Clinical Experiences of Open Heart Surgery
-1000 Cases-

From Sep. 1985 to Dec. 1992, total 1000 cases of open heart surgery(OHS) were performed in the department of Thoracic & Cardiovascular Surgery, Pusan Paik Hospital, College of Medicine, Inje University.

Among the total 1,000 cases of OHS, there were 823 cases with congenital heart diseases(CHD) and 177 cases with acquired heart diseases(AHD). The age distribution was 9 days(4.0kg) to 49 years in CHD and 11 to 64 years in AHD, In the 823 cases of CHD, there were 763 acyanotic cases and 60 cyanotic cases. The CHD cases consisted of 520 VSD(63.2%), 177 ASD(21.5%), 60 TOF(7.3%), 27 PS(3.3%), 17 ECD(2.1%), 7 Valsalva sinus rupture(0.9%), 4 TGA(0.5%), 3 Ebstein’s anomaly(0.4%), 3 DORV(0.4%), and others. The corrective operations were applied for congenital heart disease with the result of 2.8% hospital mortality. In the 177 AHD, 168 cases were valvular heart diseases, 7 cases were cardiac tumors and one LA thrombus and one annuloaortic ectasia. In the 168 valvular heart diseases, there were 115 single valve replacement cases(16 AVR, 99 MVR), 20 cases of double valve replacement(AVR & MVR), 15 cases of MVR with TVA, and 10 cases of AVR, MVR with TVA. The total implanted prosthetic valves were 199. In MVR, 66 of St. Jude Medical valves, 78 of Carpentier-Edward valves, and 5 of Ionescu-Shiley valves were used. In AVR, 38 of St. Jude Medical valves and 12 of Carpentier-Edward valves were used.

The hospital operation mortality rate of congenital acyanotic, cyanotic, and acquired heart diseases were 1.6%, 18.3% and 3.4% respectively. The overall mortality rate was 2.9%(29/1000).

Key words: Open Heart Surgery, Clinical Analysis

본 교실에서는 1985년 9월 1일 첫 심장수술을 실시한 후 1987년 1월까지 약 1년 3개월동안 100례에 도달하여 그에 대한 성적을 보고한 바 있으며***. 그 후 매년 100례 이상의 수술을 시행하여 1992년 12월까지 7년 3개월 동안 시행한 1,000례의 증례에 대하여 정리 및 고찰을 하고자 한다.
증례 분석

1) 연도별 현황

1985년 개심술 시작 이후 86년 89째, 87년 110째, 88년 114째, 89년 151째, 90년 163째, 91년 159째, 92년 209째로 검사 증가하는 추세로 수년간 계속 150례를 넘는 개심술 시행 빈도를 보이고 있다(Fig. 1).

2) 성별 및 연령별 분포

1,000례 중 선천성 경우가 823례 후천성인 경우가 177례 였으며 선천성 경우 남녀비가 403:420로 별 차이가 없었으나 후천성인 경우는 남녀비가 63:114로 거의 2배 가량 여자가 많았다. 연령별 분포로는 선천성에서는 5세 이하가 354례로 가장 많은 빈도를 보였고 최연소자는 생후 9일(4.0kg)에서 최고령자인 49세 가지의 분포를 보였다. 후천성에서는 40대 후반 가중 많은 빈도를 보였고 최연소 11세에서 최고령 64세 사이의 분포를 보였다(Table 1).

3) 질환별 분포

전체 중 선천성이 823례(82.3%) 후천성이 177례(17.7%)였으며 선천성인 경우는 비청색증군(cyanotic group)이 763례, 청색증군(cyanotic group)이 60례였다(Fig. 2).

선천성 비청색증군 중에는 심실중격 결손증(VSD)이 520례로 가장 많았고 다음으로 심방 중격 결손증(ASD)이 177례, 우심실 유출로 및 패동맥 혈착증(RVOT stenosis or pulmonic stenosis)이 27례, 심내막상 결손증(Endocardial cushion defect:ECD)이 17례 기타 22례를 잡하였다(Fig. 3).

Table 1. Age & sex distribution of patients

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>M</th>
<th>F</th>
<th>M</th>
<th>F</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>~5</td>
<td>187</td>
<td>167</td>
<td>0</td>
<td>0</td>
<td>187</td>
<td>167</td>
</tr>
<tr>
<td>6~10</td>
<td>85</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>11~20</td>
<td>91</td>
<td>97</td>
<td>6</td>
<td>10</td>
<td>97</td>
<td>107</td>
</tr>
<tr>
<td>21~30</td>
<td>29</td>
<td>39</td>
<td>19</td>
<td>24</td>
<td>48</td>
<td>63</td>
</tr>
<tr>
<td>31~40</td>
<td>8</td>
<td>21</td>
<td>15</td>
<td>35</td>
<td>23</td>
<td>56</td>
</tr>
<tr>
<td>41~50</td>
<td>3</td>
<td>6</td>
<td>16</td>
<td>29</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>51~</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>16</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>403</td>
<td>420</td>
<td>63</td>
<td>114</td>
<td>466</td>
<td>534</td>
</tr>
</tbody>
</table>

VSD군 520례 중 단순 VSD는 426례(81.9%)였고 89례(17.5%)는 PS, ASD, AR, PDA 등이 동반된 경우였다(Table 2).

ASD군 177례 중에는 단순 ASD는 146례(82.5%), 나머지 31례(17.5%)는 PS, MR, TR, PDA등이 동반된 경우였습니다.

Fig. 1. Annual number of open heart surgery

Fig. 2. Distribution of diseases

Fig. 3. Distribution of cyanotic heart diseases
(VSD: ventricular septal defect, ASD: atrial septal defect, PS: pulmonary stenosis, ECD: endocardial cushion defect)
다(Table 3).

PS군 27례 중에는 판막협착(Valvular PS)이 20례(74.1\%), 누두부 혐착(Infundibular PS)이 3래(11.1\%), 판막 및 누두부 혐착이 동시에 발생한 경우가 3례(11.1\%), 판막 및 판막상부 페동맥 혐착이 1례(3.7\%)였다(Table 4).

ECD(심내막성 결손증)군 12례 중에는 부분형(Partial ECD)이 12례(70.6\%) 완전형(Complete ECD)이 5례(29.4\%)였다(Table 5).

기타의 비정상성 증중에는 Valsalva sinus rupture(발상마 동 파열)이 7례, PDA(동맥관 개조증)이 5례, AS (대동맥 혐착증) 5례, Supravalvular aortic stenosis 2례, Valvular stenosis 2례, Subaortic stenosis 1례 등이 있었고, Unroofed coronary sinus syndrome(판상정맥동 친정 결손증) 1례 등이 있었다(Table 6).

선천성 청색증군 60례 중에는 TOF(벌로 4정상)이 52례 (86.7\%)로 대부분을 차지하였고, Ebstein 기형이 3례, DORV(양대혈관 우심실 기이증)이 3례, Complete TGA(완전 대 혈관 전위증)이 2례 등이었다.

TOF 중 ASD가 함께 동반된 Pentalogy 경우가 7례, PDA가 동반된 경우가 2례 등이 있었다(Table 7).

후천성 심장병 177례 중에는 판막질환이 168례(94.9\%)로 대부분을 차지하였는데 그 중 단일 판막질환이 102례 (60.7\%) 이상 판막질환이 55례(32.7\%) 삼중 판막질환이 11례(6.5\%)였다. 단일 판막질환 중에는 MX(동맥판 혐착 및 폐쇄부전증)가 61례로 가장 많았으며 MR(후방판 폐쇄 부전)이 14례, MS(항맥판 혐착증)이 9례, AR(대맥판 폐쇄부전증)이 4례, AX(대동맥판협착 및 폐쇄부전증)이 7례 등이었다. 이중 판막질환 중에는 MX+AR이 20례, MX+AX가 15례, MX+TR(삼심판막 폐쇄부전증)이 14례, MR+AX이 2례, MS+AR이 2례였다. 삼중 판막질환
Table 6. Other congenital heart group

<table>
<thead>
<tr>
<th>Diseases</th>
<th>No. of cases(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aneurysm of valsalva sinus + AR</td>
<td>1</td>
</tr>
<tr>
<td>Valsalva sinus rupture + VSD</td>
<td>6</td>
</tr>
<tr>
<td>Valsalva sinus rupture + VSD + AR</td>
<td>1</td>
</tr>
<tr>
<td>Corrected TGA + VSD, ASD, PS</td>
<td>1</td>
</tr>
<tr>
<td>Corrected TGA + VSD, PAPVD</td>
<td>1</td>
</tr>
<tr>
<td>AS(valvular, supravalvular)</td>
<td>4</td>
</tr>
<tr>
<td>Subaortic stenosis</td>
<td>1</td>
</tr>
<tr>
<td>A-P window</td>
<td>1</td>
</tr>
<tr>
<td>PDA</td>
<td>5</td>
</tr>
<tr>
<td>Unroofed coronary sinus syndrome</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 7. Cyanotic congenital heart diseases

<table>
<thead>
<tr>
<th>Diseases</th>
<th>No. of cases(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOF</td>
<td>52</td>
</tr>
<tr>
<td>OF only</td>
<td>40</td>
</tr>
<tr>
<td>TOF + ASD</td>
<td>7</td>
</tr>
<tr>
<td>TOF + ASD + PDA</td>
<td>1</td>
</tr>
<tr>
<td>TOF + ASD, Dextrocardia</td>
<td>1</td>
</tr>
<tr>
<td>TOF + PDA</td>
<td>2</td>
</tr>
<tr>
<td>TOF + PA aneurysm, absence of PV</td>
<td>1</td>
</tr>
<tr>
<td>Ebstein’s anomaly</td>
<td>3</td>
</tr>
<tr>
<td>TGA</td>
<td>2</td>
</tr>
<tr>
<td>DORV</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
</tr>
</tbody>
</table>

중에는 MX+AX+TR이 가장 많은 5례였고, MX+AR+TR이 3례, 그외 MR+AR+TR, MS+AR+TR, MX+TR+PR이 각각 1례씩 있었다 (Table 8).

후천성 질환 중 상기의 판막질환을 제외한 경우는 9례였는데 6례가 좌심방 혈관증(LA myxoma), 1례가 약성 성유양 조직구증(LA histiocytoma), 1례는 MVR 후 발생한 좌심방내 혈관증, 1례는 Marfan 증후군에 속발된 Annuloaortic ectasia였다(Table 9).

수술 소견 및 경과

개심술을 위한 체외순환시 사용한 인공 심폐기는 Sarns 7000 5-head roller pump였고 산화기(oxygenator)는 주로 bubble type을 사용하였으나 복잡기형이나 심장 판막질환 등과 같이 장기간 실장 정지가 필요한 경우에는 혈액 및 체액의 변화에 손상을 덜주는 membrane type의 산화기를 사용하였다. 심폐기에서 사용하는 촉진액(Priming solution)은 신선혈액 혹은 혈장, Hartman액, Mannitol액 등에 칼리움액(KCl, CaCl2, NaHCO3)을 섞어서 Hct를 25~30%로 유지하는 혈액회식법을 사용하였다. 거의 전례에서 정중 홍반 경화층이 개방하고 체외순환을 위한 동정맥판은 십행동맥, 상공정맥, 하공정맥에 각각 연결하고 좌심실 Vent는
우상폐경맥과 좌심방을 통하여 좌심실로 삽입을 주로 하였으나 필요에 따라 좌심실에 직접 연결하기도 하였다. 수술 중의 심근보호는 체외순환을 통한 전신적인 적혈분. Blanket을 이용한 표면적인 냉각, 얼음과 냉수를 이용한 직접적인 심장주기 십각법, 당寒된 심장지역의 판상동맥 관류를 통한 이환성 심장지 유방등을 이용하여 심장 동안에 심근손상을 최소화하려고 노력하였다. 지지대가 사 용한 심장지역은 5%D/W 1L 용액에 25% Albumin 100 cc NaHCO 3 8.4mEq, KCl 20mEq, Regular insulin 10unit, Betamethasone 100mg을 섞어 pH는 7.8, Osmolarity는 340 mOsm/L 되도록 직접 조제한 Modified GIK용액과 NaCl 109mEq/L, KCl 16mEq/L, CaCl 2.35mEq/L, MgCl 17 mEq/L, NaHCO 3 10mEq/L의 Crystalloid solution(심장지 역 1호)을 사용하였다(Table 11).

가) 선천성 비정상종군

VSD군 520명 중 341례(65.6%)는 Pledged 4~0 prolene 을 사용하여 단순 봉합하였고 결손부가 0.7~1cm이상인 경우나 결손공이 작아도 대동맥 판막에 인접한 high type 의 VSD인 경우는 수술 후 AR의 유방을 방지하기 위하여 Dacron포를 이용한 patch봉합을 시행하였는데 178례(34.4 %)를 절제하였다. 특히 AR의 동반된 경우의 VSD는 정도에 따라 판막기장습할(plication of prolapsing valve)을 시행했으나 경도가 심하여 기장술로는 충분한 판막기능을 유지하지 못할 것으로 생각된 경우에는 AVR을 동시에 시행하였 다. 그러한 AVR와 patch봉합을 동시에 시행한 경우는 5례가 있었다. PDA가 동반된 VSD에서는 십실기기동전 에 PDA를 먼저 결합하고, VSD를 치료하였다. VSD공 을 교정하기 위한 십장 전폐 방법은 주로 우심방 결제 후 십관을 통한 접근법을 사용하였으나 우심방 접근법으로는 시기적 충분치 않거나 high type의 VSD, 동반된 심장기 형의 유무에 따라 우심실 결합 및 대동맥 결제 방법도 변 변이 사용하였다. 수술 후 사망율은 6배로 1.2%였다.

ASD군 177례의 대부분이 148례(84.1%)는 단순봉합을 하였고 정동맥 결손중 28례를 포함한 28례(15.9%)에서는 patch봉합을 시행하였다 그리고 십합 MR을 동반한 경우 와 TR을 동반한 경우는 각각 ASD는 patch봉합과 동시에 MVR 및 TVR를 시행하였다. 수술 후 사망율은 2례 1%였다. PS군 27례 경우는 대동맥판 교란 경찰술 시행한 경우가 20례(71.4%) 우심실 누출부 주변을 심한 경우가 3례(11.1%), 양자 동시에 시행한 경우가 3례(11.1%)였고 상기의 방법으로도 우심실 유출로의 확장이 충분치 못한 4례에서는 우심실유출로 Patch봉합술을 2증(소 십합 + Dacron포)을 이용하여 시행하였다.

ECG 17례 중 5례는 완전형으로 습모판과 십관판의 cleft에 의하여 전후 common leaft를 형성하고 전 common leaflet이 습모판과 십관판 부분으로 구분되고 VSD공의 상 부 경계부분과 chordiae로 연결되어 있는 Rastelli A형 4례 와 papillary muscle로 연결된 Rastelli B형 1례였다. 습모 판의 cleft는 6-0 prolene사로 3~4cm 정도로 봉합 교정하고 VSD공은 Dacron포, ASDL공은 Bovine pericardium patch를 이용하여 별도로 폐쇄하였다. 부분형 12례의 MV의 cleft를 교정후 ASD공은 모두 Bovine pericardium patch를 사용하여 폐쇄하였다. ECD 중 3례(17.6%)가 사망하였다.

대동맥동 파열(Ruptured Valsalva sinus) 7례는 모두 트 른 형성한 우심실로 파열되어 있었으며, 파열된 동맥 류는 pledget 4-0 prolene으로 봉합하고 VSD공은 patch봉 합하였고, 그 중 1례는 AR을 동반하여 Carpentier-Edward tissue valve로 AVR를 시행하였다.

수정 대동관 전위증(Corrected TGA) 2례 중 1례는 VSD, ASD 및 십한 좌심실유출로 협착(Pulmonary ven-
tricle outflow stenosis)이 있던 경우로 ASD 공은 단순 봉합하고 VSD 공은 patch 봉합한 후 좌심실(Pulmonary ventricle)과 패동맥간 사이에 Valved conduit를 이용한 RVOT 재건술을 시행하였다.

나머지 1례는 RA 및 MV를 통하여 VSD공은 patch 봉합하였는데 수술 후 완전 방실착단이 초래되어 영구인공 심장 박동기를 심였다.

관상정맥동 천장결손증(Unroofed coronary sinus syndrome) 1례는 임차공행심방 중격결손증과 승모판의 cleft가 있는 부분형 ECD가 동반되었던 경우로 좌측 SVC가 좌폐정맥에 인접하여 개구하면서 관상정맥동의 천장이 결손 되어 있었다. 교정은 승모판의 cleft의 봉합 처리후 심방 내 baffle(Dacrorn포)를 이용하여 3개의 정맥공 즉 IVC, SVC, 좌측 SVC를 모두 우측심방폭으로 위치하도록 하여 ASD공 patch-봉합을 시행하였다.

선천성 대동맥(Aortic stenosis) 혈착증 5례 중 1례는 판막의 혈착으로 대동맥판 교란 철갑술을 시행하였고 나머지 3례는 대동맥판막 상부의 혈착경우로 Dacrorn포를 이용하여 판막상부를 넓혀 주었다. 1례의 Subaortic Stenosis는 패동맥을 통한 Stenotic Band의 결제로 잘 교정되었다. 수술전의 암력차 3례 모두 100 mmHg이상에서 30 mmHg 전후로 낮출 수 있었다. 이상과 같은 수술방법으로 시행한 선천성 비정상중군의 수술 후 사망은 12례로 1.6%의 사망율을 보였다 (Table 12).

Table 12. Operative method of congenital acyanotic group

<table>
<thead>
<tr>
<th>Diseases</th>
<th>OP. method</th>
<th>No. of cases(%)</th>
<th>No. of mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>Direct closure</td>
<td>341 (65.6%)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Patch closure</td>
<td>178 (34.4%)</td>
<td>4</td>
</tr>
<tr>
<td>ASD</td>
<td>Direct closure</td>
<td>148 (84.1%)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Patch closure</td>
<td>281 (15.9%)</td>
<td>-</td>
</tr>
<tr>
<td>PS</td>
<td>1. PV commissurotomy</td>
<td>20 (74.1%)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2. infundibulectomy(only)</td>
<td>3 (11.1%)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Both(1. + 2.)</td>
<td>3 (11.1%)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RVOT patch widening</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Valvotomy & RVOT patch</td>
<td>1 (3.7%)</td>
<td>-</td>
</tr>
<tr>
<td>ECD</td>
<td>complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>partial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valsalva sinus rupture + VSD</td>
<td>Direct closure of fistula + patch closure of VSD</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Aneurysm of valsalva sinus + AR</td>
<td>Annuloplasty of AV + direct repair of aneurysm</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>VSD subaortic stenosis</td>
<td>Direct closure of VSD + Resection of band</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>VSD AR + valsalva sinus rupture</td>
<td>Patch closure of VSD & AVR(Carpentier-Edward tissue 21 mm)</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ASD MR</td>
<td>Patch closure of ASD & MVR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cor-TGA + VSD, ASD, PS</td>
<td>Direct closure of VSD, ASD + pul. valved conduit grafit</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Cor-TGA + VSD, PAPVD</td>
<td>Direct closure of VSD</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Unroofed coronary sin syndrome</td>
<td>Intraatrial baffle patch</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>AS</td>
<td>valvular</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>supravalvular</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subaortic stenosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-P window</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDA(large)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AV commissurotomy</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Patch widening</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>resection of band</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Direct closure via PA</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Direct closure via PA</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>763</td>
<td>12(1.6%)</td>
</tr>
</tbody>
</table>

나) 선천성 청색증군

TOF군 52례 중 모두에서 중요 관상동맥을 피하여 우심실 질개를 가한 후 VSD공을 Dacron패치를 사용하여 불합하고 우심실 및 폐동맥 유출로 부위의 확장은 누두부 절체술 및 폐동맥판의 고려함을 동시에 우심실 유출로 패치 확장함 혹은 폐동맥판막을 지나 Transannular패치 확장술을 시행하였다. 각각의 시행은 26례, 24례씩이었고 후자즉 Tranannular 패치 확장술이 필요했던 경우에 사망례가 5례로 TOF사망의 대부분을 차지했으며 전체적인 TOF 사망율은 52명 중 7명이 사망하여 13.5%였다 (Table 13, 14). 우심실 유출로 확장의 정도는 Hegar확장기가 3세 전후에서 16호, 5세 이상에서는 18호 이상의 크기가 통과할 수 있도록 패치를 넣혀 주었다. 패치는 Dacron(바칼록)+소십강판판(산적)을 이용한 2중포를 사용하였다. 심실중격질손계 및 우심실 유출로 확장한 시행 후 심막동 및 혈압이 정상수준으로 돌아올 시점에 우심실 수축기 압력을 측정하여 대동맥 수축기압력과 비교해 보아 비율이 80%이하이고 우심실과 폐동맥사이압력차가 50mmHg이하인 경우에는 적절한 교정이 된 것으로 추정하였다.

Ebstein기형 3례 중 1례는 ASD공 패치를 단순봉합으로 가능하였고 2례는 소십강판판 패치 이용하여 불합하였다. 우심실폭으로 처쳐 존재하는 심침판막으로 인하여 생긴 Atrialized ventricle은 2~3 prolene with Teflon pledget을 이용하여 10배(건) 정도로 주름을 착아 plication 시행 후 교련부에 2~3치 정도의 Mattress suture를 넣어 심침판을 성형하였다. 심침판 성형후 Nolaton catheter로 이용한 re-attachment test를 시행하고 만족한 만한 상태가 되면 과도하게 거친 우심방 일부분을 제거한 후 수술을 종료하였으며 3례 중 1례가 사망하였다.

DORV 3례는 모두 우심실 종결개 후 Knitted dacron vessel을 장리서 VSD공과 대동맥판 사이에 tunnel식으로 패치하고 종결개한 우심실벽은 패치 확장을 하였으며 3례 중 1례가 사망하였다.

Complete TGA 2례는 VSD와 PS를 동반한 양배혈 TGA로 1례는 Rastelli술식을 이용하여 수술하였으나 숭후 2일로 저심박출증으로 사망하였고, 나머지 1례는 Modified Senning 술식으로 수술 시행 후 저심박출증으로 사망하였다. 선천성 청색증군 60명 중 총 11명이 사망하여 18.3%
의 사망율을 보였다(Table 13).

다) 후천성 심질환

177례 중 9례를 제외한 168례가 판막질환이었으며 판막의 변성 정도가 심하지 않고 성형수술로 판막보존이 가능하였던 8례를 제외하고는 모두 판막치환수술을 시행하였다. 대동맥판 치환술(AVR)은 16례, 습도판막 치환술(MVR)은 99례 있으며 20례에서는 MVR와 함께 AVR을 동시에 이중판막치환술을 시행하였고 15례에서는 MVR와 함께 심판막 치환술(TVA, De Vega식)을 시행하였고, 10례에서는 이중판막 치환술(MVR & AVR)과 함께 TVA(De Vega식)를 시행하였다. 전체적인 빈도는 MVR이 가장 많은 99례로 58.9%를 차지하였다(Table 15).

수술된 인공판막의 종류로는 기계판막(Mechanical valve)인 경우는 St. Jude Medical 판막, 생체조직판막(Tissue valve)인 경우는 Carpentier-Edward 혹은 Ionescu-Shiley 판을 사용하였으며 MVR에서는 St. Jude Medical판 66개, Carpentier-Edward 판 78개, Ionescu-Shiley 판 5개 등이 사용되었으며 AVR에서는 St. Jude Medical 판 38개 Carpentier-Edward 판 12개 사용되었다(Table 16).

치환된 판막의 크기는 (valve orifice size) MVR에서는 29, 31, 33 33 (AVR에서는 19, 21, 23 mm가 가장 많이 사용되었다. 특히 AVR 경우 Annulus가 작아서 19mm이상의 판막의 치환이 불가능하였던 1례에서는 패치로 annulus를 확장 후 21mm 판막을 치환하였다(Table 17).

판막질환을 제외한 후천성 심질환이 9례였는데 양성 종양성 채혈방 전이액(LA myxoma) 6례 및 양성 종양성 성실 방 섬유성 조직구증(LA histiocytoma) 1례등은 모두 유심방, 심방중격을 통하여 좌심방 바로 도달하여 중앙을 치환하였으며 MVR(St. Jude Medical valve) 후 생긴 좌심방 혈전도 판막치환 없이 혈전만 간단히 제거할 수 있었던 경우였다.

그의 Marfan증후군에서 발생한 대동맥 및 판막의 변성으로 인한 Annuloaortic ectasia 경우 1례에서는 Bjork-Shiley 기계판이 붙어진 Valved conduit를 이용하여 비정상적으로 확장된 상행대동맥 및 대동맥판막을 동시에 치환하는 Bentall술식으로 치료하였다. 후천성 심질환 177례 중 수술로 인한 조기 사망은 6례로 3.4%였으며 그 중 판막질환에서 5례 좌심방 전이액 중 1례가 각각 사망하였다.

라) 합병증 및 결과

총 1,000례 중 가장 많은 합병증으로는 창상감염 40례 (4.0%) 저심방출혈 34례(3.4%) 부정맥 27례(2.7%), 녹막 삽입 및 기흉 16례(1.6%) 등이 있었고 완전 방실차단(complete A-V block) 3례에서 영구 인공심방동기볼을 부착

Table 15. Operation of acquired valvular heart diseases

<table>
<thead>
<tr>
<th>Operation</th>
<th>No. of cases</th>
<th>No. of mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVR</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>MVR</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>MVR + AVR</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>MVR + TVA</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>MVR + AVR + TVA</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>OMC</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>MVA</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>168</td>
<td>5 (3.0%)</td>
</tr>
</tbody>
</table>

Table 16. Implanted artificial valves

<table>
<thead>
<tr>
<th>Valve type</th>
<th>Operation</th>
<th>MVR</th>
<th>AVR</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Jude Medical</td>
<td>66</td>
<td>38</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Carpentier-Edward</td>
<td>78</td>
<td>12</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Ionescu-Shiley</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>149</td>
<td>50</td>
<td>199</td>
<td></td>
</tr>
</tbody>
</table>

MVR: mitral valve replacement, AVR: aortic valve replacement

Table 17. Size of implanted artificial valves

<table>
<thead>
<tr>
<th>valve type/size (mm)</th>
<th>25</th>
<th>27</th>
<th>29</th>
<th>31</th>
<th>33</th>
<th>35</th>
<th>total</th>
<th>19</th>
<th>21</th>
<th>23</th>
<th>25</th>
<th>27</th>
<th>29</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Jude Medical</td>
<td>2</td>
<td>3</td>
<td>14</td>
<td>25</td>
<td>21</td>
<td>1</td>
<td>66</td>
<td>5</td>
<td>15</td>
<td>18</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>38</td>
</tr>
<tr>
<td>Carpentier-Edward</td>
<td>2</td>
<td>14</td>
<td>32</td>
<td>18</td>
<td>11</td>
<td>1</td>
<td>78</td>
<td>4</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Ionescu-Shiley</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>17</td>
<td>47</td>
<td>46</td>
<td>32</td>
<td>2</td>
<td>149</td>
<td>10</td>
<td>15</td>
<td>18</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>

MVR: mitral valve replacement, AVR: aortic valve replacement
하였다 (Table 18).

상기의 합병증들은 증상자실에서의 심장적인 치료와 적절한 대책으로 대부분 극복되었으나 저심박출증 (low cardiac output syndrome)의 합병증은 23례, 폐부종 2례, 부정맥으로 인한 심장마비 2례, 심장가능 1례, 급성 간부전 1례 등 총 29례가 수술 후 사망하였으며 총 수술에 대한 조직사망율은 2.9% 였다 (Table 19).

고 참

1953년 Gibbon이 인공 심폐기를 사용하여 젊은 여성의 ASD 교정 수술을 성공적으로 시행함으로써 개심술이 시작된 이래, 전자적인 의학기술의 발달, 마취과학 및 약제의 발달, 인공 심폐기들의 개량, 수술중의 심장 근육 보호법의 개선, 증상자실에서의 수술 후 환자 처치방법의 진보 등으로 개심술도 비약적인 발전을 이룩하였다. 개심술을 시행하기 위해서는 심장내 방사로 접근하기 위하여 박동이 법 준 정지 심장상태가 필수적이며 이러한 심장정지 상태로의 심장근육보호가 수술 후 환자 회복 및 예후를 결정하는데 많은 영향을 미친다. 이러한 심장정지 시간동안의 심근보호법은 1970년대 후반까지는 대등액을 차단후 30 분마다 다시 대등액 차단을 끝 다음 일시적으로 간상대류로의 혈류를 재개동 시키는 방법을 사용하였으나 심근 보호도 충분치 못하였고 시행방법의 변형으로, 수술시야의 흐린한 등이 지적되어 왔다. 그 후 대등액 차단과 함께 전신적, 국소적, 근 처방 등, 납작한 심장지역의 주입법의 방법이 개발되어 심근보호에 획기적인 전기를 가져왔다고 할 수 있다. 대등액 기시부에서의 심장지역의 간상대류로의 주입방법이 개발된 이후 심장지역의 계반 및 발달은 개심술 성공성에 큰 영향을 미쳤다. 이러한 심장지역은 주로 고농도의 K+ 용액을 함유하고 있으며 초창기에 파심실에 유해한 영향을 준다고 생각하여 미국등에서는 사용하지 않았으나 유럽의 Brethescher, Kirsh, Hearse 및 Gay와 Ebert에 의하여 심장지역의 심근보호 능력이 입증된 이후로 전체적으로 보편적인 사용이 이뤄졌다.

심장지역의 구성요인으로써는 촉각적인 심장지역을 유발할 수 있는 K+, Mg2+ 등의 함유, 납작한 용액 (10–20°C), substrate로서 O2, glucose, glutamate 등의 함유, Buffer로서 적절한 pH 유지를 위해 THAM, bicarbonate, phosphate, 세포막 안정 (membrane stabilization)을 위한 Ca++, steroid, Ca2+ antagonists 등의 함유된 용액으로 이뤄져 있다.

본 교실에서 사용하는 심장지역은 초기에는 GIK (glucose-insulin-potassium) 용액으로써 glucose 50 g/L, KCl 20 mEq/L, NaHCO3 8.4 mEq/L, regular insulin 10 unit/L를 함유하여 적절한 pH와 osmolality를 유지하기 위하여 25% Albunin과 NaHCO3를 혼합하고 세포막의 안정효과를 얻기 위한 부신피질 호르몬 (Betametasone)을 첨가하여 pH 7.8, Osmolality 340 mosm/L를 맞춘 투여에서 사용하다가 1991년 3월 이후 332례에 NaCl 109 mEq/L, KCl 15 mEq/L, CaCl2 2.35 mEq/L, MgCl2 17 mEq/L, NaHCO3 10 mEq/L을 함유한 Crystalloid solution (심장지역 1호)를 사용하였다. 심장지역을 위한 최적 수입량은 30mL/kg이며 이후로는 수술중 30분마다 최 적 수입량의 반을 제차 주입 하여 수술을 시행하였다. 요즘은 과도한 양의 심장지역의 주입으로 인한 혈액학적 등의 영향을 방지하기 위하여 20–30%의 Hct를 유지하고 KCl, glucose, THAM 등을 함유한 혈액 심장지역 (Blood cardioplegia)도 많이 사용하고 있는바 이의 장점으로써는 심장지역 동안에도 계속적으로 간상대류에의 산소공급가능, 재판류시의 심장손상방지, 혈액학적 예방등도 들 수 있다.

심장질환의 발전시 수술시기를 언제로 하느냐가 중요한 요소로의 하나로 간혹 신진성 심심종종 결손증에서 작은 결손구멍인 경우에는 5–6세 전까지 30–50% 정도에서 자연적인 치유가 보고되고 있기도 하며 (Table 19) 대부분의 경우

<table>
<thead>
<tr>
<th>Table 18. Postoperative complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complications</td>
</tr>
<tr>
<td>Wound infection</td>
</tr>
<tr>
<td>LCOS: heart failure</td>
</tr>
<tr>
<td>Arrhythmia</td>
</tr>
<tr>
<td>Pleural effusion, Pneumothorax</td>
</tr>
<tr>
<td>Salmonellosis, typhoid fever</td>
</tr>
<tr>
<td>Respiratory failure, lung edema</td>
</tr>
<tr>
<td>Postoperative bleeding</td>
</tr>
<tr>
<td>Pneumonia</td>
</tr>
<tr>
<td>Hepatic failure, hepatitis</td>
</tr>
<tr>
<td>Pericardial effusion</td>
</tr>
<tr>
<td>Postpericardiotomy syndrome</td>
</tr>
<tr>
<td>Phrenic nerve paralysis</td>
</tr>
<tr>
<td>Others</td>
</tr>
</tbody>
</table>

LCOS: low cardiac output syndrome

<table>
<thead>
<tr>
<th>Table 19. Postoperative hospital mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>Congenital</td>
</tr>
<tr>
<td>Acyanotic</td>
</tr>
<tr>
<td>Cyanotic</td>
</tr>
<tr>
<td>Acquired</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
의 선행성 심장활에 있어서는 임상증상과가 없거나 경미하더라도 성장함에 따라 언제든지 발생할 수 있는 심실부전, 2차적인 심실심질 및 전신검사, 폐동맥의 변화 등을 미연에 예방하기 위해서는 학습기 위에 수술적 교정을 하는 것이 좋다고 한다. 선행성 정맥십자성 막막기형 경우에는 또한 경련과 치료가 어려워지지 않으면 출생 및 생식기기에 거의 반수가 사망하게 되고 생존한 경우에도 심부전 및 탄력성 저하의 합병증으로 인하여 양아기 이전에 상당수가 사망하게 된다. 그러므로 일단 선행성 심장질환이 의심되는 경우는 심장조절과 검사 및 적극적인 심도자 검사법 등으로 진단을 하기 전에 그에 따른 고식적인 혹은 균질적인 수술방법 및 시기를 놓치는 것이 중요하다. 심한 저산소증으로 인하여 청색증이 심해지는 경우는 prostanlaidin E의 주사가 기존의 심방중격 결손의 음극 확장 혹은 고식적인 전과 진단을 이용한 shunt수술 등이 필요하기도 한다. 폐로부터 과도한 혈류로 인한 올형성 심부전이 진행된 경우는 수술 전 안정요법 영문 및 수액의 제한 공급, 이뇨제 및 digitalis 두여등의 약물 요법으로 어느 정도 심부전 증상을 완화시킨 후 수술하는 것이 수술 후 경과 및 예후에 좋은 영향을 미친다.

심방증격 결손중(VSD)은 선행성 심장질환 중 가장 많은 반도를 보이고 있으며 Mitchell 등은 전체의 25%를 점한다 하였고, 그 중 단독으로 VSD가 존재하기도 하나 20~50%에서 동반기형이 존재한다고 하였는데,5,11) 있으며 본 교실에서도 약 17.5%에서 다기형이 동반되어 존재하였다. VSD수술시 심장 전개방법은 우선방, 후방방, 폐동맥, 좌심실경계 등의 방법이 있으나 수술 후 심박출의 능력에 지장을 줄 수 있는 심실의 전개보다는 우선방 전개 후 심장판을 들어올리거나 전개 후 구멍을 폐쇄하는 방법이 좋은 것으로 알려져 있으며,11) 우선방 전개로 충분한 시야를 확보하지 못하거나 근육성 결손 및 폐동맥 직하부 결손인 경우 등에는 우선결과 폐동맥의 전개 등도 별반히 사용되어도 한다. VSD 결손의 병변은 결손의 크기, 위치, 형태에 따라 직접 pledget된 prolene사로 통합하거나 Dacron 혹은 Teflon포를 이용하여 통합한다. 대개의 기준은 0.5~1.0cm 전개 후에 결정하는데 주의가 필요한 연관성과 수술 후 재가실성의 가능성을 생각하여 결정한다. 특히 Kirklin형의 high VSD인 경우에는 인접한 동맥막판에 영향을 줄 수 있으므로 되도록이면 폐쇄를 사용한 통합이 좋다고 하였다. 심방증격 결손중(ASD)에서는 대부분 이차공형결손(ostium secundum defect)으로서, 나머지는 실방증격의 탄력성으로 쉽게 단순통합이 가능하다. 정맥동 형 결손(sinus venosus defect), 일차공형 결손(ostium prim-

--- 291 ---
전체 TOF 수술에 52례 중 우심실 쪽만 확장한 경우가 26례, 우심실을 각각 좌우동맥까지 넓혀준 경우 (Transannular patch)가 24례 있었다.14)

본교실에서는 기계판막으로는 St. Jude Medical판, 생체조직판막으로는 Carpentier-Edward 및 Ionescu-shiley판을 사용하였으며 아직 판막자체의 결합으로 인한 문제점은 없었다.15, 16)

심장에 생기는 종양의 75%는 양성으로서 그 중에서도 점액종(Myxoma)이 절반을 점하고 있다. 그 외 치방종 (lipoma), papillary fibroelastoma, 혈관종(hemangioma) 등이 있다. 악성종양은 드물고 주로 성인에서 호발하여 angiosarcoma, rhabdomyosarcoma, mesothelioma, fibrosarcoma 등의 순으로 발생한다고 한다.17)

저자는 모두 7례의 심장 종양을 경험하였는데 악성 섬유성 조직구종(malignant fibrous histicyoma) 1례를 제외한 6례가 모두 좌심방에 발생한 점액종이었다.18)

국내에서 1959년 최초로 개심술이 시행된 이후 1960년 10년간은 154명, 1970년대에 10년간 1,865명 1980년대 이후 11년간 26,704명을 수술하여 1990년까지 전체 심장혈관수술 건수는 28,724명이었고 수술성공률 초기에는 70%정도 였으나 최근 10년간에는 95.7%를 보여 일등한 항상을 보이고 있다.19)

저작자들의 경우에서도 1,000례 중 총 29례가 사망하여 2.9%의 사망률을 보였다.

결론

인체 대학교 부속 부산 병원 흉부외과에서 1985년 9월 첫 심장수술이후 1992년 12월까지 7년 3개월 동안 시행한 1,000례에 관한 증례 점검 및 수술결과에 대하여 다음과 같은 결론을 얻었다.

1. (17.7%)였으며 심전성인 경우 비침식층증이 763례 (92.7%) 척추증증이 60례 (7.3%)였다.
2. (7%) 척추증증이 60례 (7.3%)였다
3. (15.5%)로 49례 (5.4%)로 가장 많은 수술 점검되었으며 4kg가 가장 적었으며 후천성은 11례에서 64례에 주로 40례 전후가 가장 많은 비율을 보였다.
4. (21.5%)로 52례 (7.3%) PSQ 27례 (3.3%) ECD 17례 (2.1%) Ebstein 복합 3례 (0.4%), DORV 3례 (0.4%), 대동맥좌판절 7례 (0.9%), TGA 4례 (0.5%). 외기기 질환들이 있었으며 각각에 적절한 근처수술을 시행하였다.
5. (25.6%)으로 168례 (94.9%), 심장종양이 7례, 좌심방 혈전 및 Annuloaortic ectasia가 각 1례씩 있었다. AVR은 16례, MVR는 99례 있으며 20례에서는 MVR과 함께 AVR를 동시에 이중 판막치환술을 시행하였고 15례에서는 이중 판막치환술과 함께 TVA(De Vega 식)로 병합하였다. 심장내 종양은 모두 좌심방에 위치하였으며 우심방 및 심방증기를 통하여 제거하였으며 Annuloaortic ectasia 경우는 인공판막을 달린
인조 대동맥 graft로 대치하는 Bentall 술식을 사용하였다.
5. 사용된 인공판막의 종류는 기계판막인 St. Jude Medical
판이 104개, 생체조직판막이 Carpentier-Edward판 및
Ionescu-Shiley판이 각각 90개, 5개씩 사용되었다.
6. 수술 후 합병증으로는 창상감염(40례), 저심박출증(34
례) 부정맥(27례), 수축 및 기종(16례), 혈흉부전증(11
례), 출혈(11례) 등이 있었고 숭후 조기 사망은 전체성
에서 23례(2.8%) 후천성에서 6례(3.4%)로 전체사망은
1,000례중 29례로 2.9%였다.

References
1. 조광현, 우종수, 황윤호 등. 개심술 40례. 부산시의사회지
1986;22:35-53
2. 조광현, 우종수, 이양행 등. 개심술100례의 임상경험. 부산시
의사회지 1987;23:4-28
3. 조광현, 우종수, 박정호 등. 년간(1987년)개심술 110례에 관한
검토. 대평지회 1988;21:351-65
4. Roe BB, Hutchinson JC, Fishman NH, et al. Myocardial pro-
tection with col ischemic, potassium induced cardioplegic solu-
5. Hearse DJ, Stewart DA, and Brainbridge NV. Myocardial pro-
tection during ischemic cardiac arrest. J Thorac Cardiovasc
Surg 1978;75:877-89
by intermittent perfusion with cardioplegic solution versus in-
termittent coronary perfusion with cold blood. J Thorac Cardio-
asc Surg 1978;76:158-61
Incidence, Morbidity and mortality in various age groups. Br
Heart J 33(Suppl)1971;81-96
8. Hoffman JIE, Rudolph AM. The natural history of ventricular
septal defect in infancy. Am J Cardiol 1965;16:634-42
9. Alpert BS, Mellis Ed, Rowe RD. Spontaneous closure of small
10. 성숙한, 서영철, 성실증격질손증의 외과적 고찰. 대평지회 1982;
15:90-7
11. 조규식, 강병철, 김윤 등. 심실증격질손증에 대한 임상적 고찰.
대평지회 1978;11:46-57
12. 류지웅, 황윤호, 조광현. 심내막상질손증 치험 5례. 대평지회
1988;21:574-82
13. 조광현, 황윤호, 류지웅 등. 관상정맥동 칼장질손증 치험 1례.
대평지회 1989;22:655-60
14. 조광현, 황윤호, 이양행 등. 판로4단층의 근처수술에 관한 임상적
고찰. 대평지회 1991;24:674-84
15. 조광현, 심장판막질환 수술치료에 관한 임상적 고찰. 인제의학
1989;10:115-128
16. 조광현, 황윤호, 이양행 등. St. Jude Medical판을 이용한 심판
막치환술의 성적. 대평지회 1992;25:296-306
17. McAllister HA Jr, and Fenogliok JJ Jr. Tumors of the Cardio-
vascular System, Armed Forces Institute of Pathology, Wash-
ington DC, 1978
18. 류지웅, 조광현, 이정순 등. 심장내 약성 섬유성 조직구종. 대평
지회 1989;22:297-304
19. 박철호, 류지웅, 조광현 등. 좌심방질손증(2례보고). 대평지회
20. 서정선, 채머리예,서정선, 김형목, 순광헌 등:최신 흉부외과학
1판. 서울:고려의학, 1992;iii