NOTES ON PRIMARY IDEALS

DONGSOO LEE AND CHULHWAN PARK

We know that a primary ideal of a commutative ring R is defined to be an ideal of R such that if $xy \in I$ and $x \notin I$, then $y^n \in I$ for some positive integer n. B.S. Chew and J. Neggers extended the concept to general rings in their paper [1].

In this paper we will give slightly different definitions of the strongly primary ideal of B.S. Chew and J. Neggers. We will call this w-strongly primary ideal. We will show that every w-strongly primary ideal is primary ideal in a commutative ring and a matrix ring of w-strongly primary ring is also w-strongly primary ring. Through this paper we assume that R is a ring with identity and every R-module M is unitary left R-module.

We recall the definitions of primary and strongly primary ideals of B.S. Chew and J. Neggers.

DEFINITION [1]. Suppose R is a ring. An ideal I of R is called left primary if there is a faithful indecomposable R/I-module M. Moreover if M is both Artinian and noetherian R/I-module, then I is called left strongly primary.

It is known that every strongly primary ideal is a primary ideal in usual sense in a commutative ring and every primary ideal is a left primary ideal[1]. Usually we call a ring R left primary and left strongly primary if 0 is left primary and strongly primary ideal respectively. Since the integer ring \mathbb{Z} has no faithful noetherian and artinian \mathbb{Z}-module, \mathbb{Z} is not strongly primary. Thus we know that primeness does not imply strongly primariness. Either strongly primariness does not imply primeness because $9\mathbb{Z}$ is a strongly primary ideal of an integer ring \mathbb{Z} but not prime.

But we have the following propositions easily.

Received October 29, 1993.
PROPOSITION 1. Let R be a commutative principal ideal domain. Then every nontrivial prime ideal is a strongly primary ideal.

Proof. Since R is a commutative principal domain, every nontrivial principal prime ideal I is maximal. So R/I is a field and clearly strongly primary.

PROPOSITION 2. If R is a semisimple primary ring, then R is strongly primary (in fact R is primitive).

Proof. Let M be a faithful indecomposable R-module. Since R is semisimple, M is semisimple. So M is simple because M is indecomposable. Thus R has a faithful indecomposable artinian and noetherian.

PROPOSITION 3. If a left artinian ring R has no nontrivial idempotents, then R is strongly primary.

Proof. Let $M = _R R$. Then $\text{End}_R(M) \cong R$. Since R has no nontrivial idempotents, M is indecomposable and $M = R$ is artinian and noetherian R-module.

PROPOSITION 4. If R is semisimple, the intersection of strongly primary ideals is zero.

Proof. Let $R = \bigoplus_{i \in I} I_i$, where I_i is minimal left ideal and $J_i = \text{ann}_R(I_i) = \{r \in R \mid rI_i = 0\}$. Clearly J_i is two sided ideal and strongly primary for I_i is a faithful indecomposable artinian and noetherian R/J_i-module. Clearly $\bigcap_{i \in I} J_i = \{0\}$.

Also we know that if R is a right Goldie ring, then the intersection of all primary ideals is zero by similar method.

The following theorem shows that if R is a left artinian primary ring and R have an injective left nonzero ideal, then R is a left strongly primary ring.

THEOREM 1. Let R be a left artinian and R have an injective left nonzero ideal. Then if R is a left primary ring, R is a left strongly primary ring.

Proof. Suppose L is an injective left ideal. Then L is a direct summand of R, that is $R = L \oplus L'$ for a suitable left ideal L' of R. Since R is left artinian, we can refine this decomposition into an indecomposable
direct decomposition of R. Let $R = I \oplus I'$ where a left ideal I is a direct summand of L (so I is injective) and I is indecomposable left R-module. Since I is left artinian, I contains a simple left ideal J. Then I is the injective envelope of J for I is indecomposable and injective. Thus J is a unique simple left ideal of I. Since R is primary, R has a faithful indecomposable R-module M. Then there exists an element m in M such that $Jm \neq 0$ for $JM \neq 0$. We can define an R-module homomorphism Φ_m from I into M as follows $\Phi_m(a) = am$. Then $\ker \Phi_m = \{a \mid am = 0\}$ does not contain J. So $\ker \Phi_m = \{0\}$ for J is the unique minimal left ideal of I. Thus Φ_m is a monomorphism and $Im \cong I$ is an injective submodule of M. Moreover Im is a direct summand of M by injectiveness of Im. Clearly $Im \cong M$. Thus R has a faithful indecomposable artinian and noetherian R-module M for I is left artinian and noetherian.

We define w-strongly primary ideal as following.

DEFINITION. An ideal I of a ring R is called w-strongly primary ideal if there exists a faithful R/I-module M such that $\text{End}_{R/I}(M)$ is local ring and its Jacobson radical is nil ideal.

We know that if M is indecomposable artinian and noetherian R-module, $\text{End}_R(M)$ is local ring and its Jacobson radical is nilpotent[2]. Thus every strongly primary ring is w-strongly primary.

The following theorems show that every commutative w-strongly primary ring is primary and a matrix ring of w-strongly primary ring is also w-strongly primary ring.

THEOREM 2. Let R be a commutative ring. If R is w-strongly primary, R is primary.

Proof. Let M be a faithful R-module and $S = \text{End}_R(M)$ be local and its Jacobson radical be nil. We imbeds R in S via $T_a(m) = am$ (in fact a is mapped into T_a). Let $ab = 0$ and $b \neq 0$ in R. Then $T_aT_b = T_{ab} = 0$ and $T_b \neq 0$. So $T_a \in \text{rad}(S)$. Since $\text{rad}(S)$ is nil, $(T_a)^n = 0$ for some n. Thus $(T_a)^n = 0$ implies $a^nM = 0$ for $(T_a)^n = T_a^n$. Since M is a faithful R-module, $a^n = 0$.

THEOREM 3. R is a w-strongly primary ring iff $M_n(R)$ is a w-strongly primary ring where $M_n(R)$ is (n, n) matrix ring over R.
Proof. If M is a faithful R-module such that $\text{End}_R(M)$ is local and its Jacobson radical is nil. Let $N = M \oplus \cdots \oplus M$ (n-copies) as a direct sum of groups. We define $M_n(R)$-action as following:

$$(\tau_{ij})(m_1, \ldots, m_i, \ldots, m_n) \overset{\text{def}}{=} (\ldots, \sum_{j=1}^{n} \tau_{ij} m_j, \ldots)$$

Then N is a faithful $M_n(R)$-module. We will prove that $\text{End}_R(M) \cong \text{End}_{M_n(R)}(N)$. At first we can define a ring homomorphism Ψ from $\text{End}_R(M)$ into $\text{End}_{M_n(R)}(N)$ as following:

$$\Psi(\sigma)(m_1, \ldots, m_i, \ldots, m_n) \overset{\text{def}}{=} (\sigma(m_1), \ldots, \sigma(m_i), \ldots, \sigma(m_n))$$

for every $\sigma \in \text{End}_R(M)$. By simple calculation, we know that $\Psi(\sigma)$ is an element of $\text{End}_{M_n(R)}(N)$ and Ψ is a ring homomorphism. On the other hand if τ is any $M_n(R)$-module homomorphism of N.

Since

$$\tau(0, \ldots, m_i, 0, \ldots, 0) = \tau(E_{ii}(0, \ldots, m_i, 0, \ldots, 0)$$

$$= E_{ii} \tau(0, \ldots, m_i, 0, \ldots, 0)$$

$$= E_{ii}(m'_1, \ldots, m'_i, \ldots, m'_n)$$

$$= (0, \ldots, 0, m'_i, 0, \ldots, 0),$$

we have $\tau(0, \ldots, m_i, 0, \ldots, 0) = (0, \ldots, m'_i, 0, \ldots, 0)$ where E_{ij} is the matrix whose element of i-th row and j-th column is 1 and otherwise is 0. For each i, we can define σ_i as $\sigma_i(m) = \pi_i \tau_i(m)$ where π_i is i-th injection from M into N and τ_i is i-th projection from N into M. Then clearly σ_i is R-module homomorphism of M.

Since

$$\sigma_i(m) = \pi_i \tau_i(m)$$

$$= \pi_i \tau(E_{ij} \iota_j(m))$$

$$= \pi_i E_{ij} \tau_j(m)$$

$$= \pi_i E_{ij}(0, \ldots, \sigma_j(m), \ldots, 0, \ldots, 0)$$

$$= \sigma_j(m),$$
we have $\sigma_i = \sigma_j = \sigma$ for every $i \neq j$. Thus $\tau = \Psi(\sigma)$. It is clear that Ψ is one to one. Hence Ψ is an isomorphism and $\text{End}_R(M) \cong \text{End}_{M_n(R)}(N)$.

Conversely N is a faithful $M_n(R)$-module. Define $N_i = E_{ii}N$. Then $N = N_1 \oplus \ldots \oplus N_n$ as a direct sum of abelian groups and $N_i \cong N_j$ for $i \neq j$. Each N_i is an R-module via $rn = rE_{ii}n$ for $n \in N_i$. Clearly $M = N_i$ is a faithful R-module and $\text{End}_R(M) \cong \text{End}_{M_n(R)}(N)$. Thus theorem is proved.

References

1. B.S. Chew and J. Neggers, Primary Ideals, Korean Math Soc. (2)20 (1984), 141–146

Department of Mathematics
College of Natural Science
University of Ulsan
Ulsan 680-749, Korea