R[x]-LINEAR MAPS OF THE MACAULAY-NORTHCOTT MODULE

Sangwon Park

1. Introduction

Northcott in [3] considered the module K[x⁻¹] of inverse polynomials over the polynomial ring K[x] (with K a field). The idea for this module came from Macaulay's work in [1]. McKerrow in [2] generalized Northcott's work and considered the module M[x⁻¹] over R[x] (with R a ring and M a left R-module). If E is an injective left R-module and R is left noetherian then E[x⁻¹] is an injective left R[x]-module (see [2]). In [4] and [5] we studied the behaviors of these so-called Macaulay-Northcott modules when we apply the torsion and extension functors to them. In this paper we will consider the R[x]-linear maps of these modules.

DEFINITION 1.1. Let R be a ring and M be a left R-module then M[x⁻¹] is a left R[x]-module defined by

\[x(m_0 + m_1 x^{-1} + \cdots + m_n x^{-n}) = m_1 + m_2 x^{-1} + \cdots + m_n x^{-n+1}. \]

We call M[x⁻¹] a Macaulay-Northcott Module.

DEFINITION 1.2. Let C be the category of left R-module and D be the category of left R[x]-module. Let \(f : R M \to R N \) be a linear map, then \(T : C \to D \) defined by \(T(M) = M[x^{-1}] \) and \(T(f) = f \) (where \(f(m_0 + m_1 x^{-1} + \cdots + m_n x^{-n}) = f(m_0) + f(m_1) x^{-1} + \cdots + f(m_n) x^{-n} \)) is a functor between C and D. We call T the Macaulay-Northcott Functor.

Received October 10, 1993

365
THEOREM 1.3. There is a natural isomorphism

\[\text{Hom}_{R[x]}(M[x^{-1}], N[x^{-1}]) \cong \text{Hom}_{R}(M, N)[[x]]. \]

Proof. See Theorem 4.1 [4].

Suppose \(\phi : M \to N \) is a \(R \)-linear map, then we have the obvious map \(M[x^{-1}] \to N[x^{-1}] \), namely \(\phi + 0 \cdot x + 0 \cdot x^2 + \cdots \in \text{Hom}_{R}(M, N)[[x]]. \)

2. The Macaulay-Northcott Module

PROPOSITION 2.1. Let \(M \) be an essential extension of \(N \) as a left \(R \)-module then \(M[x^{-1}] \) is an essential extension of \(N[x^{-1}] \).

Proof. Let \(m_0 + m_1 x^{-1} + \cdots + m_i x^{-i} \in M[x^{-1}] \) w.l.o.g. let \(m_i \neq 0 \) then there is \(r_i \in R \), \(r_i \neq 0 \) such that \(m_i r_i \in N \), \(m_i r_i \neq 0 \). So \(r_i x_i (m_0 + m_1 x^{-1} + \cdots + m_i x^{-i}) = r_i m_i \in N[x^{-1}] \). Hence \(M[x^{-1}] \) is an essential extension of \(N[x^{-1}] \).

REMARK 2.2. Let \(R \) be left noetherian. If \(E \) is an injective envelope of \(M \) then \(E[x^{-1}] \) is an injective envelope of \(M[x^{-1}] \).

Note that if \(RM \subset R N \), then

\[\frac{N[x^{-1}]}{M[x^{-1}]} \cong \frac{N}{M}[x^{-1}]. \]

PROPOSITION 2.3. If \(0 \to M \to E^0 \to E^1 \to \cdots \) is a minimal injective resolution of \(M \) as a left \(R \)-module then

\[0 \to M[x^{-1}] \to E^0[x^{-1}] \to E^1[x^{-1}] \to \cdots \]

is a minimal injective resolution.

Proof. Let \(0 \to M \xrightarrow{\epsilon} E^0 \xrightarrow{d_1} E^1 \xrightarrow{d_2} \cdots \) and \(0 \to M[x^{-1}] \xrightarrow{\bar{\epsilon}} E^0[x^{-1}] \xrightarrow{d_1} E^1[x^{-1}] \xrightarrow{d_2} \cdots \). Let \(m_0 + m_1 x^{-1} + \cdots + m_i x^{-i} \in M[x^{-1}] \).

Then \(d_0 \circ \bar{\epsilon} (m_0 + m_1 x^{-1} + \cdots + m_i x^{-i}) = (d_0 + 0 \cdot x + 0 \cdot x^2 + \cdots) \circ (e + 0 \cdot x + 0 \cdot x^2 + \cdots) (m_0 + \cdots + m_i x^{-i}) = d_0 (e(m_0)) + d_0 (e(m_1)) x^{-1} + \cdots + d_0 (e(m_i)) x^{-i} = 0 \) So \(\text{im} (\bar{\epsilon}) \subset \text{ker} (d_0) \). Let \(e_0 + e_1 x^{-1} + \cdots +
\(e_i x^{-1} \in \ker(d_0) \). Then \(d(e_0) + d(e_1)x^{-1} + \cdots + d(e_i)x^{-1} = 0 \). So \(d(e_0) = d(e_1) = \cdots = d(e_i) = 0 \). So \(e_0, e_1, \ldots, e_i \in \text{im}(e) \). So there exist \(m_0, m_1, \ldots, m_i \) such that \(e(m_0) = e_0, e(m_1) = e_1, \ldots, e(m_i) = e_i \). Now \(e(m_0 + m_1 x^{-1} + \cdots + m_i x^{-i}) = e_0 + e_1 x^{-1} + \cdots + e_i x^{-i} \). So \(\text{im}(e) = \ker(d_0) \). By the same process we have \(\text{im}(d_k) = \ker(d_{k+1}) \). And by Remark 2.2, \(E^{k+1}[x^{-1}] \) is an injective envelope of \(E^k[x^{-1}] \). So \(0 \to M[x^{-1}] \to E^0[x^{-1}] \to \cdots \) is a minimal injective resolution of \(M[x^{-1}] \) as a left \(R[x] \)-module.

PROPOSITION 2.4. Let \(\phi : M[x^{-1}] \) be \(R[x] \)-linear map.

Then \(\phi(M) \subset M \).

Proof. Suppose \(m \in M \) and \(\phi(m) = f \notin M \) and \(f = m_0 + m_1 x^{-1} + \cdots + m_n x^{-n} \). Then for \(x \in R[x] \), \(\phi(xm) = 0 \) and \(x\phi(m) = m_1 + m_2 x^{-1} + \cdots + m_n x^{-n} \neq 0 \) So \(x\phi(m) \neq \phi(xm) \). This contradicts the fact that \(\phi \) is a \(R[x] \)-linear map. So \(\phi(M) \subset M \).

PROPOSITION 2.5. Let \(\phi : M[x^{-1}] \to M[x^{-1}] \) be \(R[x] \)-linear map.

1) If \(M \xrightarrow{\phi} M \) is one to one so is \(\phi \).

2) If \(M \xrightarrow{\phi} M \) is an isomorphism so is \(\phi \).

Proof of 1). Suppose \(\phi \) is not one to one. Let \(h = \ker(\phi) \) for \(h = m_0 + m_1 x^{-1} + \cdots + m_n x^{-n} \) and w.l.o.g. \(m_n \neq 0 \). Then \(\phi(h) = \phi(m_0 + m_1 x^{-1} + \cdots + m_n x^{-n}) = 0 \). Since \(\phi \) is \(R[x] \)-linear map, \(x\phi(m_0) + x\phi(m_1 x^{-1}) + \cdots + x\phi(m_n x^{-n}) = \phi(m_1 + m_2 x^{-1} + \cdots + m_n x^{-n+1}) = 0 \). Multiply \(x \) on the left hand side again, then we have \(\phi(m_2) + \phi(m_3 x^{-1}) + \cdots + \phi(m_n x^{-n+2}) = 0 \). Repeat this process until we have \(\phi(m_n) = 0 \). So \(m_n \in \ker(M|\phi|M) \). This contradicts the fact that \(M|\phi|M \) is 1-1. So \(\phi \) is 1-1.

Proof of 2). Suppose \(M|\phi|M \) is an isomorphism. Then by 1) \(\phi \) is one to one so we want to show \(\phi \) is onto. Let \(f \in M[x^{-1}] \) and \(f = m_0 + m_1 x^{-1} + \cdots + m_i x^{-i} \). Suppose \(\phi(g) = f \) for \(g \in M[x^{-1}] \). Then \(x^i \phi(g) = m_i \). So let \(g = n_0 + n_1 x^{-1} + \cdots + n_i x^{-i} \). Then \(x^i g = n_i \). Now choose \(n_i \) such that \(\phi(n_i) = m_i \). Let \(\phi(n_i x^{-1}) = c_{i-1} + m_i x^{-1} \). Choose \(n_{i-1} \) such that \(\phi(n_{i-1}) = m_{i-1} - c_{i-1} \). And let \(\phi(n_{i-1} x^{-1}) + \phi(n_i x^{-2}) = c_{i-2} + m_{i-1} x^{-1} + m_i x^{-2} \). Choose \(n_{i-2} \) such that \(\phi(n_{i-2}) = n_{i-2} - c_{i-2} \). By this process we can get \(n_{i-3}, \ldots, n_0 \) and we have \(\phi(g) = f \). So \(\phi \) is onto. So \(\phi \) is an assumption.
Proposition 2.6. \(\sigma : M[[x^{-1}]]/M[x^{-1}] \to M[[x^{-1}]]/M[x^{-1}] \) by
\[f + M[x^{-1}] \to x(f + M[x^{-1}]) \] is an isomorphism.

Proof. Let \(f + M[x^{-1}] \in \ker(\sigma) \) and let \(f = a_0 + a_1 x^{-1} + a_2 x^{-2} + \cdots \). Then \(\sigma(f + M[x^{-1}]) = x(f + M[x^{-1}]) = M[x^{-1}] \). So \(f + M[x^{-1}] = M[x^{-1}] \). So \(f \) is one to one. Let \(f + M[x^{-1}] = (a_0 + a_1 x^{-1} + a_2 x^{-2} + \cdots) + M[x^{-1}] \in M[[x^{-1}]]/M[x^{-1}] \). Let \(g + M[x^{-1}] = (a_0 x^{-1} + a_2 x^{-2} + a_2 x^{-3} + \cdots) + M[x^{-1}] \), then \(\sigma(g + M[x^{-1}]) = f + M[x^{-1}] \). Hence \(\sigma \) is onto. So \(\sigma \) is an isomorphism.

Theorem 2.7. Let \(\phi : E[x^{-1}] \to E[x^{-1}] \) be a linear map for \(RE \) injective, then there is a \(\psi : E[[x^{-1}]] \to E[[x^{-1}]] \) such that \(E[[x^{-1}]][\psi]|_{E[x^{-1}]} = \phi \). Moreover \(\psi \) is not unique in general.

Proof. Since \(E[[x^{-1}]] \) is an injective left \(R[x] \)-module we can complete the following diagram

\[
\begin{array}{ccc}
E[x^{-1}] & \hookrightarrow & E[[x^{-1}]] \\
\phi \downarrow & \nearrow \psi \\
E[[x^{-1}]] & &
\end{array}
\]

So we have \(\psi \) such that \(E[x^{-1}][\psi]|_{E[x^{-1}]} = \phi \).

Let \(\psi_1, \psi_2 : E[[x^{-1}]] \to E[[x^{-1}]] \) and \(E[x^{-1}][\psi_i]|_{E[x^{-1}]} = \phi \) for \(i = 1, 2 \). Then \(\psi_1|x_{E[x^{-1}]} = \phi \), \(\psi_2|x_{E[x^{-1}]} = \phi \) and \(\psi_1 - \psi_2|_{E[x^{-1}]} = 0 \). So \(E[x^{-1}] \subset \ker(\psi_1 - \psi_2) \). So we have an induced map

\[
E[[x^{-1}]])/E[x^{-1}] \to E[[x^{-1}]] \text{ by } f + E[x^{-1}] = (\psi_1 - \psi_2)(f).
\]

Now consider the following. Let \(\phi : E[x^{-1}] \to E[x^{-1}] \) be a linear map. Let \(\psi_1 : E[[x^{-1}]] \to E[[x^{-1}]] \) such that \(E[x^{-1}][\psi_1]|_{E[x^{-1}]} = \phi \). Let \(\sigma : E[[x^{-1}]]/E[x^{-1}] \to E[[x^{-1}]] \) be a non zero linear map, then there is a non zero linear map \(\tau : E[[x^{-1}]] \to E[[x^{-1}]] \) such that \(\tau(f) = \sigma(f + E[[x^{-1}]]) \) and \(E[x^{-1}] \subset \ker(\tau) \). Let \(\psi_2 : E[[x^{-1}]] \to E[[x^{-1}]] \) such that \(\psi_2 = \psi_1 - \tau \), then

\[
E[x^{-1}][\psi_2]|_{E[x^{-1}]} = E[x^{-1}][\psi_1 - \tau]|_{E[x^{-1}]} = E[x^{-1}][\psi_1]|_{E[x^{-1}]} = \phi.
\]

So there is \(\psi_2 \) such that \(\psi_1 \neq \psi_2 \).
Example 2.8. Let \(R = \mathbb{Z} \) and \(E = \mathbb{Q} \). Let \(\psi_1 : \mathbb{Q}[x^{-1}] \to \mathbb{Q}[x^{-1}] \) be a linear map. Let \(\phi : \mathbb{Q}[x^{-1}] \to \mathbb{Q}[x^{-1}] \) be a linear map such that \(\mathbb{Q}[x^{-1}] \phi \mathbb{Q}[x^{-1}] = \phi \). Consider \(\mathbb{Q}[x^{-1}]/\mathbb{Q}[x^{-1}] \) and \(\mathbb{Q}[x^{-1}] \) as left \(\mathbb{Z}[x] \)-modules. Let \(f = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} \cdots \in \mathbb{Q}[x] \). For any non-zero \(g \in \mathbb{Z}[x] \) we claim that \(g \cdot f \notin \mathbb{Q}[x] \). Suppose \(g \cdot f = h \in \mathbb{Q}[x] \) and w.l.o.g. \(\text{deg} h = n \). Then \(h^{(n+1)}(x) = 0 \), but \((g \cdot f)^{(n+1)}(x) \neq 0 \). Let \(f = 1 + x^{-1} + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots \in \mathbb{Q}[x^{-1}] \). For non-zero \(g \in \mathbb{Z}[x] \) we claim \(g \cdot f \notin \mathbb{Q}[x^{-1}] \). Let \(g = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1} + a_n x^n \). Then \((a_1 + a_{n-1} x^{-1} + \cdots + a_0 x) \cdot f \) and \((a_1 + a_{n-1} x^{-1} + \cdots + a_0 x) \cdot f \) have some coefficient for each \(x^{-n} \) and \(x^n \) terms. So \((a_1 + a_{n-1} x^{-1} + \cdots + a_0 x) \cdot f \notin \mathbb{Q}[x^{-1}] \). So \(\psi_2 : \mathbb{Q}[x^{-1}] \to \mathbb{Q}[x^{-1}] \) such that \(\psi_2 \neq \psi_1 \) and \(\mathbb{Q}[x^{-1}] \psi_2 \mathbb{Q}[x^{-1}] = \phi \).

References

4. S. Park, Inverse Polynomials and Injective Covers, Comm Algebra 21 (1993), 4599–4613

Department of Mathematics
Dong-A University
Pusan, Korea