<table>
<thead>
<tr>
<th>연구과제명</th>
<th>연구기간</th>
<th>연구비</th>
<th>연구내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>컴퓨터 상호운용</td>
<td>’85 ～ ’91</td>
<td>150억엔</td>
<td>고도정보화사회에 대처하는 고성능 분산시스템 구축기술연구개발</td>
</tr>
<tr>
<td>데이터베이스 시스템</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>초첨단 가공시스템</td>
<td>’86 ～ ’93</td>
<td>150억엔</td>
<td>첨단기술분야에 필요한 초청밀 기계가공 기술의 연구개발</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 대출력 역시며 레이저기술 연구</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 고밀도 이온 범 기술 연구</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 초청밀 기계가공 장치기술 연구</td>
</tr>
</tbody>
</table>

○ 산업구조의 고도화, 국제경쟁력의 강화, 창조경제의 합리적 개발 또는 산업공생발전을 도모하기 위해서 연구개발이 지극히 중요하고 긴급한 기술
○ 선도적 또는 파급적 성격을 갖는 기술로서 그 연구개발을 행하는 것이 공업의 기술상태에 현저하게 기여하는 기술
○ 기술의 자금 및 장기의 연구기간을 필요하고, 또한 많은 위험부담을 동반하기 때문에 산업계에서 해당 연구개발을 수행하기 어려운 기술
○ 해당기술의 연구개발에 대해 개발목표를 설정하는 것이 가능하고, 또한 목표를 달성하기 위한 기술적 기법에 어느 정도 전망이 있는 기술
○ 연구개발을 수행하기 위해서는 국가, 산업계, 업계 등의 연구개발역량을 결집할 필요성이 있는 기술.

3) 연구개발과제

대형공업기술과제로서는 ’90년 현재 11개 대형과제가 수행되고 있으며, 정보통신 분야에는 (표 4)와 같은 연구과제가 추진되고 있다.
나. 차세대 산업기반 기술과제

1) 개요
차세대 산업기반기술 개발제도는 일본이 기술산업을 지향해 가기 위하여 1995년경에 발전을 기대할 수 있는 항공, 정보처리, 새로운 에너지개발, 생명산업 등 차세대 산업확립에 필요 불가결한 기반기술의 근본적인 강화를 목표하며 1981년에 제정되었다.

2) 연구과제의 선정
선정대상이 되는 기술은
○ 기술의 벡을 획기적으로 뛰어넘을 수 있는 기술로서 과급효과가 크며,

〈표 5〉 차세대 산업기반 기술과제

<table>
<thead>
<tr>
<th>연구분야</th>
<th>연구개발기간</th>
<th>추진 과제</th>
</tr>
</thead>
<tbody>
<tr>
<td>초진도</td>
<td>‘88~’97</td>
<td>○ 초진도재료
○ 초진도소자</td>
</tr>
<tr>
<td>신소재</td>
<td>과제당 10년간</td>
<td>○ 고효율 고분자 분리막재료
○ 유도성 고분자재료
○ 고결정 고분자재료
○ 초내화성선진재료
○ 장반응재료
○ 비선형광전자재료</td>
</tr>
<tr>
<td>Bio Technology</td>
<td>과제당 10년간</td>
<td>○ 세포대량배양기술
○ 조합 DNA 이용기술</td>
</tr>
<tr>
<td>신기능소자</td>
<td>과제당 10년간</td>
<td>○ 초적자소자
○ 3차원회로소자
○ 바이오소자</td>
</tr>
<tr>
<td>소프트웨어</td>
<td>‘90~’97</td>
<td>○ 새로운 소프트웨어구조화모델</td>
</tr>
</tbody>
</table>

○ 연구개발에 10년정도의 장기간이 소요되고, 연구개발자금도 막대하여 연구개발위험이 높으며,
○ 국제적으로도 관심을 가제 국제교류, 국제공동연구 등을 통해 세계적으로 공헌할 가능성이 높고,
○ 기존산업의 고도화, 자원에너지제약의 타파 등에 크게 기여할 수 있는 기술이다.

연구개발범위는 이론적, 실험적으로 충실한 산업기술로서의 실용화 가능성이 명확하게된 시점에서 연구개발에 착수하고, 산업기술로서의 실용화 전망도 질 때 종료하게 된다.

3) 연구개발과제
'90년 현재 추진되고 있는 연구과제는 〈표 5〉와 같으며, '91년도에는 양자화 기능소자 등 3개 과제가 추가되었다.

이. 미국의 정보통신분야 전략 기술 선정

1. 개요

'80년대에 접어들면서 미국의 기술경쟁력은 급격히 떨어지기 시작하였으며, 위기감을 느끼게 된 미국정부는 산업경쟁력의 강화를 위해 민간협동으로 적극적으로 연구개발에 나서게 되었다. 이에 따라 국가가 주도적으로 연구개발을 추진하게 될 핵심기술의 선정문제가 대두되었으며, 이를 위해 국방성, 상무성, 대 통령직속 과학기술정책국 및 민간연구기관에서 핵심기술의 선정 및 평가에 대한 연구보고
서가 임말아 발표되었다 (표 6).

2. 연구과제의 선정

국방적 측면과 상업적 측면을 동시에 고려하여 포괄적인 성격을 띠는 과학기술정책국의 보고서 “Report of the National Critical Technologies Panel”에서 적용한 국가핵심기술 선정을 위한 기준은 (표 7)과 같다.

3. 핵심기술과정

미국의 3개 기관이 발표한 국가핵심기술중 정보통신분야와 관련된 기술만을 정리·비교 하면 (표 8)과 같다.

이들 중 선정된 핵심기술에 대한 정의 및 분류가 보다 구체적으로 제시되어 있는 국방성 보고서 “‘89년도 핵심기술계획 (Critical Technology Plan)”에 따르면 핵심기술의 내용은 (표 9)와 같다.

미국방성이 ‘91년도에 핵심기술로 선정한 기술은 총 21개인데 이중 정보통신분야에는 반도체제조, 소프트웨어공학, 지능지계·로봇, 컴퓨터·시뮬레이션, 광학기술, 고감도 센서, 고감도레이더, 신호·영상처리, 데이터 융합 등이 포함되어 있어 ’89년도에 비해 큰 변화를 보이지 않고 있다.

한편 비교적 상업적 측면이 강조된 상무성
(표 7) 핵심기술 선정기준

<table>
<thead>
<tr>
<th>기</th>
<th>분야</th>
<th>내용</th>
<th>용도</th>
</tr>
</thead>
<tbody>
<tr>
<td>국가적 니드</td>
<td>산업경쟁력</td>
<td>신제품 도입 및 기존제품의 원가, 품질, 특성면에서의 개선을 통한 세계시장에서의 국가경쟁력을 제고시키는 기술</td>
<td></td>
</tr>
<tr>
<td></td>
<td>국방</td>
<td>국방시스템의 특성, 원가, 신뢰성, 생산 등에 있어서의 개선을 통한 국방에 큰 영향을 미치는 기술</td>
<td></td>
</tr>
<tr>
<td></td>
<td>생활의 질</td>
<td>국내·외적으로 건강, 안정, 복지, 환경에 큰 공헌을 할 수 있는 잠재력</td>
<td></td>
</tr>
<tr>
<td>중요성/핵심성</td>
<td>시장을 릴드하는 기회</td>
<td>경제와 국방에 대단히 중요한 기술에 있어서 국가적 리더십을 발휘하고 유지하려는 잠재력</td>
<td></td>
</tr>
<tr>
<td></td>
<td>성과/품질/생산성의향상</td>
<td>현재의 제품이나 제조공정에 대한 혁명적 또는 혁신적 개선을 가져와 결과적으로 경제적 또는 국방면에서의 이익을 가져다 줄 수 있는 잠재력</td>
<td></td>
</tr>
<tr>
<td></td>
<td>지렛대 (Leverage 역할)</td>
<td>정부의 R&D 투자가 실현화에 있어서의 민간투자자율 자극할 수 있는 잠재력, 또는 특정기술에 있어서의 성공이 다른 기술, 제품, 시장을 자극할 수 있는 가능성</td>
<td></td>
</tr>
<tr>
<td>시장규모/다변화</td>
<td>취약성</td>
<td>특정기술이 다른 국가에 의해 독점적으 로 보유될 때 잠재적으로 심각한 피해가 야기될 수 있는 가능성</td>
<td></td>
</tr>
<tr>
<td></td>
<td>촉진/파급효과</td>
<td>많은 다른 기술에 대한 기반을 형성하거나, 경제의 많은 부문과 양호한 연관관계를 갖는 기술</td>
<td></td>
</tr>
<tr>
<td></td>
<td>최종시장의규모</td>
<td>기존시장의 확대, 새로운 산업의 형성, 자본의 총격, 고용 기회의 증대를 통해 큰 경제적 영향을 가져올 수 있는 잠재력</td>
<td></td>
</tr>
</tbody>
</table>

의 주요핵심기술은 (표 10)과 같다.

IV. 국내 정보통신분야 개발기술 파계와의 비교

각 국가의 정부기관에서 선정한 전략기술을 분야별로 비교·검토할 때 두드러진 특징을 요약하면, 첫째로 미국의 경우 일본이나 우리나라에 비해 전송·광통신계 및 교환·네트워크에 대한 관심이 적다는 점이 지적될 수 있다. 이는 미국의 통신사의 민영화가 비교적 정착되었고 통신사의 연구개발활동이 대규모로 활발하게 진행되고 있어 국제경쟁력 면에서 우위를 확보하고 있다는 점에서 그 이
<table>
<thead>
<tr>
<th>National Critical Technologies (OSTP)</th>
<th>Commerce Emerging Technologies (DoC)</th>
<th>Defence Critical Technologies (DoD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>○ 소프트웨어</td>
<td>○ 고성능 연산</td>
<td>○ 소프트웨어 생산성</td>
</tr>
<tr>
<td>○ 반도체 및 광소자</td>
<td>○ 클라우드 반도체 소자</td>
<td>○ 반도체제도 및 마이크로 일레트로닉스회로</td>
</tr>
<tr>
<td>○ 고성능 연산 및 네트워킹</td>
<td>○ 디지털 이미징 (Imaging)</td>
<td>○ 화합물 반도체</td>
</tr>
<tr>
<td>○ 고품질 화면</td>
<td>○ 센서기술</td>
<td>○ 광섬적회로</td>
</tr>
<tr>
<td>○ 센서 및 신호전달</td>
<td>○ 인공지능</td>
<td>○ 병렬 컴퓨터 아키텍처</td>
</tr>
<tr>
<td>○ 데이터 저장 및 주변장치</td>
<td>○ 고밀도 데이터 저장</td>
<td>○ 데이터 융합</td>
</tr>
<tr>
<td>○ 컴퓨터 시뮬레이션 및 모델링</td>
<td>○ 고성능 연산</td>
<td>○ 고감도 레이저</td>
</tr>
</tbody>
</table>

유를 찾아볼 수 있을 것으로 생각된다.

둘째, 우리나라의 경우 전파·광응용계 및 기반기술계와 같은 첨단형 기반기술에 대한 중요성의 인식이 비교적 낮다. 현재의 상황에서 볼 때 일본이나 미국과 같이 우주통신기술이나 바이오기술의 응용 등에 대한 활발한 연구를 기대하기는 어렵겠지만 국가간의 경쟁에 뒤지지 않기 위해서는 앞으로 가능성을 잠재력이 높은 분야를 선정하여 집중 투자하는 방안도 고려되어야 할 것이다.

셋째, 우리나라 체신부와 일본 우정성의 정보통신 전략기술개발을 비교해 보면 체신부가 주도하는 기술개발이 대부분 국제연구기관에 의해 수행되에도 불구하고 비교적 중·단기적, 특정시스템 지향적인 점에서 큰 차이를 발견할 수 있다. 일본 우정성의 경우 주도적으로 추진해 나갈 기술개발의 성공을 사전적으로 분명하게 해, 장기적·기반적 연구에 치중함으로써 민간부문과의 중복의 방지 및 조화를 이루어 나가고 있다.

넷째, 우리나라 체신부의 경우 미국이나 일본의 경우와는 달리 전략기술의 선정에 대한 객관적 기준이나 선정을 위한 심의기구 등이 미흡한 실정이다. 미국이나 일본의 경우 전략기술의 선정을 위한 명시적 기준이 제정되어 있으며 선정 자체도 해당분야의 다양한 전문가들의 참여에 의해 이루어짐으로써 선정상의 객관성 및 권위의 확보가 유지되고 있다. 지금까지의 체신부의 정책주안점이 보편적 서비스 (universal service)의 제공에 있었다면 이제
<table>
<thead>
<tr>
<th>기술 명</th>
<th>기술 목 표</th>
<th>기술 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>마이크로일렉트로닉스 회로기술 및 제조기술</td>
<td>고속컴퓨터, 고감도 수신기, 자동제어 등에 대한 집적회로 제조</td>
<td>GHz 속도의 신호처리가 가능한 마이크로일렉트로닉스 소자기술, Giga레벨 A-D 변화기술, 회로성능 1미크론 이하의 IC기술, 대면적 Wafer-scale integration 기술, 3차원 집적회로기술, 초지외선, X선, 전자빔 등 고도 리스코라피 기술, MOS형과 바이폴라형의 내방사선 소자기술</td>
</tr>
<tr>
<td>화합물 반도체기술</td>
<td>고순도 갈륨·비소 등 반도체와 마이크로일렉트로닉스의 박막기판 제조</td>
<td>GHz속도의 GaAs 소자기술, MOS FET의 가공기술, HEMT기술, Hetero-junction 바이폴라 트랜지스터기술, 대전역 밀리파소자기술, 에피텍기술, 직경 4인치 웨이퍼 제조기술, GaAs 기판의 균일성 향상기술, 복수웨이퍼 동시가공기술</td>
</tr>
<tr>
<td>소프트웨어 생산성</td>
<td>적합하고 신뢰성 있는 소프트웨어의 작성</td>
<td>이기종으로 구성되는 대규모의 분산형 병렬 처리 컴퓨터시스템 개발, 분산형 데이터 관리를 위한 DB개발, 병렬처리용 알고리듬의 개발, 소프트웨어의 설계 몰 개발</td>
</tr>
<tr>
<td>병렬 컴퓨터 아키텍처</td>
<td>차세대 컴퓨터의 처리능력을 동시 병행으로 이용하는 초고속 연산</td>
<td>병렬의 디지털 처리, 부호처리, 신호처리 등에 아키텍처에 필요한 Heterogenous processor의 통합기술, 최적의 병렬처리를 달성하기 위한 최적 아키텍처기술, 내부연결기구기술, 특수목적의 초고성능을 일반적으로 확장하는 기술, 병렬처리용의 컴퓨터기술, OS기술, 디버그기술</td>
</tr>
</tbody>
</table>
표 9) 계속

<table>
<thead>
<tr>
<th>기술명</th>
<th>기술목표</th>
<th>기술내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>지능머신, 로보틱스</td>
<td>사람의 지능과 동작을 기계적 장치에 포함시킴</td>
<td>○ 대화형 전단시스템</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 원격제어기술</td>
</tr>
<tr>
<td>시뮬레이션 모델링</td>
<td>물리적 모형을 만들지 않고 개념이나 설계의 테스트</td>
<td>○ AI를 이용한 대규모 시뮬레이션기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 전투관리용 시뮬레이션기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ TREE 프로그램기술</td>
</tr>
<tr>
<td>광접촉기술</td>
<td>광매모리, 광신호, 데이터처리</td>
<td>○ 광IC에 의한 신호처리</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 마이크로파, 빌리파의 광처리</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 광섬유 네트워킹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 페이지드 어레이의 광 제어</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 광네트워크와 전자네트워크와의 결합</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 비선형 광 프로세싱</td>
</tr>
<tr>
<td>광섬유</td>
<td>통신용 스위치, 커플러, 초저감쇠성유와 광부품</td>
<td>○ 초저손실 (0.001 dB/km미하) 광섬유</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 5～10기가비트의 광섬유</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 20GHz이상의 광대역 광섬유</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 고속컴퓨터와 광섬유와의 접속기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 모압이 없는 FOG용 광섬유</td>
</tr>
<tr>
<td>고감도레이더</td>
<td>관측근접한 목표의 탐지가 가능하고 목표의 분류・인식・측정이 가능한 레이더</td>
<td>○ 디리스펙트럼 감시시스템</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 마이크로파, 빌리파, 레이저의 레이저기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 고해상도 레이저</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 무응답목표식별</td>
</tr>
<tr>
<td>고감도센서</td>
<td>목표의 검지, 환경의 모니터, 장치의 상태결정을 하는 능동센서</td>
<td>○ 디리스펙트럼 고감도센서</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 전자광・적외선(EO/IR)센서</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 마이크로파 방사선 측정센서</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 자기전단센서</td>
</tr>
<tr>
<td>데이터융합</td>
<td>조작하는 사람에게 편리한 형식으로 데이터를 기계에게 집적・변역・제시토록 함</td>
<td>○ 다수의 센서시스템 채널로부터의 데이터의 수신</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 고도의 융합분석(intelligence fusion/analysis)을 이용한 데이터의 분석</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ 시스템의 성능을 최대한으로 발휘시키기 위한 자기학습기능의 도입</td>
</tr>
</tbody>
</table>

표 10 미국 상무성의 주요핵심기술

<table>
<thead>
<tr>
<th>주요핵심기술</th>
<th>기술 내용</th>
<th>주요요소기술</th>
</tr>
</thead>
</table>
| 첨단반도체소자 | 모든 종류의 전자장치에 사용하기 위한 제료의 개선, 조립기술 및 첨단부품과 소자 | ○ 실리콘 화합물 반도체
○ ULSI(Ultra Large-Scale Integration)
○ 메모리 첩
○ X선 리소그래피 |
| 광전자 | 정보의 전달, 처리, 저장수단으로서의 광(가시광선, IR, UV방사선) 이용 | ○ 광잡적회로
○ 광섬유
○ 광컴퓨터
○ 고속레이저
○ 광센서 |
| 고성능 연산 | 고속 및 효율적 관리를 위한 구조의 설계와 개발, 복합과학 수행용 대규모 시스템 설계를 위한 방법의 개발 | ○ 모듈형/트랜스포트블 소프트웨어
○ 수치 시뮬레이션
○ 뉴럴네트워크 |
| 디지털 영상 | 영상의 기록, 표시, 처리, 분석 및 영상 전달을 위한 디지털 기술의 이용 | ○ 고화질 시스템
○ HDTV
○ 대형디스플레이
○ 데이터 압축
○ 영상처리 |
| 센서기술 | 처리함께를 실시간에 정확히 반영하는 신호(일반적으로 광학적, 전기적, 음향적 신호)의 발생장치 | ○ 농동/수동센서
○ 피드백과 공정제어
○ 비파괴측정
○ 산업, 대기환경 모니터링 및 제어 |
| 고밀도 데이터 저장 | 정보의 기록밀도에 있어서 일대 혁신을 가져오는 변환기능(관독/기록)한 데이터 기록 | ○ 고밀도 자기저장(수직저장방법)
○ 광자기저장 |
| 인공지능 | 제어시스템과 통합된 전자·전기 기계 시스템 | ○ 인텔리전트머신
○ 제료와 화학물질의 인텔리전트 프로세싱
○ 전문가시스템 |

자료: 산업연구원, 산업발전을 위한 주요 핵심기술, 1990.7.

부터는 고도서비스 제공을 위한 기반(infra-structure)의 형성에 있다고 볼 수 있으므로 핵심 첨단기술개발을 위한 명확한 지침 및 전략기술과제의 선정·평가를 위한 연구관리체계의 조속 확립 등이 시급하다고 볼 수 있다.