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Convergence Rate of Newton-Raphson Method

Kwan Jeh Leel)

Abstract

The actual convergence rate of Newton-Raphson iteration method at each step
is studied under the regularity conditons for the limiting distribution: The
convergence rate of it is accelerated with good starting values. Hence we can
decide a number of iterations according to our purposes.

Introduction

The setting we start from is one in which it is too difficult to solve the likelihood
equations. That is, it is too difficult to obtain the maximum likelihood estimators(MLEs).
Therefore we calculate approximate roots of the equation. These approximate roots are
asymptotically equivalent to MLEs in the sense that we can use them as MLEs are used
in forming the likelihood ratio test statisitics.

In numerical analysis there are several methods by which we can find approximate
values of the desired root. In the present study we will study the Newton-Raphson method.
The closeness between an approximate value and the MLE can be measured by the
probability of the distance between them, which goes to zero at a certain rate. In 1958
Stuart compared this method and the Method of Scoring and provided the numerical
examples. In 1966 Barnett also discussed the performance of the Newton-Raphson Method.
However they did not find the actual convergence rate for which the probability of the
distance goes to zero. We study their actual convergence rates and find that the
convergence rate of the Newton-Raphson Method is accelerated with some starting values.

1. Newton-Raphson Method

Under the regularity conditions for the limiting distribution of the MLE, let

T=(Ty,~,Ts) to be an n Y -consistent estimator of a true parameter _0=(0), -, 0,)if
T=0+0,(n"").
Notice from now on that the regularity conditions in this study means the regularity
conditions for the limiting distribution of the MLE, and that for simplicity we will use
O,(-) instead of Qu(*)or O,(*)+_1. The Newton-Raphson approximation for
multiparameters is calculated as follow.
S5.=T-l1 (DI 1.(D),

where 1(8) is a log-likelihood function, and ! (T)and /_.(T) are the first and the second
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derivatives of the log-likelihood function evaluated at _T, that is,
d

d
1.(D=| a86; 1@

X
—ml(ﬂl .
and
32 82 32
38,00, '® 39,90, /@ ~ ~Fp,30, @
32 32 a2
1 (D)=| ~30,90, '@ 35,38, '® ~ 75,08, (@
ai ai ' a;
30,96, /@ —55,309;, '@ ~ 3p,70, D]

Let 14(*) be the (i,j) element of !.( *) and

- a3
lic=—35,38;30; &

In order to expand !.(_T) in a Taylor series in _8=( 8;,, 8), we expand its ith
component about 8, and find
14D = 1 .Q)+J§(T,-— 60 4( )
+—%l— it(Tj' 6,)(Tx- 6 i(81)
¢ j=lk=1
= ig(r,-— 6 ) o )
+—%!-l§§:l(7‘j— 0, (Tx- 6 (8,

where 01 lies between T and 8, and !.( 8)=0.
By the regularity conditions

L 1.2 __ :

—Ln (el = |-+ ae,.ae,-aek’ 8
L e_ 3% :
= | nmﬁ;:l 35,90,36; log flx ml_81)1

< —#le(xl)wwMak(xn)l.

with probability tending to 1. So we can rewrite
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1D = 3(T- 6 )l ()

i1
v A 256 T 60 04w
Let
T-8=0,(n"".
Then
1D = ,g(Tj- 6 )M 4( 8)
+gr 53 0un ™) 0,(n ™) - 04(n)

= Ig(Tj" 6 ) ( 8)+0,(n %" .

Expand [;( 8) in a Taylor series in 8.

I ( 0)

18+ (640 )l a(83)

L
1i(8)+0,(n %),

where 8% lies between _8 and 8 and vl 8-804 converges in law to a normal
distribution. This implies that
L
ek_e k=0p(n 2 )

Thus we can write

-1
LAT) = Z(Ti= 6)UAD+04n +0,(a Y ()

- min (8- 3-,20-1)

= ,-g(T'“ 6 0 i(D)+0,(n ).
Let
vn(8) vi(8) — vi(8)
[l(_&)] —l! UZI.(..Q) UZ.(..Q) :" DZI.(—Q)
vl ) veal(8) - vl
Then
S L B)=1, =125,
j=1
and

Jg" A D (8)=0, j#k.
Now let ¢ ;(_8) be i_th component of [/_(_8)] ' (), then
0 ,u:>=l§u (DI AD.
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From the above expansion (1) of [ ;(_T) we can rewrite ¢ ;(_T) as
0D = jguﬁ(_r)z.,(_r)

- min {8~ —-26-1)

)}

S0l D E(Te- 6 A(2)+0,4(n
(Ti- 630 o DIA)
+ 3 (Tem 60020 o DIa(D)

- min (8- 4-28-1)-1

+0,(n
Now expand v §(_T) in a Taylor series in _8
b i D=0 )+ ITe-0 ) —g—v o 8),

where 0% lies between _T and _8. Thus

b DI = 8+ 3(T-0 ) —55— v o 8D) M ()

b (D () + T (Th-8 ) —5g— v o LDN () .

Therefore
ng u(_T)l,x(_ﬁ) = l+;§l§:l( T -0 )( %kv "(_9;))]”(&)

Similarly, for i=k
S0 DI = 3 E(T 00— v (LD (0.
We can rewrite ¢ ;(_T) as follows.
iD= (Ti- {1+ 3 TTw-0 ) —5g— v o LN D)
3 (Te 6T 00— i 8D D)

- min (8- —4-,28-1)-1

+0,(n
= (Ti-6)+0,(n"")+0,(n

-min(8-—L20-1)-1

Therefore
—min(ﬂ-Jz-,Zﬂ‘l)—l)

Ti~-{(Ti~- 6)+0,(n " ")+0,(n
e min (0~ X 28-1)-
6:40,(n ") +0,(n T THEIE
Note the following special cases.
_
Case 1. When ao=1/2, that is, T=8+0,(n %), B=1/2. Thus we have

8;



Convergence Rate of Newton-Raphson Method 323

31=8+0,(n"Y).
Case 2. When a=1, that is, T=8+0,(n"'), again B=1/2 and we have
B1=8+0,(n™").
The convergece rate is not improved by n-consistent estimator for multiparameter case. In

order words, the approximation with v n- consistent estimator as a starting value has the
same convergence rate as that with n-consistent estimator, to the MLE.

Case 3. When _r=_a+o,,(n"2L), then by Case 1,
3,=8+0,(n"").
Now using 8 as a starting value, that is, we have the second step approximation as
follows.
B2=8:-[1 (3171 (8y) .
In order to calculate it, consider
53-8 = (3:- 9)+(_B-19)

o4
= Op(n 2) .

Thus a=1/2 and by Case 1 B=1. Now we can calculate i_th elements of B2 That is

(ﬂ-—%—.zn—l)—l)

81— {(8 - 6,)+0,(n "'-B)*'Op(n_m
1 cminte X211y

0,+0,(n 2 l)'*0,,(n A
3

_ _3
6:+0,(n %)+0,(n ?).

8

Hence
_3
82=8+0,(n ?).
Let B be the rate of k-step N-R approximation to the MLE _B=( 6 ,,..., 6 ;) if

34=8+0,(n""%.
Therefore we have the following theorem.

Theorem 1 If we iterate the Newton-Raphson approximation k times with a
nY*_consistent estimator of a true parameter 8=(0;,...8), the rate of the
approximation to the MLE is

=1

B- 2 (k+1).

that is,

. -Leen
B:=8+0,(n 2 )

where o is greater than, or equal to 1/2, and k=1,23,....



324 o] B A

Proof. We already considered the cases where k=1,2 and a=1/2. In each iteration B
increases by 1/2. This completes the proof. O

When we start the method with a consistent estimator T at a slower rate such as
_1
T=18+0,(n *), we have 1/2-equivalent estimators to the MLE at the first iteration of

the Newton-Raphson method and can apply Theorem 1 from the second iteration of the
method.

Corollary 1 I we iterate the Newton-Raphson approximation k times with a consistent
estimator T such as _T=8+0,(n""), 1/4<x, of a true parameter 8=(81,.-,85), the
rate of the approximation to the MLE is

B=1/2(k+1),
that is,

- L)
.s_kz .Q"’ (0] p(n z ).

where k=2, 3,-... And for k = 1, the one-step approximation of the Newton-Rahpson
method is

8,=8+0,(n %)

3. Concluding Remarks

One of the competing iteration methods for the N-R method is the Method of Scoring:
Suppose that the conditions and the definitions are hold. A multivariate version of one-step

approximation of the Method of Scoring with Ta=(To, T, Ta) T, a ¥ n-consistent
estimator, as a starting value is given by

M2= Tt =L T 1 ' (T),

where
In(8) I'a(8) ~Iu(8)
ICTo)= Ins_ﬂ) Izzf.ﬂ) “'Iz:c(_e.)
I(8) Ie(8) ~Tu(8) .1,
and

[ To) = E sl—55— logflal8) —55~ logflxl®)] s~ 1,

-E ol _a’e_,aa—é,— logR(x18)] a- 1o

Then we can easily have
nz=8+0,(n"Y3).
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Hence, the convergence rate of the Method of Scoring is slower than that of the N-R
method under the regularity conditions. A more study on some additional conditions to the
regularity conditions applied in this study is felt desiralbe, since in Stuart(1958) two
methods were compared numerically and concluded that the Method of Scoring converges
faster than the N-R method.

4 Examples

Now we consider two statistical models, whose solutions of the likelihood equations are
not feasible. Let 31 be one-step iteration approximation of the Newton-Raphson method

with Vn-consistent estimator as a starting variable. Then
8= B+ (0] p( _%' )

from the consequence of this study.

Example 1. (Logistic Model - Location parameter) Suppose X1,-,Xn are iid according
to the logistic density

~(x-8)

=y
f®)= = ey
The likelihood function is
-(x~8)

L(8l.x)= igl (l+e *0)2 -
The log-likelihood function is given by

1(8) = logL(6lx)
igllog {

-(xr9)

1+e— xi—8 }2
-(x0)

= '_L-(_T—
Zlow (—r o)
= g{loge—(xre) }_ log {1+e —(xrﬁ)) 2
= -ig(xi"e)—Ziélog (1+e "),
Thus the likelihood equation becomes

0=1"()

—$5 (- Exi-0)-2 % log (1+e 7))
~-(xr9) .

-3n-2f —f o

(1+ve "%}
-(x-8)

"l'2i=t1 {14‘8_ X0 } .
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After some simplication it becomes
1 -0
9 -

=)
-1 1+e ¥

The left side is an increasing function of 0 which is zero at 8=-® and n at 6=+,
Therefore the likelihood equation has a unique root 8 ,which is the MLE since [’ (8)>0
as 6< 8 and /’(8)<B as 6> B. It is not easy to solve this equation. For later use
calculate the 2.nd derivative of 1(8)

l u(e)

3 2
)
-(x:-9)

-Zi—g—-(rex)—z- ‘

i1 {l+e

Notice the following theorem.
Theorem 2 Let X1,--,Xn be iid with distribution F(x-0). Suppose that F(0)=1/2

and that at zero F has a density f{0)>0. Then

.2 1
ﬁ(x'l e) — N(ov ‘#-2(0) )1

where Xnis a sample median.

See, for example, Lehmann’'s TPE p.353. Since the location logistic model satisfies the
conditions of the theorem above,

. 2 1
G(xn e) — N(O, #-2(0) )t

so that X, is vn-consistent. Therefore one-step Newton-Raphson approximation is
5= %.- ' (xn)
"I "(xa)
~(x~0)

Xn- {n~2§_1—lie—_(mr }

~(x;-0)

S L Stxi0) . ~(xi-8)

Example 2. (Weibull Model - one parameter) Suppose X1,---,Xn are iid with a Weibull
density

fixle)=6x°te =’
for x>0 and 0>0, then the log-likelihood function of X1,---,X» is

1(8) = nlog8+(8-1) glogx;

- 3 exp@logx .
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Therefore
1’ (8)= —g—+§logx,'~§exp(elogx;).
and

[(8)=- —enz—- g}( logx ;) “exp(8log x ;),

which is negative for all 6>0. As 6 — 0, [ ’(8) — ™ while for 0 sufficiently large,

1’ (8) is negative. Thus the likelihood equation has a unique root and equals the MLE.
The one-step Newton-Raphson approximation is

_, 1’y

Sl—do l”(do) ’

where d, is vn-consistent estimator and is
do= “%”é‘ logx,-)2-(§logx,—)2/n]/(n—1)) R

which is given by Menon(1963).
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