Effect of the Inert Ceramic Powder on the Electrical and Mechanical Properties of the Polymer Electrolytes

비활성 세라믹 분말이 고분자 전해질의 전기적, 기계적 특성에 미치는 영향

  • Kim, Dong-Won (Dept. of Chemistry Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Jung-Ki (Dept. of Chemistry Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Chang-Jung (Dept. of Chemistry Engineering, Korea Advanced Institute of Science and Technology) ;
  • No, Kwang-Soo (Department of Ceramic Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 김동원 (한국과학기술원 화학공학과) ;
  • 박정기 (한국과학기술원 화학공학과) ;
  • 김창정 (한국과학기술원 화학공학과) ;
  • 노광수 (한국과학기술원 무기재료공학과)
  • Published : 1993.06.01

Abstract

The characteristics of composite polymer electrolytes obtained by adding a fine ceramic powder($\gamma-{LiAlO}_{2}$) with a diameter of $1{\mu}$m to a poly(ethylene oxide)/lithium trifluoromethane sulfonate (LiC$F_3$S$O_3$) complex are described in terms of morphological and mechanical behavior. The addition of uniformly dispersed ceramic powder greatly improves the electrical and mechanical properties of solid polymer electrolytes at ambient temperature. For the composite polymer electrolytes under this study, the optimum composition of the $\gamma-{LiAIO}_{2}$ in the composite for maximum ionic conductivity was found to be 20 wt%.

폴리에틸렌 옥사이드(PEO)/리튬 삼불화메탄 술포네이트(${LiCF}_{3}{SO}_{3}$)착제에 평균 직경 $1{\mu}$m인 미세 세라믹 분말 ($\gamma -{LiALO}_{2}$)을 혼합하여 얻은 복합체 고분자 전해질의 특성을 형태학 및 기계적 성질의 관점에서 고찰하였다. 균일하게 분산된 세라믹 분말을 상온에서 고체 고분자 전해질의 전기적, 기계적 성질을 크게 향상시키는 것으로 관찰되었으며, 그 조성에 따라 그 특성이 변하였다. 본 연구에서 조사된 복합체 고분자 전해질의 경우, 상온에서 최대 이온 전도도를 나타내는 ${LiAlO}_{2}$의 최적 함량은 약 20%인 것으로 나타났다.

Keywords

References

  1. Duclot in Fast ion Transport in Solids M.B. Armand;J.M. Chabagno;M.J. Duclot;P.Vashishta(ed.);J.N. mundy;G.K. Shenoy(ed.)
  2. Polymer Electrolyte Reviews v.1,2 J.R. MacCallum(ed.);C.A. Vincent(ed.)
  3. J. Electrochem. Soc. v.138 no.1918 F. Capuano;F.Croce;B.Scrosati
  4. J. Am. Chem. Soc. v.106 no.6854 P.M. Blonsky;D.F. Shriver;P.Austin;H.R. Allcock
  5. Macromolecules v.21 no.21 F.M. Gray;J.R. MacCallum;C.A. Vincent;J.R.M. Giles
  6. Electrochimica Acta. v.34 no.635 S. Pantaloni;S. Passerini;F. Croce;B. Scrosati
  7. Polymer v.25 no.1600 D.J. Bannister;G.R. Davies;I.M. Ward;J.E. Mclntyre
  8. Makrompl. Chem. Rapid Commun. v.7 no.115 D. Fish;I.M. Khan;J. Smid
  9. J. Electrochem. Soc. v.137 no.269 J.S. Tonge;D.F. Shriver
  10. Solid State Ionics v.24 no.155 J.R.M. Giles
  11. Solid State Ionics v.7 no.75 J.E. Weston;B.C.J. Steele
  12. Chen Liquan in Materials for Solid State Batteries B.V.R. Chowdari;S. Radhakrishna
  13. Macromolecular Physics v.3 B.Wunderlich
  14. Solid State Ionics v.11 no.19 C.Berthier;W. Gorecki;M.Minier;M.B. Armand;J.M. Chabagno;P. Rigaud