AUTOMORPHISM GROUPS ON CERTAIN REINHARDT DOMAINS

HYEONBAE KANG

1. Introduction and Statements of Results

In relation to the characterization of domains in \mathbb{C}^n the study of automorphism groups on domains in \mathbb{C}^n is attracting much attention lately. For example, Wong proved that any bounded strongly pseudo-convex domain in \mathbb{C}^n with noncompact automorphism group is biholomorphically equivalent to the unit ball in \mathbb{C}^n [10]. Rosay also proved a more general version of the same theorem [8]. As a generalization of Wong-Rosay's theorem in \mathbb{C}^2 , Bedford and Pinchuk proved that any bounded pseudoconvex domain with real analytic boundary is biholomorphically equivalent to a domain of the form

$$E_{m} = \{ (z_{1}, z_{2}) \in \mathbb{C}^{2} : |z_{1}|^{2} + |z_{2}|^{2m} < 1 \}$$
 (1.1)

for some positive integer m provided that the automorphism group of the domain is noncompact. Kim also proved a similar result [6]. On the other hand, Greene and Krantz conjectured that the only domain in \mathbb{C}^2 with noncompact automorphism group is E_m [5, see also 2].

In this paper, we show that Greene-Krantz's conjecture is true for certain class of domains. In fact, we give a complete classification of automorphism groups of domains of the form

$$E_{\phi} = \{ (z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + \phi(|z_2|^2) < 1 \}$$
 (1.2)

where the function ϕ is a real valued C^{∞} function in a neighborhood of [0,1] which satisfies the following conditions:

- (1) $\phi(0) = \phi'(0) = 0$ and $\phi(1) = 1$,
- (2) $\phi(t)$ is increasing and convex for t > 0

Received April 24, 1992.

1980 Mathematical Subject Classification (1985 Revision): 32H99 32H10 This work was supported in part by GARC-KOSEF.

PROPOSITION 3. Let $\psi(t)$ be a real valued C^{\otimes} function for t > 0 and let m be a Möbius transform on the unit disc Δ in \mathbb{C} such that $m(0) \neq 0$. If the function $u(z) = \psi(1 - |m(z)|^2) - \psi(1 - |z|^2)$ is harmonic in Δ , then

$$\psi(t) = A \log t + B$$

for some constant A and B.

Note that if $\psi(t) = A \log t + B$, then $\psi(1 - |in(z)|^2) - \psi(1 - |z|^2)$ is harmonic in Δ .

At the Symposium on Complex Analysis at Madison in honor of Professor Walter Rudin where this result was announced, Steven Krantz informed me that he and Greene had a result which had some intersactions with our result [11].

2. Proofs

As before, we let ϕ be a real valued C^{∞} function in a neighborhood of [0,1] which satisfies the following conditions;

- (1) $\phi(0) = \phi'(0) = 0$ and $\phi(1) = 1$,
- (2) $\phi(t)$ is increasing and convex for t > 0.

And let

$$E_{\phi} = \{ (z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + \phi(|z_2|^2) < 1 \}.$$

Then the Levi form on E_{ϕ} is given by

$$\mathcal{L} = \begin{pmatrix} 1 & 0 \\ 0 & \phi''(|z_2|^2)|z_2|^2 + \phi'(|z_2|^2) \end{pmatrix}.$$

Hence E_{ϕ} is a pseudo-convex domain; weakly pseudo-convex along $(e^{i\theta},0)\in\partial\Omega_{\phi}$ and strongly pseudo-convex otherwise. We let $W=\{(e^{i\theta},0)\; ;\; |\theta|\leq\pi\}$. The principal observation in this paper is that any automorphism F on E_{ϕ} maps the set W onto itself. In fact, since E_{ϕ} is a Reinhardt domain, the Bergmann projection on E_{ϕ} maps $C^{\infty}(\overline{E_{\phi}})$ into $C^{\infty}(\overline{E_{\phi}})$ [main theorem in 4]. So, by well known Bell-Ligocka's theorem, any automorphism on E_{ϕ} can be extended as a diffeomorphism on $\overline{E_{\phi}}$. We call the extended function F. Since the type of the boundary is a biholomorphic invariant, we have F(W)=W.

Automorphism groups on certain Reinhardt domains

By letting $z_2 = 0$, one can easily see that a = 1 and c = 0. We observe that G(0,0) = 0. We also note, by computing the Jacobian of F for $z_2 = 0$, that $H(z_1,0) \neq 0$. It then follows that

$$\lambda G(z_1, \lambda z_2) = G(z_1, z_2) + bH(z_1, z_2) \tag{4}$$

$$H(z_1, \lambda z_2) = H(z_1, z_2)$$
 (5)

for any λ with $|\lambda| = 1$. (5) implies that $H(z_1, z_2)$ is independent of z_2 . And (4) implies that $\lambda G(z_1, \lambda z_2) = G(z_1, z_2)$ for any λ with $|\lambda| = 1$ and hence $G \equiv 0$. Let $h(z_1) = H(z_1, z_2)$.

So far, we proved that $f_1(z_1, z_2) = m(z_1)$ and $f_2(z_1, z_2) = z_2h(z_1)$ if $|z_1| < \delta$ and $|z_2| < \delta$. It immediately follows that $f_1(z_1, z_2) = m(z_1)$ on E_{ϕ} and that $h(z_1)$ can be extended as a holomorphic function in Δ . This completes the proof. \square

Proof of Proposition 3. Let

$$m(z) = \lambda \frac{z - \beta}{1 - \overline{\beta}z}.$$

Then, $\beta \neq 0$. We may assume that β is real since the Laplacian is rotation invariant. Since the function $u(z) = \psi(1-|m(z)|^2) - \psi(1-|z|^2)$ is harmonic in Δ , we have

$$\psi''(1-|m(z)|^2)|m'(z)|^2|m(z)|^2-\psi'(1-|m(z)|^2)|m'(z)|^2$$
$$-\psi''(1-|z|^2)|z|^2+\psi'(1-|z|^2)=0$$

If we let

$$v(z) = \psi''(1 - |m(z)|^2)|m'(z)|^2|m(z)|^2 - \psi'(1 - |m(z)|^2)|m'(z)|^2,$$

then v is radial. Hence $v_{\theta} \equiv 0$. A complicated but straight forward computation shows that

$$\frac{(1+\beta^2r^2)^3}{2\beta r(1-\beta^2)}v_{\theta}(re^{i\frac{\pi}{2}}) = (t^2-t)\psi'''(t) + 2(t-1)\psi''(t) + 2t\psi''(t) + 2\psi'(t)$$

$$= 0$$

Automorphism groups on certain Reinhardt domains

References

- E. Bedford and S. I. Pinchuk, Domains in C² with noncompact automorphism group, Math USSR Sbornik 63 (1989), 141-151.
- S. Bell, Mapping problems in complex analysis and the θ-problem, Bulletin of A.M.S. 22 (1990), 233-259.
- 3. S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math 57 (1981), 283-289.
- H. Boas and E. Straube, Complete Hartog domains in C² have regular Bergman and Szegő projections, preprint.
- R. Greene and S. Krantz, Biholomorphic self map: of domains, Lecture Notes in Math, Springer-Verlag, Berlin and New York 1276 (1987), 136-207.
- K. T. Kim, Complete localization of domains with noncompact automorphism groups, Trans. A.M.S. 319 (1990), 139-153.
- S. Krantz, Function Theory of Several Complex Viriables, Wiley-Interscience, New York, 1982.
- 8. J.-P. Rosay, Sur une caracterisation de la boule parmi les domaines de \mathbb{C}^n par son group d'automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), 91-97.
- W. Rudin, Function Theory in the Unit Ball of Cⁿ, Springer-Verlag, Berlin and New York, 1980.
- 10. B. Wong, Characterization of the unit ball in \mathbb{C}^n by its automorphism group, Invent. Math 41 (1977), 253-257.
- 11. R. Greene and S. Krantz, Techniques for studyng automorphisms of weakly pseudo-convex domains, preprint.

SANGDO 1 DONG, DONGJAK GU, SEOUL, 153-746, KEREA