On the Crystal Growth of Gap by Synthesis Solute Diffusion Method and Electroluminescence Properties.

합성용질확산법에 의한 GaP결정의 성장과 전기루미네센스 특성

  • Kim, Seon-Tae (Taejon National University of Technolgy) ;
  • Mun, Dong-Chan (Dept.of Electronics Materials Engineering, Kwangwoon University)
  • 김선태 (대전산업대학교 재료공학과) ;
  • 문동찬 (광운대학교 전자재료공학과)
  • Published : 1993.04.01

Abstract

The GaP crystals were grown by synthesis solute diffusion method and its properties were investigated. High quality single crystals were obtained by pull-down the crystal growing ampoule with velocity of 1.75mm/day. Etch pits density along vertical direction of ingot was increased from 3.8 ${\times}{10^4}$c$m^{-2}$ of the first freeze to 2.3 ${\times}{10^5}$c$m^2$ of the last freeze part. The carrier concentration and mobilities at room temperature were measured to 197.49cc$m^2$/V.sec and 6.75 ${\times}{10^{15}}$c$m^{-3]$, respectively. The temperature dependence of optical energy gap was empirically fitted to $E_g$(T)=[2.3383-(6.082${\times}{10^{-4}}$)$T^2$/(373. 096+TJeV. Photoluminescence spectra measured at low temperature were consist with sharp line-spectra near band-gap energy due to bound-exciton and phonon participation in band edge recombination process. Zn-diffusion depth in GaP was increased with square root of diffusion time and temperature dependence of diffusion coefficient was D(Tl = 3.2 ${\times}{10^3}$exp( - 3.486/$k_{\theta}$T)c$m^2$/sec. Electroluminescence spectra of p-n GaP homojunction diode are consisted with emission at 630nm due to recombination of donor in Zn-O complex center with shallow acceptors and near band edge emission at 550nm. Photon emission at current injection level of lower than 100m A was due to the band-filling mechanism.

합성용질확산법으로 GaP 단결정을 성장시키고, 몇가지 성질을 조사하였다. 결정성장용 석영관을 전기로내에서 1.75mm/day의 속도로 하강시킴으로써 양질의 GaP 단결정을 성장하였다. 에치피트 밀도는 결정의 성장축 방향으로 3.8 ${\times}{10^4}$c$m^{-2}$부터 2.3 ${\times}{10^5}$c$m^2$이었다. 에너지갭의 온도의존성은 실험적으로 $E_g$(T)=[2.3383-(6.082${\times}{10^{-4}}$)$T^2$(373.096+T)eV로 구하여졌다. 저온에서의 광루미네센스 스펙트럼은 구속된 여기자의 복사재결합과 재결합 과정에 포논의 참여로 인하여 에너지갭 부근의 복잡한 선 스펙트럼이 나타났다. n형의 GaP내에서 Zn의 확산깊이는 확산시간의 제곱근에 비례하였으며, 확산계수의 온도의존성은 D(T)=3.2${\times}{10^3}$ exp(-3.486/KbTc$m^2$/sec이었다. p-nGaP 동종접합다이오드의 전기루미제센스 스펙트럼은 깊은 준위의 도너인 Zn-O 복합중심(complex center)과 Zn가 형성한 역셉터 준위사이의 도너-억셉터 쌍 재결합 천이에 의한 630nm의 발광과 에너지갭 부근의 케리어 재결합 처이에 의한 550nm의 발광으로 구성되었으며, 100mA보다 낮은 전류 영역에서 광자의 방출은 bane-filling 과정으로 이루어 진다.

Keywords

References

  1. Prentice Hall International Light Emitting Diode-An Introduction K.Gillessen;W. Schairer
  2. Proc.IEEE v.61 no.884 K. Kaneko;M. Ayabe;M. Dosen;K. Morizane;S. Usui;N. Watanabe
  3. IEEE trans. on Electron Devices v.ED-24 no.944 K. Gillessen;A.J. Marshall;K.H. Schuller;W. Garmann
  4. J. Electron Mater v.8 R.C. Clarke;D.S. Robertson;A.W. Vere
  5. Philips Rep v.13 no.1 L.J. van der Pauw
  6. Appl. Phys. Lett v.19 no.153 G.A. Roxgonyi;M.A. Afromowitz
  7. J. Crystal Growth v.33 no.90 F. Moravec;J. Novotny
  8. Optical Processes in Semiconductors J.I. Pankove
  9. J. Appl.Phys v.40 no.163 M.B. Panish;H.C. Casey
  10. J. Appl.Phys v.39 no.5631 P.J. Dean;C.J. Frosch;C.H. Henry
  11. Phys. Rev v.180 no.845 T.N. Morgan;T.S. Plaskett;G.D. Pettit
  12. Solid State Commun v.7 A.T. Vink;A.J. Bosman;J.A.W. van der Does de Bye and R.C. Peters
  13. Phys, Rev.B v.4 P.J. Dean;R.A.Faulkner;S. Kimura;M. Ilegems
  14. J. Appl.Phys v.35 L.L. Chang;G.L. Pearson
  15. Luminescence and the Light Emitting diode E.W. Williams;R. Hall
  16. Optical Processes in Semiconductors J.I. Pankove