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QUASI O,-SPACES

CHANG-IL KIM

0. INTRODUCTION

It is known that the behavior of a certain family of subsets of a
completely regular space characterizes its structure. We note among
others that a completely regular space X is an O.-space (a basically
disconnected space, a quasi F-space, resp.) iff every open set (cozero-
set, dense cozero-set, resp.) of X is Z-embedded (C*-embedded, resp.)
(see [1], [3], and [8]).

For O;-spaces, it is also known that a completely regular space X
is an O;-space iff vX is an O,-space and that the real line R is an
O:-space but AR is not an O,-space ([2] and |7)).

In this paper, we introduce a concept of quasi O,-spaces which gen-
eralizes that of O,-spaces. Indeed, a completely regular space X is a
quasi O,-space if for any regular closed set A in X, there is a zero-set Z
in X with A = clx(intx(Z)). We then show that X is a quasi O,-space
if every open subset of X is Z#-embedded and that X is a quasi O,-
space Iff AX is a quasi O,-space. Furthermore, it is shown that quasi
O.-spaces are left fitting with respect to covering maps.

Observing that a quasi O,-space is an extremally disconnected iff
it is a cloz-space, the minimal extremally disconnected cover, basically
disconnected cover, quasi F-cover, and cloz-cover of a quasi O,-space
X are all equivalent. Finally it is shown that a compactification Y of a
quasi O,-space X is again a quasi O,-space iff X is Z#-embedded in Y.

For the terminology, we refer to [6].

1. QUASI O.-SPACES

In the following, we assume that every space is a completely regular
space. For a space X, let Z(X) (R(X), resp.) denote the set of all
zero-sets (regular closed sets, resp.) on X.

The following are introduced by Henriksen, Vermeer, and Woods (4]
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NOTATION 1.1. For any space X, let

(a) Z(X)* = { clx(intx(A)) : A € Z(X) }.

(b) G(X) = { clx(C) : C is a cozero-set and there is a cozero-set D
in X such that C D =@ and CU D is dense in X }

Now we introduce the concept of quasi O,-spaces.

DEFINITION 1.2. A space X is said to be a quasi (),-space if
Z(X)* = R(X).

Since a space X is an O,-space iff R(X) C Z(X), and Z(X)# C R(X),
every O,-space is a quasi O,-space. We recall that every perfectly
normal space is an O,-space and that an extremally disconnected space
1s an O;-space (see [1]).

PROPOSITION 1.3. A space X is a quasi O,-space iff R(X) = Z(X)#
= G(X).

Proof. We first note that G(X) = { A € Z(X)* : cx(X - A) €
Z(X)#} (see [4]). Thus G(X) C Z(X)* C R(X). Suppcse R(X) = G(X),
then X is clearly a quasi O,-space. For the converse, take any open set
U in X, then clx(U), cx(X - clx(U)) € R(X) = Z(X)¥#; therefore
clx(U) € G(X). Thus R(X) = G(X).

DEFINTION 1.4. Let Y be a space , then a subspace X of Y is said
to be Z# -embedded in Y if for any A € Z(X)*, there is a B € Z(Y)#
with A = BN X. In case, the inclusion map X — Y is also said to be
Z#* -embedded.

We recall that a space X is an O,-space iff every open subset of X is
Z-embedded.

THEOREM 1.5. For any space X, the following are equivalent:
(a) X is a quasi O,-space.

(b) Every open subset U of X is Z# -embedded in .

(c) Every dense open subset U of X is Z¥-embeddcd in X.

Proof. (a) == (b) Take any Z € Z(U). Then there is a closed set A
in X with Z = A N U. Since U is open, cly(inty(Z)) =: clx(intx(A)) N
U and clx(intx(A)) € R(X) = Z(X)*. Thus U is Z# embedded in X.
(b) == (c) It is trivial.
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(c) = (a) Take any open set U in X. Put S = U U (X - clx(U)).
Then § is open dense in X. Define amap f: S — R by f(z) =0 if
z € Uand f(z) =1if z € X - clx(U). Then f is continuous, f~1(0) =
U and hence U is a zero-set in S. Since S is open dense in X, there is
a zero-set Z in X such that cls(ints(U)) = clx{U) N S = clx(intx(Z))
N S. Since S is dense in X and clx(U), clx(int x(Z)) are regular closed
sets in X, clx(U) = clx(intx(Z)). Hence R(X) C Z(X)#, so that X is

a quast O -space.

LEMMA 1.6. Let X be a space and U C F C X. If U is an open
Z# -embedded subset of X, then U is Z#-embedded in F.

Proof. Take any A € Z(U)#. Since U is Z#-embedded in X, there
is a B € Z(X) with A = clx(intx(B)) N U. Since B N F is closed in
F and U is open in F, clp(intp(B N F)) N U = cy(inty(B N U)) =
clx(intx(B)) N U = A. Since BN F € Z(F), U is Z#-embedded in F.

The first half of the following is immediate from Lemma 1.6 and the
second half also follows from the routine calculation.

PRroPOSITION 1.7. Let X be a quasi O,-spece and U C X. Then U
is a quasi O,-space if U satisfies one of the following:

(a) U is open in X

(b) U is dense in X

Noting that for a dense subspace X of a space Y, R(X) and R(Y)
are isomorphic Boolean lattices and that Z(X)# is isomorphic with
Z(BX)#, one has the following theorem and proposition by the above
proposition.

THEOREM 1.8. For any space X, the following are equivalent:
(a) X is a quasi O,-space.

(b) vX is a quasi O,-space.

(¢) BX is a quasi O,-space.

REMARK. The real line R is an O,-space bu: SR is not an O,-space,
which is a quasi O,-space (see [2] and [7]).
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PROPOSITION 1.9. For any quasi Q,-space X, we have:
(a) a Z#-embedded extention of X is a quast O,-space;
(b) every regular closed subspace of X is again a quasi O,-space.

The following is due to Dashiell (see [3] for the detail).

DEFINITION 1.10. A covering map f : X — Y is said to be Z%-
wrreducible if {f(A) : A € Z(X)#) = Z(Y)#.

It is well known that for any covering map f : X — Y, the map
¢+ R(X) — R(Y) (¢(A) = f(A))yis a Boolean algzbra isomorphism
and the inverse map ¢! of ¢ is given by ¢71(B) = ¢/ x(f~(inty (B))).
Using this, one has the following.

THEOREM 1.11. Suppose f: X — Y is a coverirg map and Y is a
quasi O,-space, then f is Z¥# -irreducible and X is a quasi O,-space.

1’7'00f. Since f is a covering map and Y is a quasi O,-space, Z(Y)¥#

= ) - {f(A) : A € R(X) }. Furthermore, for any B € Z(Y)#,
“Ii 1ty(B)}) € Z(X)# and B = f(clx(f~!(inty(B)))). Thus

Z(Y)# C{f(A): A e Z(X)#}. Since Z(Y)# C {f(A): A € Z(X)# }

{f(A) AERX)}mz(Y# {f(A): AeR(X) } = {f(A): A ¢

# ) = Z(Y)*. So f is Z*-irreducible. Let A € R(X). Then there

is LB& Z (X)# with f(A) = f(B). Note that A = clx(f~'(inty (f(A))))

= clx(f"Hinty (f(B)))) = B. Thus R(X) C Z(X)* So X is a quasi

0 ,-space.

DEFINITION 1.12. A space X is said to be:

(a) basically disconnected if every cozero-set in X is C*-embedded in
X

(b) quasi F if every dense cozero-set in X is C*-en:bedded in X

(c) cloz if B(X) = G(X).

Let B(X) denote the set of clopen sets in a spzce X. Then it is
known that a space X is basically disconnected iff B(X) = Z(X)# (sce
[8]) and that a space X is a quasi F-space iff for anv zero-sets 71, Z»
with intx(Z1) N intx(Z2) = 0, clx(intx(Z1)) N cly(intx(Z2)) = 0.
Moerover, X is extremally disconnected iff R(X) = B(X).

Thus one has the following:
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PROPOSITION 1.13. For any quasi O,-space X, the following are
equivalent:

(a) X is a cloz-space.

(b) X is a quasi F-space.

(c) X is a basically disconnected space.

(d) X is an extremally disconnected space.

2. QUASI O,-EXTENSIONS

Let Creg denote the category of completely regular spaces and con-
tinuous maps.

DEFINITION 2.1. Let C be a full subcategory of Creg and X € Creg.

(a) A pair (Y, f) is said to be a coverof X if f : Y — X is a
covering map.

(b) A pair (Y, f) is said to be a C-cover of X if (Y, f) is a cover of
XandYe(C.

(c) A C-cover (Y, f) of X is called a minimcl C-cover of X if for any
C-cover (Z, g) of X, there is a covering map h : Z — Y with foh = g.

Let ede, bde, QF, and cloz denote the ful subcategories of Creg
determined by extremally disconnected spaces, basically disconnected
spaces, quasi-F spaces, and cloz-spaces, respectively. For any X € Creg,
(E(X), kx), (AX, Ax), (QF(X), ®x) and (E.(X), zx) denote edc-,
bde-, QF-, and clog-cover of X, respectively (sze (3], [4], [5],and [8] for
the detail).

The following is immediate from Theorem 1.11 and Proposition 1.13.

THEOREM 2.2. For any quasi O,-space X, (E(X), kx ), (AX, Ax),
(QF(X), ®x ) and (Ecc(X), zx ) are equivalent covers of X.

ProrosiTION 2.3. Consider the following commutative diagram :

p-1.x
JIJ j:l
Yy 2w,
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where jy, j2 arc .. use embeddings and f, g are covering maps. Then g
is Z# -irreducible and j; is Z# -embedded iff f is Z#-irreducible and j,
is Z# -embedded.

Proof. (==) Take any A € Z(P)#, then thereis a B € Z(Y)# with
A =B NP, forj is Z#-embedded. Since f(A) = f(BNP) = g(B)nX
and g is Z#-irreducible, f(A) € Z(X)#. Thus f is Z#-icreducible. Let C
€ Z(X)*. Then clp(f~(intx(C))) € Z(P)#. Since j; is Z#-embedded,
there is a D € Z(Y)# such that DN P = clp(f~!(intx(C))). Then C
= f(D N P) = g(D) N X. Since g is Z#-irreducible ¢(D) € Z(X)#;
therefore j; is Z#.embedded.

(¢=) Take any A € Z(Y)#. Then A N P € Z(P)# for P is dense in
Y and f(A NP) = g(A N P)=g(A) N X; hence g(4) N X € Z(X)¥#,
because f is Z#-irreducible. Since jj is Z#-embedded, there is a B €
Z(W)# with g(A) N X = B N X. Since js is a dense embedding and
g(A), B are regular closed, g(A) = B. Thus ¢ is Z#-irreducible.

Take any C € Z(P)#, then f(C) € Z(X)#. Thus thereisaD € Z(W)#
such that f(C) = D N X. Since g is a covering map, clv (g™ (intw(D)))
€ Z(Y)*. Then f(cly (g~ *(intw(D))) N P) = g(cly(¢™ ! (intw(D)))) N
X =D N X =f(C). Hence cly(¢'(intw(D))) N P = C. Thus j; is
Z#-embedded.

We recall that a space X is Z#-embedded in 8X. The following the-
orem characterizes quasi O,-compactifications via Z#-embedding.

THEOREM 2.4. For any quasi O;-space X and any compactification
Y of X, the following are equivalent:

(a) j1 : X = Yis Z# -embedded.

(b) Y is a quasi O,-space.

(C) E(Y) = ECC(Y)

Proof. 1t is known that SE(X) = E(AX) and the diagram

kx

E(X) —=. X

ﬂE(X)l ﬂl

kgx
E(BX) —— BX
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is a pullback.
Consider the pullback diagram

FUX) — X

sz jll
El(Y) — V.
Since Y is compact, there is a unique continuous map f : X — Y
with f o fx = ji. It is easy to show that f is a covering map; henee
there is a covering map ¢ : E(8X) — Ece(Y) with 2y 0o g = fokgx.
Thus one has j1okx = foBxokx = fokgxoPfpwx) =zy 090 BE(x);
thercfore there is a unique continuous map A : E(X) — 2y} (X) such
that zy, oh = kx and jy0h = g o BE(x)-

(a) == (b) It is immediate from Propositior 1.9.

(b) = (c) Since X is a quasi O-space and kv is a covering map, kx
is Z# irreducible by Theorem 1.11. Thus A and zy, are Z#.irreducible.
Since jy is dense, one has a lattice isomorphism between R(Y) and R(X)
=Z(Y)# via A AN X (A € R(Y)), so that j; is Z#-embedded; there-
fore j, is also Z#-embedded, because of the above proposition. Thus
2y (X) is a cloz-space; hence an extremally cisconnected space and
Bzy'(X) = E.o(Y). Since h is a covering map, % is a homeomorphism.
Hence SE(X) = E(8X) = Bzy'(X) = Ec(Y). Since E(Y) = E(8X),
E(Y) = E..(Y).

(c) => (a) Since E.(Y) is an extremally disconnected space, ¢ is
a homeomorphism. Hence zy og = f o kgx is Z#-irreducible. Since
Be(x) is Z#-embedded, by Proposition 2.3, j; i3 Z#-embedded.
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