QUASI O_2-SPACES

CHANG-IL KIM

0. INTRODUCTION

It is known that the behavior of a certain family of subsets of a completely regular space characterizes its structure. We note among others that a completely regular space X is an O_2-space (a basically disconnected space, a quasi F-space, resp.) iff every open set (cozero-set, dense cozero-set, resp.) of X is Z-embedded (C^*-embedded, resp.) (see [1], [3], and [8]).

For O_2-spaces, it is also known that a completely regular space X is an O_2-space iff νX is an O_2-space and that the real line \mathbb{R} is an O_2-space but $\beta \mathbb{R}$ is not an O_2-space ([2] and [7]).

In this paper, we introduce a concept of quasi O_2-spaces which generalizes that of O_2-spaces. Indeed, a completely regular space X is a quasi O_2-space if for any regular closed set A in X, there is a zero-set Z in X with $A = \text{cl}_X(\text{int}_X(Z))$. We then show that X is a quasi O_2-space iff every open subset of X is $Z^\#$-embedded and that X is a quasi O_2-space iff βX is a quasi O_2-space. Furthermore, it is shown that quasi O_2-spaces are left fitting with respect to covering maps.

Observing that a quasi O_2-space is an extremally disconnected iff it is a cloz-space, the minimal extremally disconnected cover, basically disconnected cover, quasi F-cover, and cloz-cover of a quasi O_2-space X are all equivalent. Finally it is shown that a compactification Y of a quasi O_2-space X is again a quasi O_2-space iff X is $Z^\#$-embedded in Y.

For the terminology, we refer to [6].

1. QUASI O_2-SPACES

In the following, we assume that every space is a completely regular space. For a space X, let $Z(X)$ ($R(X)$, resp.) denote the set of all zero-sets (regular closed sets, resp.) on X.

The following are introduced by Henriksen, Vermeer, and Woods [4].

Received April 30, 1992.
Notation 1.1. For any space X, let
(a) $Z(X)^# = \{ \, \text{cl}_X(\text{int}_X(A)) : A \in Z(X) \, \}.$
(b) $G(X) = \{ \, \text{cl}_X(C) : C \text{ is a cozero-set and there is a cozero-set } D \text{ in } X \text{ such that } C \cap D = \emptyset \text{ and } C \cup D \text{ is dense in } X \, \}$

Now we introduce the concept of quasi O_2-spaces.

Definition 1.2. A space X is said to be a quasi O_2-space if $Z(X)^# = R(X)$.

Since a space X is an O_2-space iff $R(X) \subseteq Z(X)$, and $Z(X)^# \subseteq R(X)$, every O_2-space is a quasi O_2-space. We recall that every perfectly normal space is an O_2-space and that an extremally disconnected space is an O_2-space (see [1]).

Proposition 1.3. A space X is a quasi O_2-space iff $R(X) = Z(X)^# = G(X)$.

Proof. We first note that $G(X) = \{ \, A \in Z(X)^# : \text{cl}_X(X - A) \in Z(X)^# \, \}.$ (see [4]). Thus $G(X) \subseteq Z(X)^# \subseteq R(X)$. Suppose $R(X) = G(X)$, then X is clearly a quasi O_2-space. For the converse, take any open set U in X, then $\text{cl}_X(U)$, $\text{cl}_X(X - \text{cl}_X(U)) \in R(X) = Z(X)^#$; therefore $\text{cl}_X(U) \in G(X)$. Thus $R(X) = G(X)$.

Definition 1.4. Let Y be a space, then a subspace X of Y is said to be $Z^\#$-embedded in Y if for any $A \in Z(X)^#$, there is a $B \in Z(Y)^#$ with $A = B \cap X$. In case, the inclusion map $X \hookrightarrow Y$ is also said to be $Z^\#$-embedded.

We recall that a space X is an O_2-space iff every open subset of X is Z-embedded.

Theorem 1.5. For any space X, the following are equivalent:
(a) X is a quasi O_2-space.
(b) Every open subset U of X is $Z^\#$-embedded in X.
(c) Every dense open subset U of X is $Z^\#$-embedded in X.

Proof. (a) \implies (b) Take any $Z \in Z(U)$. Then there is a closed set A in X with $Z = A \cap U$. Since U is open, $\text{cl}_U(\text{int}_U(Z)) = \text{cl}_X(\text{int}_X(A)) \cap U$ and $\text{cl}_X(\text{int}_X(A)) \in R(X) = Z(X)^#$. Thus U is $Z^\#$-embedded in X.
(b) \implies (c) It is trivial.
Quasi O_z-spaces

(c) \implies (a) Take any open set U in X. Put $S = U \cup (X - \text{cl}_X(U))$. Then S is open dense in X. Define a map $f : S \rightarrow R$ by $f(x) = 0$ if $x \in U$ and $f(x) = 1$ if $x \in X - \text{cl}_X(U)$. Then f is continuous, $f^{-1}(0) = U$ and hence U is a zero-set in S. Since S is open dense in X, there is a zero-set Z in X such that $\text{cl}_S(\text{int}_S(U)) = \text{cl}_X(U) \cap S = \text{cl}_X(\text{int}_X(Z)) \cap S$. Since S is dense in X and $\text{cl}_X(U)$, $\text{cl}_X(\text{int}_X(Z))$ are regular closed sets in X, $\text{cl}_X(U) = \text{cl}_X(\text{int}_X(Z))$. Hence $R(X) \subseteq Z(X)^\#$, so that X is a quasi O_z-space.

Lemma 1.6. Let X be a space and $U \subseteq F \subseteq X$. If U is an open $Z^\#$-embedded subset of X, then U is $Z^\#$-embedded in F.

Proof. Take any $A \in Z(U)^\#$. Since U is $Z^\#$-embedded in X, there is a $B \in Z(X)$ with $A = \text{cl}_X(\text{int}_X(B)) \cap U$. Since $B \cap F$ is closed in F and U is open in F, $\text{cl}_F(\text{int}_F(B \cap F)) \cap U = \text{cl}_U(\text{int}_U(B \cap U)) = \text{cl}_X(\text{int}_X(B)) \cap U = A$. Since $B \cap F \in Z(F)$, U is $Z^\#$-embedded in F.

The first half of the following is immediate from Lemma 1.6 and the second half also follows from the routine calculation.

Proposition 1.7. Let X be a quasi O_z-space and $U \subseteq X$. Then U is a quasi O_z-space if U satisfies one of the following:

(a) U is open in X

(b) U is dense in X

Noting that for a dense subspace X of a space Y, $R(X)$ and $R(Y)$ are isomorphic Boolean lattices and that $Z(X)^\#$ is isomorphic with $Z(\beta X)^\#$, one has the following theorem and proposition by the above proposition.

Theorem 1.8. For any space X, the following are equivalent:

(a) X is a quasi O_z-space.

(b) νX is a quasi O_z-space.

(c) βX is a quasi O_z-space.

Remark. The real line R is an O_z-space but βR is not an O_z-space, which is a quasi O_z-space (see [2] and [7]).
Proposition 1.9. For any quasi O_2-space X, we have:
(a) a $Z^\#$-embedded extension of X is a quasi O_2-space;
(b) every regular closed subspace of X is again a quasi O_2-space.

The following is due to Dashiell (see [3] for the detail).

Definition 1.10. A covering map $f : X \to Y$ is said to be $Z^\#$-irreducible if $\{ f(A) : A \in Z(X)^\# \} = Z(Y)^\#$.

It is well known that for any covering map $f : X \to Y$, the map $\phi : R(X) \to R(Y)$ ($\phi(A) = f(A)$) is a Boolean algebra isomorphism and the inverse map ϕ^{-1} of ϕ is given by $\phi^{-1}(B) = cl_X(f^{-1}(int_Y(B)))$. Using this, one has the following.

Theorem 1.11. Suppose $f : X \to Y$ is a covering map and Y is a quasi O_2-space, then f is $Z^\#$-irreducible and X is a quasi O_2-space.

Proof. Since f is a covering map and Y is a quasi O_2-space, $Z(Y)^\# = R(Y) = \{ f(A) : A \in R(X) \}$. Furthermore, for any $B \in Z(Y)^\#$, $cl_X(f^{-1}(int_Y(B))) \in Z(X)^\#$ and $B = f(cl_X(f^{-1}(int_Y(B))))$. Thus $Z(Y)^\# \subseteq \{ f(A) : A \in Z(X)^\# \}$. Since $Z(Y)^\# \subseteq \{ f(A) : A \in Z(X)^\# \} \subseteq \{ f(A) : A \in R(X) \} = Z(Y)^\#$, $\{ f(A) : A \in R(X) \} = \{ f(A) : A \in Z(X)^\# \} = Z(Y)^\#$. So f is $Z^\#$-irreducible. Let $A \in R(X)$. Then there is a $B \in Z(X)^\#$ with $f(A) = f(B)$. Note that $A = cl_X(f^{-1}(int_Y(f(A)))) = cl_X(f^{-1}(int_Y(f(B)))) = B$. Thus $R(X) \subseteq Z(X)^\#$. So X is a quasi O_2-space.

Definition 1.12. A space X is said to be:
(a) basically disconnected if every cozero-set in X is C^*-embedded in X.
(b) quasi F if every dense cozero-set in X is C^*-embedded in X.
(c) cloz if $B(X) = G(X)$.

Let $B(X)$ denote the set of clopen sets in a space X. Then it is known that a space X is basically disconnected iff $B(X) = Z(X)^\#$ (see [8]) and that a space X is a quasi F-space iff for any zero-sets Z_1, Z_2 with $int_X(Z_1) \cap int_X(Z_2) = \emptyset$, $cl_X(int_X(Z_1)) \cap cl_X(int_X(Z_2)) = \emptyset$. Moreover, X is extremally disconnected iff $R(X) = B(X)$.

Thus one has the following:
Quasi O_2-spaces

Proposition 1.13. For any quasi O_2-space X, the following are equivalent:

(a) X is a cloz-space.
(b) X is a quasi F-space.
(c) X is a basically disconnected space.
(d) X is an extremally disconnected space.

2. **Quasi O_2-Extensions**

Let \mathcal{C} denote the category of completely regular spaces and continuous maps.

Definition 2.1. Let \mathcal{C} be a full subcategory of \mathcal{C}_{Reg} and $X \in \mathcal{C}_{\text{Reg}}$.
(a) A pair (Y, f) is said to be a cover of X if $f : Y \to X$ is a covering map.
(b) A pair (Y, f) is said to be a \mathcal{C}-cover of X if (Y, f) is a cover of X and $Y \in \mathcal{C}$.
(c) A \mathcal{C}-cover (Y, f) of X is called a minimal \mathcal{C}-cover of X if for any \mathcal{C}-cover (Z, g) of X, there is a covering map $h : Z \to Y$ with $foh = g$.

Let \mathcal{edc}, \mathcal{bdc}, \mathcal{QF}, and \mathcal{cloz} denote the full subcategories of \mathcal{C}_{Reg} determined by extremally disconnected spaces, basically disconnected spaces, quasi-F spaces, and cloz-spaces, respectively. For any $X \in \mathcal{C}_{\text{Reg}}$, $(E(X), k_X)$, $(\Lambda X, \Lambda_X)$, $(QF(X), \Phi_X)$ and $(E_{cc}(X), z_X)$ denote \mathcal{edc}-, \mathcal{bdc}-, \mathcal{QF}-, and \mathcal{cloz}-cover of X, respectively (see [3], [4], [5], and [8] for the detail).

The following is immediate from Theorem 1.11 and Proposition 1.13.

Theorem 2.2. For any quasi O_2-space X, $(E(X), k_X)$, $(\Lambda X, \Lambda_X)$, $(QF(X), \Phi_X)$ and $(E_{cc}(X), z_X)$ are equivalent covers of X.

Proposition 2.3. Consider the following commutative diagram:

\[
P \xrightarrow{f} X \\
\downarrow j_1 \quad \quad \quad \downarrow j_2 \\
Y \xrightarrow{g} W,
\]
where j_1, j_2 are dense embeddings and f, g are covering maps. Then g is $Z^#$-irreducible and j_1 is $Z^#$-embedded iff f is $Z^#$-irreducible and j_2 is $Z^#$-embedded.

Proof. (\implies) Take any $A \in Z(P)^#$, then there is a $B \in Z(Y)^#$ with $A = B \cap P$, for j_1 is $Z^#$-embedded. Since $f(A) = f(B \cap P) = g(B) \cap X$ and g is $Z^#$-irreducible, $f(A) \in Z(X)^#$. Thus f is $Z^#$-irreducible. Let $C \in Z(X)^#$. Then $cl_P(f^{-1}(int_X(C))) \in Z(P)^#$. Since j_1 is $Z^#$-embedded, there is a $D \in Z(Y)^#$ such that $D \cap P = cl_P(f^{-1}(int_X(C)))$. Then $C = f(D \cap P) = g(D) \cap X$. Since g is $Z^#$-irreducible, $g(D) \in Z(X)^#$; therefore j_2 is $Z^#$-embedded.

(\impliedby) Take any $A \in Z(Y)^#$. Then $A \cap P \in Z(P)^#$ for P is dense in Y and $f(A \cap P) = g(A \cap P) = g(A) \cap X$; hence $g(A) \cap X \in Z(X)^#$, because f is $Z^#$-irreducible. Since j_2 is $Z^#$-embedded, there is a $B \in Z(W)^#$ with $g(A) \cap X = B \cap X$. Since j_2 is a dense embedding and $g(A), B$ are regular closed, $g(A) = B$. Thus g is $Z^#$-irreducible.

Take any $C \in Z(P)^#$, then $f(C) \in Z(X)^#$. Thus there is a $D \in Z(W)^#$ such that $f(C) = D \cap X$. Since g is a covering map, $cl_Y(g^{-1}(int_W(D))) \in Z(Y)^#$. Then $f(cl_Y(g^{-1}(int_W(D))) \cap P) = g(cl_Y(g^{-1}(int_W(D)))) \cap X = D \cap X = f(C)$. Hence $cl_Y(g^{-1}(int_W(D))) \cap P = C$. Thus j_1 is $Z^#$-embedded.

We recall that a space X is $Z^#$-embedded in βX. The following theorem characterizes quasi O_ω-compactifications via $Z^#$-embedding.

Theorem 2.4. For any quasi O_ω-space X and any compactification Y of X, the following are equivalent:

(a) $j_1 : X \hookrightarrow Y$ is $Z^#$-embedded.
(b) Y is a quasi O_ω-space.
(c) $E(Y) = E_{cc}(Y)$.

Proof. It is known that $\beta E(X) = E(\beta X)$ and the diagram

$$
\begin{array}{c}
E(X) \xrightarrow{k_X} X \\
\beta_{E(X)} \downarrow \quad \downarrow \beta \\
E(\beta X) \xrightarrow{k_{\beta X}} \beta X
\end{array}
$$
Quasi O₂-spaces

is a pullback.

Consider the pullback diagram

\[
\begin{array}{ccc}
 z_Y^{-1}(X) & \xrightarrow{z_Y^X} & X \\
 j_2 \downarrow & & j_1 \downarrow \\
 E_{cc}(Y) & \xrightarrow{z_Y} & Y.
\end{array}
\]

Since Y is compact, there is a unique continuous map \(f : \beta X \to Y \) with \(f \circ \beta_X = j_1 \). It is easy to show that \(f \) is a covering map; hence there is a covering map \(g : E(\beta X) \to E_{cc}(Y) \) with \(z_Y \circ g = f \circ k_\beta X \).

Thus one has \(j_1 \circ k_X = f \circ \beta_X \circ k_X = f \circ k_\beta X \circ \beta E(X) = z_Y \circ g \circ \beta E(X) \); therefore there is a unique continuous map \(h : E(X) \to z_Y^{-1}(X) \) such that \(z_Y^X \circ h = k_X \) and \(j_2 \circ h = g \circ \beta E(X) \).

(a) \implies (b) It is immediate from Proposition 1.9.

(b) \implies (c) Since X is a quasi O₂-space and \(k_X \) is a covering map, \(k_X \) is \(Z^\# \)-irreducible by Theorem 1.11. Thus \(h \) and \(z_Y^X \) are \(Z^\# \)-irreducible. Since \(j_1 \) is dense, one has a lattice isomorphism between \(R(Y) \) and \(R(X) = Z(Y)^\# \) via \(A \mapsto A \cap X \) (\(A \in R(Y) \)), so that \(j_1 \) is \(Z^\# \)-embedded; therefore \(j_2 \) is also \(Z^\# \)-embedded, because of the above proposition. Thus \(z_Y^{-1}(X) \) is a cloz-space; hence an extremally disconnected space and \(\beta z_Y^{-1}(X) = E_{cc}(Y) \). Since \(h \) is a covering map, \(h \) is a homeomorphism. Hence \(\beta E(X) = E(\beta X) = \beta z_Y^{-1}(X) = E_{cc}(Y) \). Since \(E(Y) = E(\beta X) \), \(E(Y) = E_{cc}(Y) \).

(c) \implies (a) Since \(E_{cc}(Y) \) is an extremally disconnected space, \(g \) is a homeomorphism. Hence \(z_Y \circ g = f \circ k_\beta X \) is \(Z^\# \)-irreducible. Since \(\beta E(X) \) is \(Z^\# \)-embedded, by Proposition 2.3, \(j_1 \) is \(Z^\# \)-embedded.

References

1. R. L. Blair, Spaces in which special sets are Z-embedded, Canad. J. Math. 28 (1976), 673-690.
Chang-Il Kim

Department of Mathematics, Sogang University, Seoul 121-742, Korea