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AN INTERACTIVE FACE SEARCH PROCEDURE
FOR MULTIPLE OBJECTIVE LINEAR PROGRAMMING

Dong Yeup Lee*

ABSTRACT

This papper presents a new interactive procedure for multiple objective linear programming
ploblem (MOLP). In practical multiple objective linear programming applications, there is
usually no need for the decision maker to consider solutions which are not efficient. There-
fore, the interactive procedure presented here searches only among efficient solutions and
terminates with a solution that is guaranteed to be efficient. It also can converge to
nonextreme efficient final solutions rather than being restricted to only extreme efficient
points of the feasible set. The procedure does not require sophisticated judgements or inputs
from the decision maker, One of the most attractive features of the procedure however, is
that the method allows the DM to examine the efficient faces it finds, As iteration goes, the
DM can explore a wide variety of efficient faces rather than efficient faces confined to only
certain subregion of the feasible set of problem MOLP since the efficient faces that the pro-
cedure finds need not be adjacent. This helps the DM explore the nature of the efficient set
of problem MOLP and also helps the DM have confidence with a final solution. For these
reasons, [ feel that the procedure offer significant promise in solving multiple objective linear

programs rapidly and in a satisfying manner to the DM.
1. INTRIDUCTION

Multiple criteria decision making (MCDM) problems have been of increasing interest to manage-
ment scientists, due in part to the realization that many problems, particularly those of a strategic
nature, and more particularly those in the public sector, must explicitly consider multiple criteria if
they are to be resolved with truely good decisions. One of the more popular and practical models

has been used to help make decisions involving multiple criteria is the multiple objective linear
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programming problem (MOLP) model. This model can be written

(MOLP) “max” Cx, subject to x€X,

where X = {x€R": Ax £ b} and X is a nonempty, compact polyhedron, C and A are p x n and
m X n matrices, respectively, and beR",

In the multiple criteria decision making (MCDM) problem, ‘maximization’ is not well defined
since the objective functions may be conflicting with each other, and usually some compromise sol-
ution is required. Numerous techniques to find the most preferred compromise solution have been
proposed in the literature, where ‘most preferred’ depends upon the preferences of the decision
maker (DM). Usually the most preferred compromise solution is required to be an efficient

(nondominated, Pareto) solution,

Definition 1.1
A point x’€X is an efficient solution of problem (MOLP) if and only if there exists no x€X
such that Cx>Cx’ and Cx#Cx’.

Numerous real and potential applications of multiple objective decision making have been
reported in the literature in the past two decades. These applications have been in areas such as
academic planning {9], scheduling [10], inventory planning [11], location planning [16], energy
planning [12], [23], and project management [21].

Many of the approaches for analyzing problem (MOLP) involves generating efficient solutions
(71, [18], [23]. Two of these, interactive approach and vector maximization approach, are quite
commonly used.

The interactive approach has become one of the more popular approaches in recent years. In
this approach, the decision maker (DM) dynamically interacts with a computerized algorithm, and
thereby explores the feasible decisions until he finds one that he prefers the most. Through practi-
cal experience, researchers and decision makers have learned that the interactive approaches do
not have many of the serious flaws which noninteractive approaches possess. It also has certain
advantages that the noninteractive approaches do not have. Chief among these is that the DM is
actively and dynamically involved in the decision making process. He can thereby learn about his
preferences and come to a decision in which he can have confidence. Furthermore, interactive
procedures can be flexibly designed to yield a variety of attractive characteristics. In contrast, the
vector maximization approach has a different set of drawbacks. Among them are that it requires a
great deal of computation and that the number of candidate solutions that it generates for the DM
to choose among can be overwhemingly large.

Because of the advantages of the interactive approach, many knowledgeable individuals in the

field of MCDM would agree with Steuer’s (1986, p.361) statement that “the future of multiple
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objective programming is in its interactive application.”

Many of the interactive procedures have been developed for the problem (MOLP) [1], [7], (8],
(141, [17], [18], [20], {24]. Among these solution procedures, different magnitudes of
requirements are placed on the DM in terms of both the quality and quantity of information
required of him. They differ in the kind of preference information required from the DM. They
may require assessments of weights [5], specifications of relaxation quantities [1], evaluations of
tradeoffs [9], or pairwise preference comparisions [13].

Although numerous interactive approaches have been suggested, none has emerged as a clearly
preferred approach. It is unlikely that any single procedure will emerge as universally preferred
because different procedures may be better suited for different types of DMs and decision making
situations, Thus in individual decision situations, analysts could select from among solution
procedures which are most compatible with DM’s decision processes,

This paper presents an interactive face search procedure for problem (MOLP). The procedure
has four major benefits, First, it searches only among efficient solutions, and terminates with a
solution that is guaranteed to be efficient, Second, it also can converge to nonextreme efficient fi-
nal solutions rather than being restricted to only extreme efficient points of the feasible set.
Third, it does not require sophisticated judgements or inputs from the decision makers., Finally,
the procedure allows the DM to examine the efficient faces that it finds. At each iteration, if the
DM wants to find an improved solution, the subset of the efficient face containing the current sol-
ution is determined by the DM’s responses. Then the procedure finds an efficient solution which is
preferred to the current solution by examing the subset determined by the DM’s responses. Since
the subset of the efficient face containing the current solution includes only the efficient solutions
interesting to the DM, the procedure examining the subset of the efficient face gives the DM a
better chance to find a satisfying solution. This feature would enable the DM to reach a satisfying
solution in relatively few iterations. As iteration goes, the procedure allows the DM to explore a
variety of efficient faces rather than efficient faces confined to only subregion of X since the ef-
ficient faces that the procedure finds need not be adjacent. Furthermore, the procedure makes the
DM possible to examine the region around the current solution,

The organization of the paper is as follows. In section 2 the theory necessary for understanding
the procedure is explained. Section 3 gives the steps of the procedure. In section 4 the procedure

is illustrated with a small example, The final section contains concluding remarks,
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2. THEORETICAL BACKGROUND

Let x°e X,

Consider the following linear program PJ.

(P4) max <i'C, x>
subject to
Cx2Cx’ (1)

xeX

The interactive face search procedure is based on the following two results,

The first result follows easily from [2]. The second result is derived from the first result by
using duality theory [4].

Let Xk denote the set of all efficient solutions of problem MOLP,

THEOREM 1
Let x’€X. Then x°€X;: if and only if for any >0, x° is an optimal solution of the linear

program (P1).

THEOREM 2
Assume that 1°>0 and x°€ X;.

Let (u"T, w*") be any optimal solution to the linear programming dual DA of problem PA°, where
u’ represents the dual variables corresponding to the constraints (1). Then x° belongs to the ef-
%o
A

ficient face X5 of X, where I'=u"+4° and Xy denotes the optimal solution set of the weighted sum

problem (W) with A=7 : max <A'C, x> subject to xeX.

PROOF

To prove the desired result, we need to show that x° is an optimal solution to problem Wi with

A=;1\°. The dual linear program to problem P1° is given by

DA°: min —<x7 C", u> + <b, w>,
subject to
—C'u + A™w = C™°

u w 2 0.
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By Theorem 1, since x°€Xg, x° is an optimal solution for problem PA°

By duality theory of linear programming [15], 47 Cx° = —<xT C", u*> + <b, w*>.

Rearranging this equation, we obtain (u”+1°)'"Cx* = <b, w*>. (2)
Now consider the dual linear program to problem W1 with 1 = 2. This dual program is given by

D: min <b, w>
subject to
A'w = CT(uw* + )7

wz0.

Since (u”", w*T) is an optimal solution to problem DA°, w° is a feasible solution for problem D,

Let w be any feasible solution for problem D. Then it is easily seen that (u°", w') is a feasible
solution for problem DA°. Since (u°", w*") is an optimal solution for problem DJ°, this implies that

—<xTCT, u> + <b, w> 2 —<x7 CT, > + <b, v >,

or, equivalently, <b, w> 2 <b, w*>, It follows that w* is an optimal solution for problem D.

Notice also that since x°€Xg, x° is a feasible solution for problem WA with 1 = 2.

To summarize, we have shown that with 1 = A°, x° is a feasible solution to the linear program
Wi, W is an optimal solution to the dual linear program D of problem W4, and by (2), that the
objective function value of x° in problem Wi equals the objective function value of w* in problem
D. From linear programming duality theory [15], this implies that x° is an optimal solution to prob-
lem WA with 4 = )?’ and the proof is complete.

The following corollary of Theorem 2 is immediate.

Corollary 1
Assume that 1° > 0 and x°€Xg.

Let (u", w*") be any optimal solution to the linear programming dual DA° of problem P1°, where
u° represents the dual variables corresponding to the constraints (1), Let © = «° + &°, and let v,
= (®)" Cx°. Then the efficient face Xz of X can be represented as Xz = (x€X|[(®)T Cx = v.}.

From corollary 1, it can be easily seen that the following linear programming P finds an efficient
solution which minimizes kth objective function over the subset of the efficient face X, which

contains x°
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(P) min <¢; x>
subject to
(T Cx = ()T CxX°
GxX — 220X 26X+ A 1<j<p
x€X

, Where & > (.

3. THE INTERACTIVE FACE SEARCH METHOD

The steps of the interactive face search method are as follows :

Step 1.

Solve the p single objective linear programming problems

max {C,X = Zi} 1 = 1’ ...... , D
subject to
xeX
to obtain p efficient points, ¥, i=1,-- ,p, to the orginal problem, and their associated images, the
p criterion vectors z', i=1,+« ,p, respectively. Let the DM review these p criterion vector. If the

DM wishes to stop with his most preferred one among them, the procedure terminates, If the DM
wishes to try to find an improved solution, let his most preferred one among them be z® and its in-

verse image be x*. Continue with Step 2.

Step 2.

Construct a payoff table to obtain the ideal criterion vector z*€R",

Payoff Table

Z Zy Zy
1 *
z 2y 212 Zyp
Z *
Zy Zs . Zyp
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where the rows are the criterion vectors resulting from inividually optimizing each of the

objectives. The z* entries along the main diagonal form the z* ideal criterion vector,

Step 3.
Let iteration counter h==0. Let m; be the minimum value in the ith colum of the payoff table.

Calculate = values where

Z.‘;m [ ]}i-l (cy)? ]_1} when z* > 0
o=
mo ( él (cy)? ]—15 when z* £ 0
Term 1 Term 2
Step 4.

With (x", z"), specify the index set I' of criterion values to be relaxed and specify the amounts

(&, i€I) by which they are to be relaxed.

Step 5.
Let h=h++1. Calculate 4 weights where

€ iel’

. P&l

{note : ¢ is an arbitrary small, positive constant)

Step 6.
Solve the linear program (P2a").

Max <(M)T C, x>

subject to
cx 2 ¢cx il
. (1)
cx Z axX'— A iel

xeX
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for decision space solution x",

Step 7.

Let z" = z(x"). Compare z" with z*

Step 8.
If all components of z" are satisfactory, stop with (2", x™) as the final solution. Otherwise, go

to Step 9.

Step 9.
Specify the index set J' of criterion values to be relaxed and specify the amounts (&, j€J°) by
which they are to be relaxed. Also specify the maximum amounts (24, j&J') by which they are to

be improved.

Step 10.
Choose the index k(k€]’), which indicates the index of criterion values to be sacrificed the

most,

Step 11.
Solve the dual linear program Di" to problem PA". Let u" be the vector of optimal dual variables

corresponding to constraints (1) in problem PA",

Step 12.
Let 2t = (u" + ).

Step 13.

Solve the linear program (P,)

min <c; x>

subject to
(//Th)T Cx = (:{h)T cxM
C,xhl — A Sex £ ijhl ey
C,Xhl <cx £ C,Xhl + & jE]'
xeX

for decision space solution x™,
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Step 14.

Let 2" = z(x"™). Compare z"* with z*,

Step 15.

If all components of z" are satisfactory, stop with (z%, x™) as the final solution. Otherwise, go

to Step 4 by letting x* = x" and 2 = 2",

Some of these steps will now be discussed in detail.

In Step 1, if the possibility exists that some objectives have a alternative optima, a way to as-
sure that only efficient solutions are generated is to lexicographically maximize the objective [19].

In Step 2, to be guaranteed that the procedure produces the solution in fewer iteration than the
number p of objective functions, the index i(i€I') chosen at this step will no longer be eligible for
further relaxation. Thus the procedure will terminate itself, if the DM does not terminate it first.
This is not really an important practical consideration, however, since the DM would be expected
to terminate the procedure himself in most problem situation after relatively few iterations.

In Step 3, payoff table column minimums are used in place of the minium criterion values over
the efficient set because these minimum criterion values are difficult to obtain [3]. Notice the pur-
pose of Term 1 is to place the most weight on the objectives with the greatest relative ranges.
Term 2 normalizes the gradients of the objective functions according to the L,—norm.

In Step 5, to ensure that only efficient solutions are generated at step 6, for i€l’, 4 shoud be
assigned the value of ¢, which is an arbitrary small and positive constant,

In Step 6, it is solved for the efficient solution which may not correspond to an extreme point
of the original MOLP problem, This may be desirable in most decision situations since the explo-
ration of the interior of efficient facets is possible,

In Step 8 and Step 15, as long as some criterion vector components are more satisfactory than
others, iteration should be kept because current situation can be improved by making tradeoffs.

In Step 13, the purpose is to find an efficient solution which is the most preferred point to the
DM among the points in the efficient face containing the solution x™ found at Step 6. At this
step, the DM is required to give the specification of the maximum improvement quantities of the
criterion values to be improved as well as the specification of relaxation quantities of the criterion
values to be relaxed. It gives the maximum value M, (the minimum value n;.) the kth objective
can take at iteration t, depending on 2&1" (k€]). With reasonable DM’s responses, M,.(n;:) would
be expected to be nonincreasing (nondecreasing) as iteration goes. Thus keeping M,, 2 M,u; and
M = N would keep the DM from making possible errors in judgment that the DM may inad-

vertently commit in giving some of his responses. Based on the DM’s responses, the feasible set of
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the linear programming problem (P,), which is the subset of the efficient face containing the sol-
ution x", is determined. An efficient solution found at this step, if it is not the same as the sol-
ution x" found at Step 6, is guaranteed to be more preferred solution to the solution x™. This is
because the feasible set of the linear programming problem (P,), which is the subset of the ef-
ficient face containing the solution x", includes only the efficient solutions interesting to the DM.
Solving the linear programming problem (P,) also makes the DM possible to examine the region

around the solution x™ by narrowing down the range each criterion can be changed.

4. AN ILLUSTRATION WITH A SMALL EXAMPLE

To illustrate the suggested implementation of the interactive face search procedure, consider the
following MOLP problem.

Max -x + 2x,
Max 2% — % + x3
Max x + x; —2x3
subject to
2% + %, £ 16
8x, + 5x; < 66

2X1 + 3Xz

1A

A
N
3

v

X1

o
A

X;

A
[\ -~ o

(=
1A
IIA

X3

The sets X and Xg are shown in Figure 1, where X; consists of the four two—dimensional faces

of X which are shaded. Table 1 lists the extreme points of X,
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Figure 1.  The Sets X and X

Table 1. Extreme Points of X

Point Coordinates

A (0, 0, 2)
0, 7,2
(0, 7, 0)
(3, 7,0

(4.5, 6, 0)
(7,2, 0
(8,0, 0)
(8 0, 2)

T Ommlio oW

(7, 2, 2)
(4.5, 6, 2)
(3,7, 2)
(0, 0, 0)

O R —~ =

Step 1.

By individually optimizing each objective function, the following three efficient points and
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their associated criterion vectors are found.

x = (0, 7, 0) 2= (14, -7, 7)
xX = (8, 0, 2) z2 = (-8, 18, 4)
x* = (4.5, 6, 0) Z = (7.5, 3, 10.5)

Let the DM review these criterion vectors.
Suppose the DM wishes to try to find an improved soluion.

Let X = x" and 2 = 2"

Step 2.
By constructing payoff table, z* = (14, 18, 10.5).

Step 3.
h = 0.
And m = 0.703, = = 0.567, m = 0.2916.

Iteration 1

Step 4.
Suppose the DM choose I' = {3} and &; = 3.5.

Step 5.
h =1.
And 4, = 0.45, A, = 0.363, 4; = 0.001.
(Notice : 23 is arbitrary given by the value of 0.001)

Step 6.
x!! = (3.88, 6.41, 1.65) is found. [refer to Figure 1]

Step 7.
z!! = (8,94, 3, 7). Compare this with z.

Step 8.
Suppose the DM wishes to try to find an improved solution.

Step 9.

Suppose the DM responses that J° = {1}, &, = 10 and for j &§], &, =4, &; = 1.
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Step 10.

Since J  has only one element, 2 = 1.

Step 11.
u" = (0, 0.0076, 0.1843).

Step 12.
M= (u" + 1) = (0.45, 0.3706, 0.1853).

Step 13.
Problem (P,) finds an efficient solution x* = (4.5, 6, 1.75) by minimizing the 1st objective func-

tion over the subset of the efficient face ((J DEJK) containing x". {refer to Figure 1]

Step 14.
2% = z(x%) = (7.5, 4.75, 7).

Step 15.
Suppose the DM wihes to try to find an improved solution.
By letting x? = x", go to Step 4.

Iteration 2.

Step 4.
Suppose the DM choose I' = {1} and &, = 11.

Step 5.
h =2
And 4 = 0.001, 4, = 0.363, 43 = 0.187.
(Notice 4, is arbitrary given by the value of 0.001)

Step 6.
x? = (7.1, 1.8, 0) is found. [refer to Figure 1]

Step 7.
% = (—3.5, 12.4, 8.9). Compare this with z

Step 8.
Suppose the DM is satisfied with all components of 2%,

Stop with (2%, x") as the final solution,
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5. CONCLUSIONS

In practical multiple objective linear programming applications, there is usually no need for the
decision maker to consider solutions which are not efficient. Therefore, the interactive procedure
presented here searches only among efficient solutions and terminates with a solution that is
guaranteed to be efficient, It also can converge to nonextreme efficient final solutions rather than
being restricted to only extreme efficient points of the feasible set. It does not require the DM to
have a mathematical knowledge of the nature of efficient solutions or of the efficient set,

One of the most attractive feature of the procedure however, is that the method allows the DM
to examine the efficient faces founded at each iteration. At each iteration, if the DM wants to
find an improved solution, the subset of the efficient face containing the current solution is deter-
mined by the DM’s responses, Then, the procedure finds an efficient solution which is preferred to
the current solution by examing the subset determined by the DM’s responses. Since the subset of
the efficient face containing the current solution includes only the efficient solutions interesting to
the DM, the procedure examining the subset of the efficient face containing the current solution
gives the DM a better chance to find a satisfying solution. This feature would enable the DM to
reach a satisfying solution in relatively few iterations. It also makes the DM possible to examine
the region around the current solution, As iteration goes, the DM can explore a wide variety of ef-
ficient faces rather than efficient faces confined to only certain subregion of X since the efficient
faces that the procedure finds need not be adjacent. This helps the DM explore the nature of the
efficient set Xk and also helps the DM have confidence with a final solution. For these reasons, [
feel that the procedure offer significant promise in solving multiple objective linear programs rap-

idly and in a satisfying manner to the DM.
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