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COLLOCATION APPROXIMATIONS
FOR INTEGRO-DIFFERENTIAL EQUATIONS

MooN-JA CHoOI

1. Introduction

This paper concerns collocation methods for integro-differential equa-
tions in which memory kernels have a singularity at ¢ = 0. There has
been extensive research in recent years on Volterra integral and integro-
differential equations for physical systems with memory effects in which
the stability and asymtotic stability of solutions have been the main
interest. We will study a class of hereditary equations with singular
kernels which interpolate between well known model equations as the
order of singularity varies. We are also concerned with the smoothing
effect of singular kernels, but we use energy methods and our results
involve fractional time in fixed spatial norms. Galerkin methods for our
models was studied and existence, uniqueness and stability results was
obtained in [4]. Our major goal is to study collocation methods.

Let Au have its domain

H*(0,1)NH(0,1)  (u(0) = u(1) = 0),

where A is Laplacian, H%(0,1) and H{(0,1) are the usual Sobolev
spaces. See [7]. Set
ap(t) = et t>90

and define a linear hereditary operator L,, by
t
(11) La,[ul(t) = / aot — 2Ju(z)dz, > 0.
0
Consider the following equations:

P) us — Du = f, parabolic heat flow model.
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(GP
ty — Lgy[Du} = f, Gurtin -Pipkin heat flow model
in materials with memory [5].
(Vg - 200+ Lo, [Du] = f, viscoelasticity model [9].
LR wge — Du— Auy = f, Kelvin solid model {7].

Let, for 0 < o < 1,

aa(t) = ¢

(1 —a)t>’

where T'(1 — &) is the gamma function. The fractional derivative is
defined by

(12 apty = L [ $(2) <

Observe that the right hand side of (1.2) tends to D¢(t) as a — 1.
Thus we write formally

D°g(t) = () : D'¢(t) = Dg(t)  [1],[6].
We see that the Laplace transform L[] of the fractional derivative is

L[D*¢)(8) = s%d(s), N<a<l

We now define the “ singular interpolation” hereditary operator L., by
t
(1.3 L, [u](t) = / aq(t — z)u(z)dz, t > 0.
0
It follows then that

L, [u](t) = La,[u](t) as a—0
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and
L, [u](t) — u(?) as a— 1,

In this sense Lq,[] is an interpolation between L,,[-] and the identity
which we term “singular interpolation”.
We now introduce our models (GPP) and (VK):

e—(t_z)

(GPP)  wu;— /(; TI—a)(t—2) Au(z)dz = f : u(0) = uo.

(VK)

pu-d 0
e “‘Zz?/o T —ayt =z Sule)dz = £
Ut(O) == ul,u(O) = Ug.

(GPP) and (VK) are interpolation between (GP) and (P), (V) and
(K) respectively. We will restrict ourselves throughout to the cases in
which the initial values are zero.

2. Collocation Approximations
2-1. Stability for collocation methods

Let Q = (0,1) x (0,1) and for any positive integer N, we set Py =
1PN X 1Py, where 1 Py is the space of the polynomials of degree N in
a single variable. Further we set

Py={pePn:p(z)=0ifze€ N}, 0t = boundary of .

Let {:zz,:,-]»f-\fj=0 be the points in  such that z;; = (z;,y;) where for fixed
N>1,seth=%and

z; =th,y; = jh, V 0<¢j<N.

that is, points in the uniform partition of € = [0,1] x [0, 1]. Define
1 N
(2.1.1) / p(z)dz = Zp(:c,-)w; for all p € | Py,
o =0

37



Moon-Ja Choi

where w;’s are suitable weights such that the numerical quadrature
holds exactly for all polynomials with degree up to N.
We define a discrete inner product

N
(2.1.2) (6, ¥)N = Z o(xij)(zij)wiw;,

1,7=0

for all ¢,¥ € C*'(Q),0 = QU Q.
By (2.1.1) we have
12.1.3) ($,9)n = ($,¥) forall ¢,9p: ¢ ¥ € Pn.

Let Py be the complexification of Py. Then (2.1.1) and (2.1.2) can be
extended as following :

e 1
\211) [) f)(a:)dx = Zﬁg(z)w}' +1 Zﬁ[(x)wj,

where
PR = real part of p,
pr = imaginary part of p,
and
(2.1.2)
—~ - N ——————
(6, 0)n =, $laij)b(zij Jwiw,

1,7=0
= Z(J’Rd;n + ¢rdpww; +1 Z(&IJ)R — $rYr)wiw;,
for all ¢,9: ¢4 € Pw,

e

for allg, v € C°(Q) = complexification of C°(Q)

Then by (5\/11),

e ~ -~ ~ ~

1.3) ($,9)n =($,9) forall §,9:¢-9 € Py.

[SWAY

{
\
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We define the interpolation operators Iy and I N by
Iy : Co(ﬁ) — Py : Inv(zi;) = v(:z:,-,-), v E CO(Q),O <tj<N

and

e

In :CQ) — Py : Ino(zij) = i(zi;), © € 55\(5),0 <i,7 <N.

For real o > 0, we define H” by interpolation between H!? and H lo+1]
where [0] denotes the integer part of o.

For v € H?(—1,1) with ¢ > 1, the interpolation error can be esti-
mate as follows (see [3]) :

(2.1.4) | v—1Inv|[e< CR || v o, forallv e H®

and

(2.14) | 5= ING o< Ch® || 5 ||,y  for all § € H°.
Note that

(¢,9)n = (IN¢,¥)n,  for all 4,9 € CO(Q)

and e
(é,"/;)N = (I~N$a J)N’ for all &71; € CO(Q)

The discrete norm

I ¢ lln={(¢, )N}, o€ CS)

is equvalent to the L? - norm,

(2.1.5) Fel<i¢lns2liél, ¢eC@)

(see [2]).

We formulate collocation methods for the problems (GPP) and (VK)
and investigate existence, uniqueness and stability results with colloca-
tion methods. For the existence and uniqueness of solutions for (GPP)

and (VK), we refer to [4].
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The collocation method has the advantage that it is usually very easy
to implement, even when the problem to be solved is highly nonlincar.
For simplicity we ass' 1e that all initial conditions are zeros.

The semidiscrete pseudospectral approximations of (GPP) and (VK)
consist in the following collocation problems : we look for mapping
U" ¢ C*(PY) such that for any t € (0,T),

(GPPC)
[ ko t e—(t_z) A[{h p
‘:Y»L'/,‘.’t - /) i - f‘--.’t,
NENNY [J I(1 - a)(t — z)° (zij,2)dz = f(zi;,1)
1 S Z,] S N - 13
UM(2i5,0) =0, 0<14,5 <N
(VEC)

e (t=3)

h d [t
{ ::(Iu‘j,t) - AUh(:c,;]-,t) -7 /(; T = a)(t — Z)OAUh(.?:.-j,z)dz

'"‘f( !_)7 1Sia.j§]v'17
Uh(:l:,j’O) = OvUz ($|j70) =0, 0 < i,j < N.

If we take the Laplace transform on both sides of (GPPC) and (VKC)

then we obtain

(GPPC)
sU(zi;) — (s + 1) AU (i) = f(=45),
U*z2:ij)=0, 0<4j<N.
(VKC)

SO (zij) - AU"(“’!J)_S('S'+’1)or lAUh(le) (*’"‘t])>
1<, <N-1,
O (z4;) = 0,s0%zi;) =0, 0<4,j <N,
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We are now concerned with estimation on U for s = . For a
function u(s) let us define a norm || 4 |45 by

Il aGan) 13 5= (1 +0*)7 || a(in) 5 +(1+ 2*)° |l atin) ] -
Throughout, C > 0 will denote a generic constant.

LEMMA 2.1. (Stability of U* in (GPPC))
The semidiscrete collocation approximation problems (GPPC ) are sta-
ble, namely

(S1) 1T (@) lag< Ca ll F(n) Jlo -

Proof. We recall that

(GPPC)
(5T (s), 8%) + (s + 1= 1 (VO (s), Vo) = ((5), 8",
for all 9* € PY.
We put s = in and " = Ut ¢ P in (G/PFC) and we have
(2.1.6) in || T*(in) |§ +(1 +in)*~ (YU, VU*) = (f,U*)w.

(i) For a bounded set | 5 |< K :
Clearly there exists a constant 6,(K) such that, by (2.1.5)
(2.1.7)

10" (in) l5<Il 0" (am) i< I £Gn) loll T*Gm) oy 10 IS K.
a(K)

W 4C -
” U ("I) ”0— (SG(K) “ f(”]) “U .
Note that

Q4 =1+ nz)litl[cos (a —1)6 + isin(a — 1)d),
0 =arg(l+:n).
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the equation (2.1.6) becomes
(2.1.8)
i || O (in) 115 +(1+7°)"F (Ao + i) (YO, VO) = (£,0"),
)6

where cos(a —1)8 = Ay, sinfa — 1

(ii) For large | |> K :
If we take the real part of (2.1.8), we obtain using (2 1.5)

(209) (1 D) IS 5 I Fim) foll 0 Gin) o
Taking the imaginary part and using {2.1.9)

1 0% Gim) 2 < (U 725 | D) 12 44C ) 5Gim) loll D) [l
St gy | flim) ol T Gin) Nl -

< (
So it follow that
(2.1.10) | 1l T*(n) llo< Ca |l £(in) llo -

(2.111) I 7% (in) Jlo< | I £GEn) llo -

|
Thus (2.1.9) and (2.1.11) imply that

1

C. .
L4255 || OPGam) |2 — 22 || fGm) |12 -
(L+9)°7 || UPGn) |13 Inlz\a”( llo
Hence
(2.1.12) L 10 O (i) 2 Ca Il fGm) 1B, [0 |2 K.

Thus combining {2.1.7), (2.1.10) and (2.1.12) yields that , for all n € R,
(2.1.13) (L4 ) [ T*(an) |15 +(1+0")F | T Gn) (1< Ca Il fGm) 5,

which implies the assertion

10" l,g< Call FGm) llo - /71
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LEMMA 2.2. (Stability of U* in (VKC))
The (VKC) are stable, namely

(52) I T*(in) ll2,a< Ca |l F(i1) Jlo -
Proof. We recall that

(VEC)
(s*UM(s), ") + (VOP, Vo) + s(s + 1)~ Y (VO Vo) = (f(s), 8" )w,
for all i* ¢ PY,.

We put s = i and 6% = U* in (V/K\C) to obtain
(2.1.14)
| O [} (VTP VO bin(Lin)e=} (VO VO = (F,0%)y.
Note that
(Il +m) =l (1+ n2)£'§l[— sin(a — 1)8 + 1 cos(a — 1)6).

We can rewrite (2.1.14) as

(2.1.15)
—? | T n) 2+ 1 VO ) 12 + [0 | (14727 [~ pta + 62
x || VU (in) liz= (f, U*)n.

(1) For a bounded set | n |< K:
We have immediately that

(2.1.16)
I O*Gn) [IB<l T n) 13< Cle, K || Fim) lloll TP Gn) Jlo,
| n|< K.

(2.1.17) 10" (i) llo< Cle, K) || (i) o -
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(11) For large | 7 |> K -
If we take imaginary part of (2.1.15), we obtain

2118y U OH ) [ 0 S ol O o ) K
Next taking the real part yields that
(2.1.19)
PO N5 O ) I+ 10 1 pa | 7™0m) |
+4C || f(in) lo]l TU*(in) |0
<Co || flm) loll T*(in) o -

Now we combine (2.1.17),{2.1.18) and (2.1.19) to obtain an estimate
forall n € R,

(2.1.20) (14" | U ) 2 +(14+75)> | U*Gn) || < Cu || fan)

‘r
Z

From which the result follows.

IO an) 2 Co | Fim) o - /)

Now we state the main Theorems as follows :
THEOREM 2.3. (Stability of U* in (GPPC))

For 0 <« < 1, there exists a constant ¢, such that

Ut l1,8 < Call fllLs00,00:Ho) -

THEOREM 2.4. St.bility of U* in (VKC))
For 0 < « < 1, there exists a constant C, such that
h .
ii U HZ,HS Cy ” [ Hlnz(r),oo:Ho) .

Proofs. We define a norm || U* |5 by

U [y = / | O |2 i

X3

Then we obtain the assertions by iutegrating both sides of (S)) and
(S2) in Lemma 2.1 and 2.2, /11

It follows then that the above two theorems give the followings:
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THEOREM 2.5. (Existence and Uniqueness of U* of (GPPC) and
(VKC))
(GPPC) and (VKC) have unique solutions resp«ctively.

2-2. Error Analysis
Let (GPPC) and (VKC) can be rewritten :

(GPPC)
t —(t—z) 1
ko € hg - —
Ui /0 F(l—a)(t—z)o‘AU dz = f h= N’
U™0) =0
(VKC)
N /t N T fih= —
“ dt Jo T(1 — a)(t — 2)o fELAEN

U0} = 0,U}(0) = 0.

The cruicial question in collocation methods :s whether the approx-
imations U"* converge to the solution. In this section we give error
estimates. Let us denote by H:, s the space of all functions w" with
values in Py and with || w® ||ys< oo in the notation of last section.
We will establish the following error estimates.

THEOREM 2.6. There is a constant C, > 0, :ndependent of h, such
that if u and U* are the solutions of (GPP) and (GPPC) respectively,
then

Ju=U"llyep1 < Ca(, inf  Ju=wh |y azs +A77F | £ [|o).
T

THEOREM 2.7. There is a constant C, > 0, independent of h, such
that if u and U* are the solutions of (VK) and (VKC) respectively, then

. o1
HU~UhM%SC%(hg£ | u—wh|lg +R°77 || £ |lo)-
w 1‘%
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We will prove the theorems again by going to the transform plane.

Recall that

(GPP) (,9) + (1 +17)* "} (Va, Vi) = (f, ) Vo € H,

(GPPC)
in(U*,6%) + (1 +14n)*"{(VO* Vot) = (f,o")n vk € Py,

(VK)
—n?(%,8) + (Va, Vo) + in(1 + ip)* " (Vi, Vo) = (f, o ),
Vo € Hy,
(VKC)

—n* (U, 8%) + (VU Vor) +in(1 +in)° (VD" Vi')
:(.fvﬁh)N, V'{"h 6151%
Let @ and U* be the solution of (@?7’) and (G/F_?C') or (17}\{) and
(VKC), we set

=0 —wh : e =i — 0t

Now we put & = o in (G/ﬁ’) and (1//?{) , and subtract (a?P) from
(GPPC) or (ﬁ') from (VKC). we have

(I)  ag(e*,o") + (1 4+ ip)e~ Y (Ver voh)
= in(e",0%) + (1 +in)*~(VeH, Vok) + (f,9")v — (f,8").

(IT) —pi(eh o) + (Vet, Vot) + in(1 +in)> " (VEr, Vit)
=—7 (e. 0] )+(V ,Vok) sk in(1 4t (Veér, voh)
- (75
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Proof of Theorem 2.6. We take o* = &* € PYin (I) and get

(2.2.1)
in | & 112 +(1 +7%) T (Ao + igta) || VE* |I2
=in(eh, &) + (1+72)"F (g +ina)(Ve", Veh)
+(f,"n — (Unf, )N + (Inf, e - (F,¢")
=in(e®, ) + (1 +92)°T (Mg +ij10)(VER, Ver)
+(f = Infoe)n + (Inf — £, ).

(i) For bounded set | |< K :
The real part of left hand side is bounded below as follows,

a=1 N 2
(2.2.2) (L+7")7 || Ve 3= 6a(K) || & 1T .

(see [4] and [11] for details)
On the other hand we can bound the right hand side above by

CQl " lloll € flo + Il € llall € Il + 11 £ = In S lloll € o)

Thus

e 1 < OOl E oll € Hlo + Il € lall & Nl + )l £ = InS lloll € o)
<O Il €l + 1 f = Inf llol & ).

(22.3) |1& o<l & lh<sCU e s+ 1| f = Infllo),  InIS K.

(i) For large | |> K :
Taking the real part in (2.2.1), since (1 + 772}&_;_1 ~| 5 |*~! we have

(2.2.4)

- ~ 1 - ~ a-— o ~
[ 1= IS Ml & Holl & o + Lo [~ €% Jall &
+C | f=Inf lloll & Jlo).
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Next we take the imaginary part and obtain the estimate
[2.2.9)
W o~h h
! 1 Hi € HO ;IB

[ M+ 1 F = TN floll € o

CUn o= 1T+
S R P

Using algebraic inequality,

o 1 . ,
ab < pa” + —--b‘!v for any a,b€ R,0< p < 1,
4p ‘

and from (2.2.4) and (2.2.5)

(2.2.6)
Lo HEEM 15+ T 1 et it

C (X = ~ - 4
(I 11 E lloll € flo + [ 1 €™ Hall < 1

+ l! f=Tnf ol € Jlo}

C' 22 a
S A L TN I - I G,

)/

Combining (2.2.3) and (2.2.6) gives

(2.2.7)
(147 5!f€h|10 (1+71 l “f
C 2.1y kg ezl oo )
S v EN o TR O K g P A

It 1s that

(2.2.8) e s « ,s 1| " Ny e + 11 F = InS o).

1 a-1
2 2

By the triangle inequality and (2.2.8),

. rrh C s SN
la—U" [y esa < 3 "Ny ez F 1 F = InS o).
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Finally integration of both sides yields

lu=U" a5 < Ca(, nf  lu—w" lyags + £~ Inf Ilo)
T e
. o—1
SCol_, jnf  Jluw—wh [y as +h7H ] £110)///
w 1 a-=-1
3T

Proof of Theorem 2.7. We take 9* = é* € F% in (II) and get

(2.2.9)
—n? |l |2 +(Veh, Veh) +in(1 + in)o T (Ver, veh)
= —p?(e*, &) + (Ver VEr) 4 in(1 + i9)* Y (Ver, ver)
+(.f—ij’€h)N+(ij—f’€h)-
(i) For large | n|> K :
Note that

|7 1 (147" [~ cos(a — 1)8 + isin(a — 1)9] ~|  |* (= pta + iAa)-
We first take the imaginary part and obtain
(2.2.10)
In o] & Ilfﬁ%(nz €™ Holl € llo +(1+ | 1%) 1 €" llall € Ilx
+ 11 f = In f llol} € [lo)-
Taking the real part yields

(2.2.11)
Il IB<C(+ 10 1) 1 € 1T 407 11 €* ol € o
+ 1+ 1®) I ™ Tl & Nl + 1 = InS lloll € llo)
<CP | €™ lloll € llo +(1+ [ 1*) Il € Il ]l €" Il
+ 1 F=InF lloll € llo).
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Add (2.2.10) and (2.2.11) to get

(2.2.12)
e S+ Do 1l @< C@® 1 e ol € Hlo
U [ Y IEE Il &l + 0 f = In Flloll € Hlo)
<C* | e 12+t In () e I+ 1 f = InF I5)-

(ii) For small |7 |< K :
(2.2.13) e o<l € 1< Ca(N)(E™ 1 + 11 F = In S Hlo)-
Combining (2.2.12) and (2.2.13) gives

A+ L NE+a+ah)% e}

<O+ e I8+ +a)F M IF+ 1 f—Inf 113,
from which
(2.2.14) & he< Calll & llig + 11 £ = Lii f llo)-

The same calculation as before yields the conculusior.

lu~U"lhg < Ca( inf fu—w"llg +1f-Inflo)

w? €

L4
. . o—4 ¢
sca(whg{f,;%llu—w"ih,g +hTE N f o) /)
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