Full hereditary $C^{*}$-subalgebras of crossed products

  • Jeong, Ja A. (Global Analysis Research Center, Department of Mathematics, Seoul National Univ.)
  • Published : 1993.08.01

Abstract

A hereditary $C^{*}$-subalgebra B of a $C^{*}$-algebra A is said to be full if B is not contained in any proper closed two-sided ideal in A, so each hereditary $C^{*}$-subalgebra of a simple $C^{*}$-algebra is always full. It is well known that every $C^{*}$-algebra is strong Morita equivalent to its full hereditary $C^{*}$-subalgebra, but the strong Morita equivalence of a $C^{*}$-algebra A and its hereditary $C^{*}$-subalgebra B does not imply the fullness of B, ingeneral. We present the following lemma for our computational convenience in the course of the proof of the main theorem. Note that $L_{B}$, $L_{B}$$^{*}$ and $L_{B}$ $L_{B}$$^{*}$ are all .alpha.-invariant whenever B is .alpha.-invariant under the action .alpha. of G.a. of G.a. of G.a. of G.f G.

Keywords