SOME REMARKS ON PRIMAL IDEALS

JOONG HO KIM

1. Introduction

Every ring considered in this paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say P. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary ideal of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2].

Let $R[X]$ and $R[[X]]$ denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and $S^{-1}R$ the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then $Q[X]$ is a $P[X]$-primary ideal of $R[X]$, and $S^{-1}Q$ is a $S^{-1}P$-primary ideal of a ring $S^{-1}R$ if $S\cap P = \emptyset$, and $Q[[X]]$ is a $P[[X]]$-primary ideal of $R[[X]]$ if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it suffices to show that $a - b$ is a zero divisor modulo A whenever a and b are zero divisors modulo A.

Definition. An ideal A of a R is irreducible if A can not be expressed as a finite intersection of proper divisors of A

A primal ideal may not be irreducible but every irreducible ideal is primal [2]. Without using this result, directly we can prove that if A is an irreducible ideal of ring R, $A[X]$ is a primal ideal of $R[X]$. (First part of Proposition 1).

Proposition 1. Let \(A \) be an irreducible ideal of a ring \(R \). Then \(A[X] \) is a primal ideal of \(R[X] \). Furthermore, if \(P \) is the adjoint ideal of \(A \) considered as a primal ideal of \(R \), then \(P[X] \) is the adjoint ideal of \(A[X] \).

Proof. Let \(A \) be an irreducible ideal of \(R \). For each \(f(X) = \sum_{i=0}^{m} a_i X^i \in R[X] \), we define \(f(X) \) to be \(\sum_{i=0}^{m} a_i X^i \) where \(a_i = a_i + A \in R/A \) for each \(i = 0, \ldots, m \). Then \(f(X) \in R/A[X] \). Since the mapping \(\phi : R[X]/A[X] \to R/A[X] \) defined by \(\phi(f(X) + A[X]) = f(X) \) is an isomorphism and onto, we see that \(f(X) \) is a zero divisor modulo \(A[X] \) if and only if \(f(X) \) is a zero divisor in \(R/A[X] \). Let \(g(X) = \sum_{i=0}^{n} b_i X^i \) and \(h(X) = \sum_{i=0}^{p} c_i X^i \) be zero divisors modulo \(A[X] \). Then \(g(X) \) and \(h(X) \) are zero divisors in \(R/A[X] \).

By McCoy's theorem, there exist nonzero elements \(r = r + A \) and \(s = s + A \) in \(R/A \) such that \(\bar{r} \bar{g}(X) = 0 \) and \(\bar{s} \bar{h}(X) = 0 \). Clearly, \((r) + A \) and \((s) + A \) are proper divisors of \(A \); therefore, \([(r) + A] \cap [(s) + A] \) is a proper divisor of \(A \). So there exists \(v \in [(r) + A] \cap [(s) + A] \) such that \(v \not\in A \). Then \(v = rt_1 + a_1 = st_2 + a_2 \) for some \(t_1, t_2 \in R \) and \(a_1, a_2 \in A \). Note that \(rt_1, st_2 \not\in A \) and \(v = rt_1 = st_2 \neq 0 \). But \(v(\bar{g}(X) - \bar{h}(X)) = \bar{r} \bar{t}_1 \bar{g}(X) - \bar{s} \bar{t}_2 \bar{h}(X) = 0 \); therefore, \(\bar{g}(X) - \bar{h}(X) \) is a zero divisor in \(R/A[X] \), so \(g(X) - h(X) \) is a zero divisor modulo \(A[X] \).

Thus \(A[X] \) is primal. Let \(P \) be an adjoint ideal of \(A \). We show that \(P[X] \) is the adjoint ideal of \(A[X] \).

Let \(f(X) = \sum_{i=0}^{n} a_i X^i \) be a zero divisor modulo \(A[X] \). Then \(f(X) = \sum_{i=0}^{n} \bar{a}_i X^i \) is a zero divisor in \(R/A[X] \) so there exists \(r \in R/A, r \neq 0 \) such that \(rf(X) = 0 \). Then all \(\bar{a}_i \) are zero divisors in \(R/A \) and all \(a_i \) are zero divisors modulo \(A \), so all \(a_i \) are in \(P \). So \(f(X) \in P[X] \), which implies that all zero divisors modulo \(A[X] \) are contained in \(P[X] \). Let \(q(X) = \sum_{i=0}^{n} d_i X^i \in P[X] \). We show that \(q(X) \) is a zero divisor modulo \(A[X] \). If \(q(X) \in A[X] \), then clearly \(q(X) \) is a zero divisor modulo \(A[X] \).

So we assume \(q(X) \not\in A[X] \). Suppose that \(d_1, d_2, \ldots, d_4 \not\in A \) and all other \(d_i \) are in \(A \). Then there exist \(t_1, t_2, \ldots, t_s \in P - A \) such that \(t_1 d_1, t_2 d_2, \ldots, t_s d_s \in A \). Let \(D = [(t_1) + A] \cap [(t_2) + A] \cap \cdots \cap [(t_s) + A] \), then \(D \) is a proper divisor of \(A \). Since \(A \) is irreducible, there exists \(d \in D \) such that \(d \not\in A \).

Then \(d = r_1 t_1 + a_1 = r_2 t_2 + a_2 = \cdots = r_s t_s + a_s \) for some \(r_1, r_2, \ldots, r_s \).
Some remarks on primal ideals

$\in R$ and $a_1, a_2, \cdots, a_s \in A$. Since $t_1d_{i_1}, \cdots, t_sd_{i_s} \in A$, $d \cdot q(X) = d \cdot \sum_{i=0}^{n} d_i X^i \in A[X]$. Note that $d \not\in A[X]$. Thus $q(X)$ is a zero divisor modulo $A[X]$. We showed that every element of $P[X]$ is a zero divisor modulo $A[X]$. Thus $P[X]$ is the disjoint ideal of $A[X]$.

2. Main Results

Naturally, the following question arises: If A is a primal ideal of a ring R with the adjoint prime ideal P, is $A[X]$ a primal ideal of $R[X]$ with the adjoint prime ideal of $P[X]$? In Theorem 1 we will see that the answer of this question is not affirmative.

A Noetherian ring has the property that annihilator of each ideal consisting entirely of zero divisors is nonzero [4; p.56]. Huckaba [3] abstracted this to arbitrary ring as following definition.

DEFINITION. A ring satisfies Property (*) if each finitely generated ideal consisting entirely of zero divisors has nonzero annihilator.

Every polynomial ring $R[X]$ satisfies Property (*) and every zero-dimensional ring satisfies Property (*)[3; p.7,9].

THEOREM 1. Let A be a primal ideal of a ring R with the adjoint prime ideal P. Then R/A satisfies property (*), if and only if $A[X]$ is a prime ideal of $R[X]$ with the adjoint prime ideal $P[X]$.

Proof. Suppose that R/A satisfies Property (*). Let $F(X) = \sum_{i=0}^{m} a_i X^i$ and $g(X) = \sum_{i=0}^{n} b_i X^i$ be zero divisors modulo $A[X]$. Then $f(x) = g(x)$ are zero divisors in $R/A[X]$, so $\bar{a}_1, \bar{a}_2, \cdots, \bar{a}_m, \bar{b}_1, \bar{b}_2, \cdots, \bar{b}_n$ are zero divisors in R/A. Then $a_1, a_2, \cdots, a_m, b_1, b_2, \cdots, b_n$ are zero divisors modulo A. Let $B = (a_1, a_2, \cdots, a_m, b_1, b_2, \cdots, b_n)$. Then $B \subseteq P$ since P is an ideal and consists of all zero divisors modulo A. Then B consists entirely of zero divisors modulo A, so the ideal $\bar{B} = (\bar{a}_1, \bar{a}_2, \cdots, \bar{a}_m, \bar{b}_1, \bar{b}_2, \cdots, \bar{b}_n)$ consists entirely of zero divisors of R/A. Since R/A satisfies Property (*), there exists $\bar{r} \in R/A$, $\bar{r} \not= \bar{o}$ such that $\bar{r} \cdot \bar{B} = (\bar{o})$. Then $\bar{r}(\bar{f}(X) - \bar{g}(X)) = \bar{o}$, so $\bar{f}(X) - \bar{g}(X)$ is a zero divisor in $R/A[X]$ therefore, $f(X) - g(X)$ is a zero divisor modulo $A[X]$. Thus $A[X]$ is a prime ideal of $R[X]$.

Next, we show that $P[X]$ is the adjoint ideal of $A[X]$. That all zero divisors modulo $A[X]$ are contained in $P[X]$, can be proved in the
same way as in the proof of Proposition 1, so we omit its proof. Let \(q(x) = \sum_{i=0}^{n} d_i X^i \in P[X] \). We will show that \(q(X) \) is a zero divisor modulo \(A[X] \). Let \(D = (d_1, \cdots, d_n) \), then \(D \subseteq P \) and \(D \) consists entirely of zero divisors modulo \(A \). Then the ideal \(D = (\bar{d}_1, \cdots, \bar{d}_n) \) consists entirely of zero divisors in \(R/A \) where \(\bar{d}_i = d_i + A \in R/A \) for each \(i \). Since \(R/A \) satisfies Property \((\ast)\), there exists \(\bar{r} \) in \(R/A \), \(\bar{r} \neq 0 \) such that \(\bar{r} D = (0) \). Hence \(\bar{q}(x) = \sum_{i=0}^{n} \bar{d}_i X^i \) is a zero divisor in \(R/A[X] \); Therefore, \(q(x) \) is a zero divisor modulo \(A[X] \). Thus \(P[X] \) is an adjoint ideal of \(A[X] \).

Conversely, suppose that \(A[X] \) is a primal ideal of \(R[X] \) with its adjoint ideal \(P[X] \). Let \(\bar{U} = (\bar{u}_1, \bar{u}_2, \cdots, \bar{u}_n) \) be an ideals of \(R/A \) consisting entirely of zero divisors of \(R/A \). Then \(u_1, u_2, \cdots, u_n \) are zero divisors modulo \(A \). So \(\sum_{i=0}^{n} u_i X^i \in P[X] \). Then \(\sum_{i=0}^{n} u_i X^i \) is a zero divisor modulo \(A[X] \). Hence \(\sum_{i=0}^{n} \bar{u}_i X^i \) is a zero divisor of \(R/A[X] \). Then there exists \(\bar{\nu} \in R/A, \bar{\nu} \neq 0 \) such that \(\bar{\nu} u_i = 0 \) for each \(i = 0, 1, \cdots, n \). So \(\bar{\nu} \cdot \bar{U} = 0 \). Thus the ring \(R/A \) satisfies Property \((\ast)\).

Corollary 1. If \(A \) is an irreducible ideal of a ring \(R \), then \(R/A \) satisfies Property \((\ast)\).

Proof. Let \(A \) be an irreducible ideal of a ring \(R \) and \(P \) its adjoint ideal. By Proposition 1, \(A[X] \) is a primal ideal of \(R[X] \) with the adjoint ideal \(P[X] \). Then by Theorem 1, \(R/A \) satisfies Property \((\ast)\).

Corollary 2. Let \(A \) be a primal ideal of a ring \(R \) with the adjoint ideal \(P \). Then if \(R/A \) satisfies Property \((\ast)\), \(A[X_1, \cdots, X_n] \) is primal ideal of \(R[X_1, \cdots, X_n] \) with the adjoint ideal \(P[X_1, \cdots, X_n] \).

Proof. Let \(A \) be a primal ideal of a ring \(R \) with the adjoint ideal \(P \). Assume that \(R/A \) satisfies Property \((\ast)\). Then \(A[X_1] \) is a primal ideal of \(R[X_1] \) with the adjoint ideal \(P[X_1] \) (by Theorem 1). Since the polynomial ring \(R/A[X_1] \) satisfies Property \((\ast)\)[3,p.17] and \(R/A[X_1] \simeq R[X_1]/A[X_1] \), it follows that \(R[X_1]/A[X_1] \) satisfies \((\ast)\). Then by Theorem 1, \(A[X_1, X_2] \) is a primal ideal of \(R[X_1, X_2] \) with the adjoint ideal \(P[X_1, X_2] \).

Theorem 2. Let \(A \) be an ideal of a ring \(R \). Then if \(A[X] \) (resp. \(A[[X]] \)) is a primal ideal of \(R[X] \) (resp. \(R[[X]] \)), then \(A \) is primal.
Some remarks on primal ideals

Proof. Let a_1 and a_2 be elements of R which are zero divisors modulo A. Then there exist b_1 and b_2 in R such that $b_1, b_2 \notin A, a_1b_1 \in A$ and $a_2b_2 \in A$. Then $b_1, b_2 \notin A[X], a_1b_1 \in A[X]$ and $a_2b_2 \in A[X]$, so a_1 and a_2 are zero divisors modulo $A[X]$. Since $A[X]$ is a primal ideal of $R[X]$, there exists $g(X) = \sum_{i=0}^{n} c_iX^i$ in $R[X]$ such that $g(X) \notin A[X]$ and $g(X)(a_1 - a_2) \in A[X]$. Then $c_j(a_1 - a_2) \in A$ for some $c_j \notin A$; therefore, $a_1 - a_2$ is a zero divisor modulo A, and A is a primal ideal of R. Similarly, we can prove the Theorem when $A[X]$ and $R[X]$ are replaced by $A[[X]]$ and $R[[X]]$, respectively.

Theorem 3. Let A be a primal ideal of R with the adjoint ideal P and let S be a multiplicative system in R such that $S \cap P$ is empty. Then $S^{-1}A$ is a primal ideal of $S^{-1}R$ with the adjoint ideal $S^{-1}P$.

Proof. We show that if a/t is a zero divisor modulo $S^{-1}A$, then a is a divisor modulo A. Let a/t be a zero divisor modulo $S^{-1}A$, then there exist $b/s \in S^{-1}R$ such that $b/s \notin S^{-1}A$ and $(a/t) \cdot (b/s) \in S^{-1}A$. Then there exists v in S such that $abv \in A$. Clearly, $bv \notin A$, for otherwise $b/s \in S^{-1}A$ which violates $b/s \notin S^{-1}A$. Hence a is a zero divisor modulo A. To prove $S^{-1}A$ to be primal, let c_1/t_1 and a_2/t_2 be zero divisors modulo $S^{-1}A$. Then a_1 and a_2 are zero divisors modulo A. Since A is a primal ideal with adjoint ideal P, $a_1t_2 - a_2t_1 \in P$. Then there exists r in $P - A$ such that $(a_1t_2 - a_2t)r \in A$.

Then $(a_1t_2 - a_2t_1)r/t_1t_2u = (a_1/t_1 - a_2/t_2)(r/u) \in S^{-1}A$ for any $u \in S$. Claim $r/u \notin S^{-1}A$. For suppose $r/u \in S^{-1}A$, then there exists v in S such that $vr \in A$. Since $r \in P - A$, v is a zero divisor modulo A so $v \in P$. Then $v \in S \cap P$ which violates our assumption $S \cap P = \emptyset$. Hence $r/u \notin S^{-1}A$ and $a_1/t_1 - a_2/t_2$ is a zero divisor modulo $S^{-1}A$. Therefore, $S^{-1}A$ is a primal ideal of $S^{-1}R$. Next we show that $S^{-1}P$ is the adjoint ideal of $S^{-1}A$.

Let a/t be a zero divisor modulo $S^{-1}A$, then a is a zero divisor modulo A; therefore, $a \in P$ and $a/t \in S^{-1}P$. This shows that every zero divisor modulo $S^{-1}A$ is contained in $S^{-1}P$. Let $b/s \in S^{-1}P$, then $bd \in P$ for some $d \in S$. Since P is a prime ideal and $d \notin P$, it follows that $b \in P$ and b is a zero divisor modulo A. Then there exists c in $P - A$ such that $bc \in A$. Then $(b/s)(c/t) \in S^{-1}A$ for any $t \in S$. Claim $c/t \notin S^{-1}A$. For suppose $c/t \in S^{-1}A$, then $cv \in A$ for some $v \in S$. 75
Note that \(v \) is a regular element modulo \(A \), so \(c \in A \). But \(c \in P - A \) which leads a contradiction. So \(c/t \not\in S^{-1}A \) and \(b/s \) is a zero divisor modulo \(S^{-1}A \). This shows that every element of \(S^{-1}P \) is a zero divisor modulo \(S^{-1}A \). Thus we can conclude that \(S^{-1}P \) is the set of all zero divisors modulo \(S^{-1}A \); therefore, \(S^{-1}P \) is the adjoint ideal of \(S^{-1}A \).

Let \(A \) be an ideal of a ring \(R \) and \(S \) a multiplicative system in \(R \). Consider the mapping \(\phi: R \to S^{-1}R \) defined by \(\phi(a) = as/s \) for \(s \in S \). Then \(\phi \) is a ring homomorphism. Let \(S^{-1}A \cap R \) denote the complete inverse image of \(S^{-1}A \) under \(\phi \). Then \(S^{-1}A \cap R \) is the contraction of \(S^{-1}A \) to \(R \).

Theorem 4. Let \(A \) be an ideal of a ring \(R \) and \(S \) a multiplicative system in \(R \) such that \(S \cap A \) is empty. Then if \(S^{-1}A \) is a primal ideal of \(S^{-1}R \), then \(S^{-1}A \cap R \) is a primal ideal of \(R \).

Proof. Let \(A_S = \{ x \in R | sx \in A \text{ for some } s \in S \} \). Then it follows that \(S^{-1} \cap R = A_S \) [5; p.69]. Let \(a \) be a zero divisor modulo \(A_S \). Then there exists \(b \) in \(R \) such that \(b \not\in A_S \) and \(ab \in A \). Then \(sab \in A \) for some \(s \in S \). Then \(ab/s_1s_2 \in S^{-1}A \) for any \(s_1, s_2 \in S \). Claim \(b/s_2 \not\in S^{-1}A \). For suppose \(b/s_2 \in S^{-1}A \). Then \(tb \in A \) for some \(t \in S \), hence \(b \in A_S \) which violates \(b \not\in A_S \). So \(b/s_2 \not\in S^{-1}A \); therefore, \(a/s_1 \) is a zero divisor modulo \(S^{-1}A \) for any \(s \in S \). Let \(a_1 \) and \(a_2 \) be elements of \(R \) which are zero divisors modulo \(A_S \). Then \(t_1a_1 \) and \(t_2a_2 \) are zero divisors modulo \(A_S \) for any \(t_1, t_2 \in S \). Then \(t_1a_1/t_1 \) and \(t_2a_2/t_2 \) are zero divisors modulo \(S^{-1}A \). Since \(S^{-1}A \) is a primal ideal, there exists \(a_3/t_3 \) in \(S^{-1}R \) such that \(a_3/t_3 \not\in S^{-1}A \) and \((a_1t_1/t_1 - a_2t_2/t_2)(a_3/t_3) \in S^{-1}A \). Then there exists \(t_4 \) in \(S \) such that \((a_1t_1t_2 - a_2t_1t_2)a_3t_4 \in A \). Therefore, \((a_1 - a_2)a_3 \in A_S \). Since \(a_3/t_3 \not\in S^{-1}A \), we see that \(a_3t \not\in A \) for any \(t \in S \). Then \(a_3 \not\in A_S \) so \(a_1 - a_2 \) is a zero divisor modulo \(A_S \). Thus \(S^{-1}A \cap R (= A_*) \) is a primal ideal of \(R \).

References

76
Some remarks on primal ideals

DEPARTMENT OF MATHEMATICS EAST CAROLINA UNIVERSITY GREENVILLE, NC 27858