Descending Aorta Index and Pulmonary Artery Index in Infants: Comparison between Atrioventricular Septal Defects, At ial Septal Defects and Ventricular Septal Defects

안재호* · Christopher J. Knott-Craig** · Ronald C. Elkins**

=국문초록=

심방실 중격 손절중에서의 하행대동맥, 폐동맥 지수

Jae I > Ahn, M.D.*, Christopher J. Knott-Craig, M.D.**, Ronald C. Elkins, M.D.**

심방실 중격·손절 환아의 하행 대동맥이 십혈관 조영상에서 작게 보이는 원인을 규명하기 위하여 혈액학적 관용 등을 조사하였다. 1세 미만의 심방실 중격 손절중으로 Oklahoma University Health Sciences Center에서 수술 치료를 받았던 34명의 십혈관 조영상을 좌우 단락의 비가 비슷한 10명의 심방 손절 중격 및 10명의 심실 중격 손절중 환아들과 비교한 결과 하행 대동맥 지수(DAI)는 십혈관에 차이를 보이지 않았지만(147.9 ± 34.8 mm²/m² 및 158.6 ± 15.5 mm²/m², 153.2 ± 43.1 mm²/m²), 폐동맥 지수(PAI)에는 있어서는 심방실 중격 과 동맥 환아에서 훨씬 크게 나타나고 있었다 (684.3 ± 170.7 mm² 및 454.1 ± 109.1 mm²/m², 534.9 ± 148.4 mm²/m²) (p < 0.05). 또한 폐동맥압 및 폐혈관 저항에 있어서도 심방실 중격 손절 환아에서 높게 나타나고 있다(43.1 ± 15.6 mmHg 및 29 ± 11.6 mmHg; 24 ± 8.1 mmHg) (0.27 ± 0.22 및 0.14 ± 0.03, 0.11 ± 0.05) (p < 0.05). 즉 심방실 중격 손절 환아에서 십혈관 조영상의 작게 보이는 하행 대동맥은 다른 십혈관에 비해 훨씬 큰 폐동맥에 의한 착시적 담임을 알 수 있었다.

(Korean J Thoracic Cardiovasc Surg 1993; 26:591-4)

중심 단어: 심방실 중격 손절중, 하행 대동맥 지수, 폐동맥 지수

INTRODUCTION

Infants with atrioventricular septal defect (AVSD) usually have excessive pulmonary blood flow resulting in uncontrollable cardiac failure and rapidly progressive pulmonary vascular obstructive disease (PVC). Primary repair is therefore advocated within the first year of life to reduce the exposure time of the pulmonary vasculatures to the systemic pressure environment.

* Department of Thoracic & Cardiovascular Surgery, Chungbuk National University Hosp al, Medical College
** Section of Thoracic Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, U.S.A

In our preoperative angiographic evaluation of infants with AVSD, we observed that the descending aorta often appeared unusually small. This observation prompted us to review the angiographic data on our patients with AVSD, and compare them to patients with excessive pulmonary blood flow due to other congenital heart defects. The results of this investigation forms the basis of this manuscript.

PATIENTS AND METHOD

From May 1985 to April 1992, 43 consecutive infants under 1 year of age underwent primary repair of complete AVSD at the Children’s Hospital of Oklahoma University. In 34, cardiac catheterization and cineangiographic data
Table 1. Preoperative cardiac catheterization and cineangiographic data in infants with AVSD, ASD and VSD:

<table>
<thead>
<tr>
<th></th>
<th>DAI (mm²/m²</th>
<th>PAI (mm²/m²)</th>
<th>PAI/DAI</th>
<th>PAP (mmHg)</th>
<th>Rp/Rs</th>
<th>Qp/Qs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVSD</td>
<td>147.9 ± 34.8</td>
<td>684.3 ± 170.7</td>
<td>4.99 ± 1.77</td>
<td>43 ± 15.6</td>
<td>0.27 ± 0.22</td>
<td>3.4 ± 1.5</td>
</tr>
<tr>
<td>ASD</td>
<td>153.2 ± 43.1</td>
<td>534.9 ± 148.4*</td>
<td>3.6 ± 0.92*</td>
<td>24 ± 8.1*</td>
<td>0.11 ± 0.05*</td>
<td>3.4 ± 1.1</td>
</tr>
<tr>
<td>VSD</td>
<td>158.6 ± 31.5</td>
<td>454.1 ± 109.1*</td>
<td>2.89 ± 0.81*</td>
<td>29 ± 11.6*</td>
<td>0.14 ± 0.0</td>
<td>3.3 ± 1.2</td>
</tr>
</tbody>
</table>

AVSD: atroioventricular septal defect, ASD: secundum type atrial septal defect, VSD: perimembranous ventricular septal defect, DAI: descending aorta index, PAI: pulmonary artery index, PAI/DAI: ratio of PAI to DAI, PAP: pulmonary artery pressure, Rp/Rs: pulmonary to systemic vascular resistance ratio, Qp/Qs: intracardiac shunt ratio

* means p < 0.05

were available for review, and these constitute the AVSD study group. None of these patients had other significant associated cardiac disease, and neither did have any left ventricular outflow tract obstruction. The patient cohort included both Down’s (n = 18) and non-Down’s (n = 16) patients.

For comparison, we identified 10 patients from the same time period with isolated perimembranous Ventricular Septal Defects (VSD), and 10 with secundum-type Atrial Septal Defects (ASD), who were matched for age, size, and pulmonary blood flow.

The catheterization data and cineangiograms of all these patients were reviewed by one of us (JHA), and the collected data entered in a single data base.

Measurements of Aorta and Pulmonary Arteries:

Using the preoperative angiograms, the aorta was measured at the level of the diaphragm, and both right and left pulmonary arteries at the level of their first lobar branches; these measurements were made during systole, corrected for magnification, and recorded. The cross-sectional area was then calculated, summed in the case of the pulmonary arteries, and indexed to the patient’s body surface area. This was recorded as the descending aortic index (DAI), and the pulmonary artery index (PAI) respectively. The ratio of PAI to DAI (PAI/DAI) was also calculated and recorded.

All data were expressed in terms of mean ± standard deviation. The data were compared using the Student T-test, and Fisher’s exact test. Correlations were done using Pearson’s correlation coefficient. Comparisons were considered significant at a p-value of < 0.05.

RESULTS

The DAI of the infants with AVSD was 147.9 ± 34.8 mm²/m², similar to those of the patients with VSDs (158.6 ± 31.5 mm²/m²), and to those with ASDs (153.2 ± 43.1 mm²/m²) (P = NS), refuting the observation that the descending aorta in patients with AVSD was smaller compared to other patients with similar left-to-right intracardiac shunts. However, the pulmonary artery size (PAI) in the AVSD patients (684.3 ± 70.7 mm²/m²) was significantly larger than the VSD patients (454.1 ± 109.1 mm²/m²) and 534.9 ± 148.4 mm²/m² respectively (P < 0.05). The PAI/DAI ratio was correspondingly also larger (4.99 ± 1.77 versus 2.89 ± 0.81, 3.6 ± 0.92) (P < 0.05). These measurements suggest that the apparent descending aortic hypoplasia in infants with AVSD stemmed from the fact that the pulmonary arteries are significantly larger than the comparable groups, creating this illusion. These data are summarized in Table 1.

Although the Qp/Qs amongst the AVSDs, VSDs, and ASDs groups were alike, identical (3.35 ± 1.49 versus 3.28 ± 1.18, 3.37 ± 1.14), b this mean PA pressure and vascular resistance ratio (Rp/Rs) in the AVSD group was significantly higher than he other groups: 43 ± 15.6 mmHg versus 29 ± 11.6 mmHg, 24 ± 8.1 mmHg (p < 0.05), and 0.27 ± 0.22 versus 0.1 ± 0.03 and 0.11 ± 0.05 (p < 0.05) respectively, suggesting that the pulmonary vascular resistance is more rapidly progressive, and at an earlier age in patients with AVSD.

When we plotted the relationship between PA pressure and PA Index, we found a close correlation (r = 0.48, p <
0.01, CL > 95%) only in the AVSD group (Fig 1), but not in the VSD or ASD groups.

DISCUSSION

In order to evaluate the size of the great arteries from angiograms in our analysis, we needed to select reference points from which comparisons could be made. In the past there have been many attempts to standardize the measurement of aorta and pulmonary artery size in order to make these comparison more legitimate. The PAI is currently used to describe pulmonary artery size in other cyanotic congenital heart defects and the DAI evolved as the logical extension thereof: the premise of relating the pulmonary artery size to that of the descending aorta is well established. Use of the PAI, DAI and PAI/DAI ratio, allowed us to resolve the clinical question is the descending aorta really small in patients with AVSD?

Abstract

Descending Aorta Index and Pulmonary Artery Index in Infants:
Comparison between Atroventricular Septal Defects, Atrial Septal Defects and Ventricular Septal Defects

Jae Ho Ahn, M.D.*, Christopher J. Knott-Craig, M.D.*, Ronald C. Elkins, M.D.*

To clarify the apparent hypoplasia of the descending aorta in infants with atrioventricular septal defect (AVSD) patients, we reviewed the catheterization data and angiograms of 34 consecutive patients with AVSD less than 1 year of age who underwent repair at our institution since 1985. We compared them to 10 patients with Atrial Septal Defect (ASD) and 10 patients with Ventricular Septal Defect (VSD) who were matched for age, size and Qp/Qs. The Descending Aorta Index (DAI) of the AVSD group was not different from the VSD or ASD groups (147.9 ± 34.8 mm²/m² versus 158.6 ± 31.5 mm²/m² and 153.2 ± 43.2 mm²/m²). However, the Pulmonary Artery Index (PAI) of the AVSD group was significantly larger than the other groups (684.3 ± 170.7 mm²/m² versus 454.1 ± 109.1 mm²/m² and 534.9 ± 148.4 mm²/m²) (p < 0.05), as was the ratio of PAI/DAI in the AVSD group (4.99 ± 1.77 versus 2.89 ± 0.81 and 3.6 ± 0.92) (p < 0.05). Despite similar Qp/Qs ratios, both the mean PA pressure and the Rp/Rs in the AVSD group was higher than the VSD and ASD groups: 43.1 ± 15.6 mmHg versus 29 ± 11.6 mmHg and 24 ± 8.1 mmHg (p < 0.05), and 0.27 ± 0.22 versus 0.14 ± 0.03 and 0.11 ± 0.05 (p < 0.05) respectively.

The apparent hypoplasia of the descending aorta in infants with AVSD is an illusion created by the abnormally large pulmonary arteries, which are significantly larger than in patients with ASDs or VSDs.

Key words: Descending Aorta Index (DAI), Pulmonary Artery Index (PAI), Atrioventricular Septal Defect (AVSD)
aorta in infants with AVSD is no different from that of comparable patients with large intracardiac shunts; however, the pulmonary arteries are significantly larger both relative to the descending aorta and in absolute terms. They are also significantly larger than comparable patients with ASDs and VSDs. The significance of this observation is unclear at present, and merits further investigation. These results understandably differ from those which compare the size of the ascending aorta to that of the pulmonary arteries, since the latter is more closely affected by intracardiac hemodynamics.

Jarmakani has previously shown that pulmonary artery size correlated better with pulmonary artery pressure rather than with pulmonary blood flow. Our data supports this conclusion but in patients with AVSD (fig. 1). We could find no useful correlation in the patients with either ASD or VSD.

Higher pulmonary vascular resistance, and earlier and possibly more progressive PVO2 in the AVSD group compared to the ASD or VSD patients, may account for these observations. If true, this should further encourage the referral of patients for primary surgical correction of AVSD at an earlier age, preferably within the first six months of life.

References