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1. Introduction

Recently, the chaotic behavior has been
exhibited by an strange attractor'” on
phase space in a dissipative dynamic sys-
tem. Strange attractors are typically
characterized by a non-integer exponent
called fractal dimension”. Considering an
infinite set of fractal dimensions, we can ex-
tend to the distribution of a kind of singu-
larity of the measure associated with mul-

4-6)

tifractals”® and the important property of

multifractals has a spectrum of scaling ex-

ponents.

The concept of multifractals has been in-
troduced by Paladi et al”. realizing that the
moment scaling exponents can be related
to the scaling of probability distribution of
the singularities. The multifractal object
can be regarded in this approach, further
developed by Halsey et al”. Until now. mul-
tifractals have appeared in a large field of
physical problems, such as chaos in dynam-
ic system. turbulence., percolating “luster
and their

aggregationg'g),

backbones. diffusion-limited

random resistor networks,
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and mass multifractals'®.

In the general case of chaotic behavior,
the generalized dimensions D, is deriv-
ed as

D,=(1-n) " (na(n) - f(a(n))) (1

In eq.(1) D, shows a measure of inhomo-
geneity in the probability distribution on
the attractor, and the measure on the at-
tractor has described by the interwoven
sets with the fractal dimensionality f(a).

The principal purpose of this paper is te
carry out by both analytical and numerical
techniques on the generalized dimensions
D, and the fractal dimensionality f{e) in
the mode-locking phenomenon and the dis-
sipative trajectory for a dissipative stan-
dardlike map of Wilbrink'*'®.

This paper is organized as follows. In
Sec.2 we describe the formula related
between D, and f(@). In Sec. 3 the values of
D, and f(@) will be estimated and discuss-
ed for a special example of dissipative Wil-
brink map. In Sec. 4 a brief discussion and
summary will be given.

2. Generalized dimension and
fractal dimensionality

Concentrating on the probaility for points
of strange attractors falling within i-th box
of size ! in a phase space, this probability
can be described as

P()=1" @2

where the scaling exponents « takes a.;,<
a<a,,. for small . If the system is divided
into pieces of size I, one finds the number
of times, N.(I), falling in interval of size da
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via
N.())=dap(a)l " (3)
The fractal dimensionality f(@) can be in-
terpreted as the dimensions of the subsets
with scaling exponent «. Now we can relate
f(@) to the partition function I'(n, 1), ie.,

the moments of probability P;(I). Following
eqgs. (2) and (3) one has

I(n)=<p(1)">cfdo dp=~@ (4)

We have showed a set of generalized scal-
ing exponents :

I =<p()">=<m"> (5)

So that we estimate P;(I) as the inverse
recurrence time, m;"', and find by eq.(2)

a=-lnm/Inl (6)

Also, the partition fuction of eq.(4) for {
<1, is given by a power [,

I(nl)ocl™™ (7

The quantity t(n)'" is related to the gen-
eralized dimensions via Legendre transfor-
mation relation

t(n)=(n-1)D, (8)

It then follows from eq.(4) and eq.(8)
that

(n-1)D,=[na(n) - fla(n))] (9)

Thus, if we know f(a@), then we can find
D, and. alternatively. given D,. we can find
a(n) by the relation

a(n) =§—[<n - 1)D,] (10)
n
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3. Fractal dimensionality
for Wilbrink map

Wilbrink'® has studied the special case of
a two-parameter standard map as

rn+1:brn+kg(6n)
6"+1:6"+Q+rn+1 (11)

where

( sin(2‘n’.9n)) (12)

V142 .
g(8,)=- arcsin
V1+z

2

This map is among the standard map for
the area-—preserving case, b=1, and it
reduces the sine—circle map for the infinite-
ly dissipative case, b=0. In case of b=1,
In the case of b=1, Wilbrink has found
that the invariant circles can reappear for
small value 2. This case is in contrast to
the standard map where there is no reap-
pearance of invariant circles. Kim and Hu
' has studied the transition between the
conservative and dissipative cases by vary-
ing the dissipative parmeter from b=0 to b
=1. They have shown the breakup of an in-
variant circle whose rotation number is the
reciprocal golden mean. When both the tun-
ing parameter z and the dissipation
parameter b are small in the dissipative
Willbrink map. it has been found that the
invariant circle can reappear after it disap-
peared when the nonlinearity is increased.
Especially, when b<b*=0.65, there is no re-
currence of invariant circles.

Next, we introduce the convergence ra-
tios 6,(k) and @," in order to relate to the
generlaized dimension D,. the convergence
ratio 6,(k) of the sequence £2,(k)'*'" at
which the residue of the periodic orbit with

rotation number w, has its maximum value
is defined as

an(k): "Qn l(k)7 ‘Qn(k)

—_——— 13
'Qn(k)- 'Qn+1(k) ( )

where W,=F,/F,, and F, is the n-th Fi-
bonacei number(F,..=F,+F,, with Fy=0
and F,=1)

Define the convergence ratio a," by

*__ dn l(k)
an - d” (k) (14)
where d, is the angular distance
dn=6p,,*80*F,, 1. (15)

For the special example of 2=0.03, 5=0.9
and k;4=0.272313668 in Wilbrink map, we
will find the scaling relations in the most
rarefied and concentrated region near ,=
0. When 5*=0.65<b=0.09<1, this case in-
dicates that the resonances of the golden
mean invariant circle can be separated aft-
er they overlap. The value of &k, is that of &
existing the first disappearance point
where the invariant circle is broken.

To calculate the generalized dimensions
D, and the Fractal Dimensionality f(e)
analytically. we consider both the mode-

. 18.19)
locking phenomenon'’

and the dissipa-
tive trajectory for Wilbrink map.
Mode — locking Phenomenon. The mode-
locking structure for dynamic system oc-
curs mainly when the bare winding
number £=w/w, is close to a rational
number. It is also estimated that the
dressing winding number w,=F,/F,., is
constant and rational for small value £.
Until now the mode-locking structure

has well known in terms of a complete de-
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Table 1. Value of 4, §,* and D_., on Wil-
brink map for mode-locking
phenomenon when 2=0.003, 5=0.
9, and k,=0.272313668.

Table 2. Values of ¢,**”, D,, and D, on
Wibrink map for dissipative tra-
jectory when z=0.03, b=0.9, and
k;=0.272313668.

n é, 8" D, n a, D.. D,

5 -2.63485 2.01330 0.99339 5 ~-1.55842 0.36153 1.08461
6 ~2.78646  2.12956 0.93915 6 -1.54598 0.36818 1.10456
7 -2.84036  2.16937 0.92192 7 -1.37303 0.50597 1.51792
8 -2.83740 2.16721 0.92284 8 -1.36234 0.51876 1.55629
9 -2.83798 2.16763 0.92266 9 -1.38289  0.49480 1.48441
10 ~-2.83775 2.16746 0.92273 10 -1.29906 0.61306 1.83920
11 -2.83760 2.16735 0.92278 11 -1.29222 0.62569 1.87708
12 -2.83608 2.16624 0.92325 12 -1.28873 0.63236 1.89709
13 -2.83511 2.16553 0.92355 13 -1.28779 0.63418 1.90256
14 -2.83436 2.16498 0.92379 14 -1.28760 0.43455 1.90367
15 -2.83400 2.16472 0.92390 15 -1.28771 0.63434 1.90303
16 -2.83378 2.16455 0.92397 16 -1.28791 0.63395 1.90186
17 -2.83370 2.16450 0.92400 17 -1.28810 0.63358 1.90075
18 ~-2.83365 2.16446 0.92401 18 -1.28826 0.63327 1.89982
19 -2.83363 2.16444 0.92402 19 -1.28837 0.63306 1.89918
20 -2.83362 2.16444 0.92402 20 -1.28844 0.63292 1.89877
oo -2.83360 2.16442 0.92403 0o -1.28857 0.63267 1.89802

vil's staircase representing the dressed
winding number'®'?.

From now on we calculate analytically
the generalized dimension D, and use eq.
(9) and eq.(10) to extract f(a). The follow-
ing expressions for D., in the most rarefied
region and D, in the most concentrated re-

gion are given by

. P, 2
" Ind n R (16)
InP, 1
D=t =2 an

In the first equality of eq.(16) the proba-
bility P.. and the length scale L. are respec-
tively proportional to @™" and w*. The

value of reciprocal of golden mean w has( 5

~1)/2'"". The values of generalized dimen-
sion D., in eq.(16) are listed in Table. 1. In
particular, the value D, is obtained from
eq.(17) as P,~1" in the most concetrated
region. The maximum balue of f(a), ie..
the fractal dimension Dy, gives as D;=0.871

13) - .
. This value is

in mode-locking structure
in good agreement with the results of Refs.
(18) and (19).

Dissipative Trajectory for Wilbrink map.
In the dissipative Wilbrink map. it exists
the transition between the conservative
and dissipative cases by varying the dissi-
pation parameter value from b=0 to b=1.
As b0, it is obvious that the critical
points for this case and the circle map con-

verge to the first disappearance point kg
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In dissipative trajectory the generalized
dimension D, can be written as

InP Inw
D ,=-—2—_T1W (18)
Inl, Ina*!
InP, Inw
D,= =
" Inl, Ina*>? (19)

— *- *-3
Where P+,.~w", l ™y, " and lin~an 'l‘

From eq.(9) and eq.(10). we obtain the
value of a given as @,,~=D., and ,,=D.,.
when f(a)=0 and the values of D, and D,
are listed in Table 2- the maximum value of
f(@) is estimated to Dpy=1 at the arbitrary
values ," as listed-in Table 2.

4. Summary

We have investigated analytically and
numerically on both the generalized dimen-
sion D, and the fractal dimensionality f(a)
in the dissipative Wilbrink map. and dis-
cussed both the mode-locking phenomenon
and the dissipative trajectory when 2=0.03,
b=0.9 and K;=0.272313668.

In the mode-locking phenomenon. we
find that the generalized dimension D,
and superconverged 4, are very close to
D..=0.92403 and 0" =2.16442 even for n~
20 as listed in Table 1. In dissipative tra-
jectory, the values of D,, and D, for n~
20 are estimated to be very close to D.w=
0.63267 and D..=1.89802 on the circle

16.17)
map

. Thus, the values of the general-
ized dimension as n—o on dissipative
Wilbrink map are expected to be the
same results as those for the circle map
and to have the universal scaling ex-
ponents for a special scaling structure

when the values of w. z. b. and ks have

the different values.
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