A Study on the Characterisitics of Reactive Ion Etching

Cylindrical Magnetron을 사용한 실리콘의 반응성 이온 건식식각의 특성에 관한 연구

  • Published : 1993.08.01

Abstract

Using a RF cylindrical magnetron operated with two electromagnets having a Helmholz configuration, RF magnetron plasma properties and characteristics of reactive ion ething of Si were investigated as a function of applied magnetic field strengths using 3mTorr $CF_4/H_2$ and $CHF_3$. Also, I-V characteristics of Schottky diodes, which were made of silicons etched under different applied magnetic field strengths and gas environments, were measured to investigate the degree of radiation damage during the reactive ion etching. As the magnetic field strent;th increased, ion densities and radical densities of the plasmas were increased linearly, however, the dc self-bias voltages induced on the powered electrode, where the specimen are located, were decreased exponentially. Maximum etch rates, which were 5 times faster than that etched without applied magnetic filed, were obtained using near lOOGauss, and, under these conditions, little or no radiation damages on the etched silicons were found.

Helmholz구성을 가진 두개의 전자석에 의해 작동되는 RF cylindrical magnetron을 사용하여 이의 플리즈마 성질을 가한 자장의 함수로 조사하고, 또한 $CHF_3$$CF_4/H_2$를 3mTorr의 낮은 압력하에서 사용하여 실리콘의 반응성 이온 건식식각 특성을 조사하였다. 또한 여러 자장의 크기 및 개스 분위기하에서 식각한 실리콘으로 제조한 Schottky다이오드의 전류-전압 특성으로 식각으로 인한 실리콘의 손상정도를 측정하였다. Cylindrical magnetron에 가한 자장을 증가시킴에 따라 플라즈마내이온밀도 및 분해될 개스밀도(radical density)가 직선적으로 증가하였으며 시편이 위치한 전극에 유도되는 직류 자기 바이아스 전압(dc self-bais voltage)은, 반면, 지수적인 감소를 하였다. 100Gauss부근의 자장을 가한 경우에 최대의 식각속도를 갖고 이때의 실리콘의 식각속도가 자장을 가하지 않은 경우에 비해서 5배정도로 증가하였으며, 전지적인 특성 역시 습식방법을 사용하여 식각한 실리콘에 가까운 정도의 이온 손상이 없느 식각상태를 얻을 수 있었다.

Keywords

References

  1. Solid State Technol. v.27 S.J. Fonash
  2. J. Appl. Phys. v.57 T.E. Wicker;T.D. Manti
  3. J. Vac. Sci. Technol. v.B6 A.M. El-Masry;F-O. Fong;J.C. Wolfe;J.N. Randall
  4. Japan. J. Appl. Phys. v.29 K. Ono;T. Oomori;M. Hanzaki
  5. Japan. J. Appl. Phys. v.30 H. Hoga;T. Orita;T. Yokoyama;T. Hayashi
  6. J. Vac. Sci. Technol. v.B3 K. Suzuki;K. Ninomiya;S. Nishimatsu;S. Okudaira
  7. Japan. J. Appl. Phys. v.29 T. Namura;H. Okada;Y. Naitoh;Y. Todokoro;M. Inoue
  8. Solid State Technol. v.5 A. Hall;K. Nojiri
  9. Japan. J. Appl. Phys. v.30 K. Tsujimoto;S. Okudaira;S. Tachi
  10. Appl. Phys. Lett. v.55 no.2 A.J. Perry;R. W. Boswell
  11. J. Appl. Phys. v.54 S.W. Pang;D.D. Rathman;D.J. Silversmith;R.W. Mountain;P.D. DeGriff
  12. J. Vac Sci. Technol. v.B6 J.M. Heddleson;M.W. Horn;S.J. Fonash;D.C. Nguyen
  13. Appl. Phys. Lett. v.48 X.C. Mu;S.J. Fonash;A. Rohatgi;J. Reger
  14. IEEE Electron Dev. Sett. S. Ashok;A. Mogro-Campero
  15. J. Appl. Phys. v.59 X.C. Mu;S.J. Fonash;G.S. Oehrlein;S.N. Chakravarti;C. Parks;J. Keller
  16. Japan J. Appl. Phys. v.22 T. Hata;J. Kawahara;K. Toriyama
  17. J. Vac. Sci. Technol. v.B3 S.W. Pang;M.W. Geis;N.N. Effremow;G.A. Lincoln
  18. J. Vac. Sci. Technol. v.B5 J.H. Thomas III;H. Hammer
  19. J. Appl. Phys. v.58 S.J. Fonash;R. Singh;A. Rohatgi;P. Raichoudhury;P.J. Caplan;E.H. Poindexter
  20. J. Appl. Phys. v.58 X.C. Mu;S.J. Fonash;B.Y. Yang;K. Vedam;A. Rohatgi;J. Rieger
  21. Thin Film Processes J.A. Thornton;A.S. Penfold;J. Vossen(ed.);W. Kern(ed.)
  22. Thin Film Processes R.K. Waits;J.L. Vossen(ed.);W. Kern(ed.)
  23. Thin Film Processes II R. Parsons;J. Vossen(ed.);W. Kern(ed.)
  24. J. Vac. Sci. Technol. v.A6 no.6 G.Y. Yeom;J.A. Thornton;A.S. Penfold
  25. J. Appl. Phys. v.65 no.10 G.Y. Yeom;J.A. Thornton;M.J. Kushner
  26. J. Appl. Phys. v.65 no.10 G.Y. Yeom;J.A. Thornton;M.J. Kushner
  27. Electrostatic Probes in Stationary and Flowing Plasmas P.M. Chung;L. Talbott;K. Touryan
  28. Plamsa Chem. Proc. v.8 R.W. Boshwell;A. Bouchoule
  29. Plasma Chem. Proc. v.8 N. Hershkowitz;M.H. Cho;C.H. Nam;T. Intrator
  30. AVS Monograph Series Plasma Etching and Reactive Ion Etching J.W. Coburn;N.R. Whetten(ed.)
  31. J. Vac. Sci. Technol. v.A7 no.3 G.Y. Yeom;M.J. Kushner
  32. J. Appl. Phys. v.52 no.1259 R. dAgostino;F. Cramarossa;S. Debenedictis;G. Ferraro
  33. Spectroscopic Constants for Selected Heteronuclear Diatomic Molecules v.1 S.N. Suchard(ed.)
  34. Chem. Phys. Lett v.47 G. Durocher;P. Sauvateau;C. Sandorfy
  35. J. Molec. Spectrosc. v.78 D.S. King;P.K. Schenck;J.C. Stephnson
  36. Appl. Phys. Lett. v.40 P.J. Hargis Jr.;M.J. Kushner
  37. Handbook of Chemistry and Physics(68th edition.) R.C. Weast(ed.)
  38. J. Appl. Phys. v.51 J.W. Coburn;M. Chen
  39. Plasma Chem. Proc. v.1 R. dAgostino;C. Colaprico;F. Cramarossa
  40. Semiconductor Devices;Physics and Technology S.M. Sze
  41. Korean Mat. Res. Soc. G.Y. Yeom