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SOME REMARKS ON PRIMAL IDEALS

JoonGg Ho KiMm

1. Introduction

Every ring considered in this paper will be assumed to be commu-
tative and have a unit element. An ideal A of a ring R will be called
primal if the elements of R which are zero divisors modulo A, form an
ideal of R, say P. If A is a primal ideal of R, P is called the adjoint ideal
of A. The adjoint ideal of a primal ideal is prime [2]. The definition of
primal ideals may also be formulated as follows: An ideal A of a ring
R is primal if in the residue class ring R/A the zero divisors form an
ideal of R/A. If Q is a primary idel of a ring R then every zero divisor
of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal
ideal need not be primary, is shown by an example in [2].

Let R[X] and R[[X]] denote the polynomial ring and formal power
series ring in an indeterminate X over a ring R, respectively. Let S be a
multiplicative system in a ring R and $~*R the quotient ring of R. Let
@ be a P-primary ideal of a ring R. Then Q[X]1is a P[X]-primary ideal
of R[X], and $~'Q is a S~! P-primary ideal of a ring ST!Rif SNP = ¢,
and Q[[X]] is a P[[X])-primary ideal of R[[X|] if R is Noetherian [1].
We search for analogous results when primary ideals are replaced with
primal ideals. To show an ideal A4 of a ring R to be primal, it sufficies
to show that a — b is a zero divisor modulo A whenever a and b are zero
divisors modulo A.

DEFINITION. An ideal A of a R is irreducible if A can not be ex-
pressed as a finite intersection of proper divisors of A

A primal ideal may not be irreducible but every irreducible ideal is
primal [2]. Without using this result, directly we can prove that if A
i1s an irreducible ideal of ring R, A[X] is a priral ideal of R[X]. (First
part of Proposition 1).
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PROPOSIRION 1. Let A be an irreducible ideal of a ring B. Then
A[X] is a primal ideal of R[X]. Furthermore, if P is the adjoint ideal
of A considered as a primal ideal of R, then P[X] 1s the adjoint ideal
of A[X].

Proof. Let A be an 1rrulx1(1ble ideal of R, Foreach f{.X) = 3" a; N\
€ R[X], we define f(X) to be 3 T o X" where a; = a, + A€ RR/A
for each 7 == 0,---,m. Then f(X) ¢ R/A[X]. Since the mappinyg
¢ R[X]/A[X] — R/A[,X] defined by q‘z f(X) + AR = F(X) is an
isomorphism and onto, we see that f(.X) is a zero divisor modulo ALX]

if and only if f()& is a zero divisor in R/ A[X]. Let g{.X) = 30 biX"

and h(X) = 3% _, c;X"* be zero divisors modulo AX] T h( n g X4 and
h{X) are zero divisors in R/A[X].
By McCoy’s theorem, there exist nonzero eleme nt,s o= oo zm(i
= s+ A in R/A such that #g(X) = 0 and $h(X) = 0 Clearly, () + 4

(md (s) + A are proper divisors of A; therefore, “7‘) + A} N [(s) + 4
is a proper divisor of A. So there exists v € [(r) + A (1 [(s) + 4] such
that v @ A, Then v = ri; + a1 = sty + a2 for sone {1tz € B oand
ap,az © A, Note that rt;, st gif A and v = 7ty o+ sty £ 0. But
v(g(X) — k(X)) = rt1g(X) — §toh(X) = 0; therefore, g(X ) — (X )isa
zero divisor in R/A[X], so g(X ) — k(X ) is a zero diviror modulo A[X}.

Thus A[X] is primal. Let P be an adjoint ideal of 4. We show that
PlX] s the adjoint ideal of A[.X].

Let f(X) = S, ;X" be a zero divisor modulo A[X]. Then f(.X) =
S a,)i is a zero divisor in R/A[X| so there exists 7 € R/A, r ,vf
such that 7 f(X) = 0. Then all a; are zero divisors i1 f/A and all
are zero divisors modulo A, so all g; are in P. So f(.1) € PLX], whick
implies that all zero divisors modulo A[X] are contaized in P{X]. Let
¢(X) =351, d. X' € P[X]. Weshow that ¢(X) is a zcco divisor modula
ALY). If ¢(X) € A[X], then clearly ¢( X) is a zero divisor modulo ALY ]

So we assume ¢( X ) ¢ A[X]. Suppose that d; ,di, -~ ,di, ¢ A and
all other d; are in A. Then there exist £;,ty,- - ,t, € P — A such that

Ly

f[d,”t'),d‘w N tgd,'_ €A Let D= {(M )4 A]ﬂ[(tz)ﬁf ;1]0' < {(\t{q i *FA!,
then D is a proper divisor of A. Sinee A is irreducible, there exists
in D such that d ¢ A.

Then d = rit;+a) = rototas = -+ = retgtas forsomery,ry, - 7y
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€ R and ai,az,---,as € A. Since t1d;, - ,todi, € A, d- g(X)

d-y n,diX' e A[X] Note that d ¢ A[X]. Thus ¢(X) is a zero dnlsor
modulo A[X]. We showed that every element of P[X] is a zero divisor
modulo A[X]. Thus P[X] is the disjoint ideal of A[X].

2. Main Results

Natually, the following question arises: If .4 is a primal ideal of a
ring R with the adjoint prime ideal P, is A[X| a primal ideal of R[X]
with the adjoint prime ideal of P[X]? In Theorem 1 we will see that
the answer of this question is not affirmative.

A Noetherian ring has the property that annihilator of each ideal
consisting entirely of zero divisors is nonzero [4; p.56]. Huckaba [3]
abstracted this to aribitrary ring as following definition.

DEFINITION. A ring satisfies Property (*) if each finitely generated
ideal consisting entirely of zero divisors has nonzero annihilator.

Every polynomial ring R[X] satisfies Property (*} and every zero-
dimensional ring satisfies Property (*)[3; p.7,9].

THEOREM 1. Let A be a primal ideal of a ring R with the adjoint
prime ideal P. Then R/A satisfies property (*, if and only if A[X] is a
prime ideal of R[X] with the adjoint prime ideal P[X].

Proof. Suppose that R/A satisfies Property (*). Let F(X) = 3" a
X' and g(X) = 1, b;X* be zero divisors modulo A[X]. Then flz) =
g(z) are zero divisors in R/A[X], so @;,a2, " ,@m,b1,bs, -+ , b, are
zero divisors in R/A. Then ay,a2, -+ ,am, by, b2, -+ , b, are zero divi-
sors modulo A. Let B = (ay,a2, -+ ,am,b1,b2,--- ,b,). Then B C P
since P is an ideal and consists of all zero divisors modulo A. Then B
cousists eutlrely of zero divisors modulo A4, so tte ideal B = (ay,az,-- -,
a,,,,bj,bz, “+, ba) consists entirely of zero divisors of R/A. Since R/A
satisfies Propcrty (*), there exists ¥ € R/A, r # 6 such that - B = (8).
Then #(f(X) - §(X)) = &, so f(X)— §(X) is a zero divisor in R/A[X]
therefore, f(X) — ¢(X) is a zero divisor modul> A[X]. Thus A[X]is a
prime ideal of R[X].
Next, we show that P[X] is the adjoint ideal of A[X]. That all
zero divisors modulo A[X] are contained in P[X], can be proved in the
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same way as i the proof of Proposition 1, so we o:nit its proof. Let
qlr)y = 1 d, X' € P[X]). We will show that ¢(X) is a zero divisor
modulo A[X]. Let D = (dy, -+ ,ds), then D C P and D consists
entirely of zero divisors modula A. Then the ideal D = (d,,--- ,dy)
consists entirely of zero divisors in 12/A where di = d, + A & R/A
for each 1. Siuce R/A satisfies Property (*), there exists r in R/A,

# % 0 such that #¥D = (0). Hence ¢(x) = Y, d; X, 's a zero divisor in

IE/A[‘, }; Therefore, q(x, is a zero divisor modulo A|X]. Thus P{X] is
an adjoint ideal of A[X].

Conversely, suppose that A[X] is a primal ideal of R[X] with its
adjoint ideal P[X]. Let U = (u;,1y, -, uy) be an ideals of R/A con-
sisting entirely of zero divisors of R/A. Then uj,u,, -+ ,u, are zero
divisors modulo 4. So 3" u; X' € P[X]. Then 3_1% , 4, X" is a zero di-
visor modulo A[X]. Hence Y"1 4, X" is a zero divisor of R/A[X]. Then
there exists © € R/A, v # 0 such that v4; = 0 for ezch ¢t = 0,1, -+ | n
So v - U = 0. Thus the ring R/A satisfies Property {*).

CoroLLARY 1. If 4 is an irreducible ideal of a ring R, then RfA

satisfies Property (*).

i

Proof. Let A be an irreducible ideal of a ring R and P its adjoint
ideal. By Proposition 1, A[X] is a primal ideal of R[] with the adjoint
ideal P|X]. Then by Theorem 1, R/A satisfies Proprty (*).

COROLLARY 2. Let A be a primal ideal of a ring R with the adjoint
ideal P. Theun if R/A satisfies Property (*), A|Xy, -, X,] is primal
ideal of R[X;, -, X,] with the adjoint ideal P|X,, -, X,}.

1

Proof. Let A be a primal ideal of a ring R witk the adjoint ideal
P. Assume that R/A satisfies Property (*). Then A[X;] is a primal
ideal of R[X;] with the adjoint ideal P[X;] (by Theorem 1). Since the
polynomial ring R/A[X,] satisfies Property (*}[3;p.”] and R/A[X ] ~
R[X,]/A[X4], it follows that R[X,]/A[X,] satisfies (). Then by Theo-
rem 1, A[X,X;] is a primal ideal of R[X;, X;] with the adjoint ideal
PlXy, Xo).

TueoreM 2. Let A be an ideal of a ring R. Then if A[X] (resp.
Al[X]]) is a primal ideal of R[X] (resp. R|[X]]), ther. A is primal.
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Proof. Let a;, and ay be elements of R which are zero divisors mod-
ulo A. Then there exist b; and b; in R such that by, b, & Ajaiby € A
and azb; € A. Then by,b; ¢ A[X], a1b) € A[X] and azb; € A[X], s0 a;
and az are zero divisors modulo A[X]. Since A[X] is a primal ideal of
R[X], there exists g(X) = 37—, ¢;X* in R[X] such that g(X) ¢ A[X]
and g(X)(a1 — az) € A[X]. Then cj(a; — az) € A for some ¢; ¢ A;
therefore, a; - a; is a zero divisor modulo A, and A is a primal ideal
of R. Similarly, we can prove the Theorem when A[X] and R[X) are
replaced by A[[X]] and R[[X]], respectively.

THEOREM 3. Let A is a primal ideal of R with the adjoint ideal P
and let S be a multiplicative system in R such that SN P is empty.
Then S~'A is a primal ideal of S~!R with the adjoint ideal S~!P.

Proof. We show that if a/t is a zero divisor modulo S~! A, then a is
a divisor module A. Let a/t be a zero divisor modulo S~! A, then there
exist b/s € S™'R such that b/s ¢ S~'A and (a/t)-(b/s) € S~ A. Then
there exists v in S such that abv € A. Clearly, bv ¢ A, for otherwise
b/s € S7'A which violates b/s ¢ S'A. Hence a is a zero divisor
modulo A. To prove S™!A to be primal, let ¢1/t1 and ay/t; be zero
divisors modulo $™'A. Then a; and a, are zero divisors modulo A.
Since A is a primal ideal with adjoint ideal P, a;t; — azt; € P. Then
there exists r in P — A such that (a;t; — axt)r € A.

Then (aitz — azt1)r/titau = (a1/ty — az/t2)(r/u) € S~ A for any
u € S. Claim r/u ¢ S~ A. For suppose r/u € 5~ A, then there exists
v in S such that vr € A. Since r € P — 4, v i3 a zero divisor modulo
A sov € P. Then v € SN P which violates our assumption SN P = 0.
Hence r/u ¢ S7'A and a;/t; — az/t; is a zero divisor modulo S~ A.
Therefore, S~' 4 is a primal ideal of S~!R. Next we show that S~!P
is the adjoint ideal of S~ A.

Let a/t be a zero divisor modulo S~1A, then a is a zero divisor
modulo A; therefore, a € P and a/t € S~ P. This shows that every
zero divisor modulo S~' A4 is contained in S™!P. Let b/s € S~! P, then
bd € P for some d € S. Since P is a prime ideal and d ¢ P, it follows
that b € P and b is a zero divisor modulo A. Then there exists ¢ in
P — A such that bc € A. Then (5/s)(c/t) € S~ A for any t € S. Claim
¢/t € S~1A. For suppose c/t € S1A, then cv € A for some v € S.
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Note that v is a regular element modulo A,soc € A. Butce P~ 4
which leads a contradiction. So ¢/t & S7'A and b/s is a zero divisor
modulo S~! A. This shows that every element of S~ P is a zero divisor
modulo S~'A4. Thus we can conclude that S~! P is the set of all zero
divisors modulo $~! A; therefore, S~! P is the adjoint ideal of S~!A.

Let A be an ideal of a ring R and S a multiplicative system in R.
Consider the mapping ¢; R — S~ R defined by ¢(a) = as/sfors € S.
Then ¢ is a ring homomorphism. Let $~'A4 N R denote the complete
inverse image of S™'A4 under ¢. Then S“'A N R is the contraction of
S~'Ato R.

THEOREM 4. Let A be an ideal of a ring R and S a multiplicative
system in R such that SN A is empty. Then if S~ 4 is a primal ideal
of ST'R, then S"'AN R is a primal ideal of R.

Proof. Let As = {z € R|sz € A for some s € S}. Then it follows
that S™' N R = As [5;p.69]. Let a be a zero divisor modulo As. Then
there exists b in R such that b ¢ Ag and ab € A;. Then sab € A
for some s € S. Then ab/sys; C S™'A for any ¢1,s2 € S. Claim
b/sz € S~ A. For suppose b/s; € S~ A. Then th € A for some t € S,
hence b € As which violates b ¢ As. So b/s; € S~' A; therefore, a/s,
is a zero divisor modulo $S~! A4 for any s € S. Let a; and a; be elements
of R which are zero divisors modulo Ag. Then t;a; and tya, are zero
divisors modulo Ag for any t,,t; € S. Then tya;/t; aad tzaz /t; are zero
divisors modulo S~ A4. Since S~'4isa primal idel, there exists a3 /t3 in
S-IR such that aa/ta ¢ S—]A and (altl/tl - agtg/tg)((ls/t_a) = S14.
Then there exists t4 in S such that (a;t,t; —azti1t3)asty € A. Therefore,
(a1 — az)az € Ag. Since a3/t; ¢ S~ A, we see that azt € A for any
t € S. Then as ¢ As so a; — az is a zero divisor mmodulo As. Thus
S 'ANR(= A,) 18 a primal ideal of R.
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