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Robust Selection Rules of k in Ridge Regression!)
Yong B. Lim?
Abstract

When the multicollinearity presents in the standard linear regression model,
ridge regression might be used to mitigate the effects of collinearity. As the

prediction—oriented criterion, the integrated mean square error criterion Ju(k) was
introduced by Lim, Choi & Park(1980). By noting the equivalent relationship
between the Ci criterion and J.(k) with a special choice of weight function
w(x), we propose a more reasonable selection rule of k wr.t. the Ck criterion

than that given in Myers(1986). Next, to find the B(k) which behaves

reasonably well w.r.t. competing criteria, we adopt the minimax principle in the
sense of maximizing the worst relative efficiency of k among competing criteria.

1. Introduction

Consider the standard linear regression model
Y=XB+e¢ (1.1)
where Y is an nXx1 vector of observations on the response (or dependent) variable, X is
an nXp fixed matrix of observations on the explanatory (or independent) wvariables, B is
a pX1 unknown vector of egression coefficients, and £ is an nxX1 vector of random
errors with means E(¢)=0 and Var(c)=o0’[,. Here the variables are assumed to be

standardized so that X ‘X is in the form of a correlation matrix and X 'Y is the vector
of correlation coefficients of the response variable with independent variables. The least

squares estimate of B is given by B=(X’X) 'X 'Y, and commonly used in practice.
The multicollinearity of X occurs when there exists near linear dependency between

columns of X, ie, ‘g:lc;x; =~ (, for some Ci, X=[x1,-,xp). As a result of the

multicollinearity, X ’ X may have one or more small eigenvalues. It is well known that a
difficulty with least squares estimator arises as the multicollinearity occurs. In particular the

expected squared distance between B and B,

E@-8)’(B-B) = ozjﬁ:i)»fl, Aj . eigenvalues of X 'X (12

will be large. Thus ﬁcanbeexpectedtobefurtherfrom B. To overcome this difficulty,
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Hoerl and Kennard(1970) have suggested that the least squares estimator be replaced by
the ridge estimators B(k), where
B(k)=(X'X+ ki) 'X'Y, k>0. (1.3

Note that B(0) is the least squares estimator.
Hoerl and Kennard(1970) demonstrate that the ridge estimator with the right choice of
k(fixed) have smaller total mean square error(TMSE), defined by

TMSE(k) = EL(B(k) - B) *(B(k) - B)], 1.4
than the least square estimators. They also establishes a type of admissibility condition,
namely, there always exists a k>0 such that

TMSE(k) < TMSE(0).
For response surface experiments in general, the fitted equation yx(x)=x ’B(k) is

intended to be used within some region of explanatory variables of interest to a
researcher. As the prediction-oriented criterion, Lim, Choi & Park(1980) have introduced the
integrated mean squre error (IMSE) criterion for selecting k of ridge estimation and made

parallel statements to TMSE criterion in Hoerl and Kennard(1970) with J w(Kk) defined by
Jok) = IMSEL 3= | MSBE(54(x) dw(x), (15)

where MSE( yx(x)) is the mean square error of yx(x)=x’ B(k) and w(x) is a weight
function on the region of explanatory variables of interest R. The w(x)allows for
differential importance of yx(x) at different points in R. When the prediction is equally
important at each point in R, w(x) could be taken as the uniform distribution on R. When
w(x) takes the uniform mass l/n at each design point, J.(k) is proportional to the sum

of MSE of yi(x;) at each design point. Thus, J.(k) is equivalent to the Ci criterion
introduced by Myers(1986, p249).
Denote the Ju(k) by Ju.(k) for the uniform weight function over R. When w(x) takes

the uniform mass 1/n at each design point, we denote J,(k) by Ja(k).

Unfortunatly, the optimal choice of k w.r.t. those two criteria cannot be determined with
certainty because it depends on the unknown parameters BB ’ and o2, In practice, k must
be selected from the data The natural alternative is to replace BB ’ and o’ by their
unbiased estimates in those criteria and then, to find the optimal k. Lim, Choi & Park(1980)
have suggested to select k which minimizes J»(k), an unbiased estimate of Ju(k).
Similarly, we can select optimal k based on TMSE(k), an unbiased estimate of
TMSE(k).

The main results of the paper are as follows. First, by noting the equivalent relationship
between Cx and Ja(k) and using more reasonable estimates of BB ’ rather than unbiased
estimates, we propose a more reasonable selection rule of k wrt the Ck criterion than

that given in Myers(1986). Next, to find B(k) which behaves reasonably well wrdt.
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competing criteria, we adopt the minimax principle in the statistical decision theory. In this
paper, we suggest a selection rule of X which are robust wrt Ju(k), J.(k) (or C¢) and

TMSE(k) in the sense of maximizing the worst relative efficiency of X among 3 criteria.
Since the relative efficiency functions of k w.r.t. three objective functions are continuous

respectively, there always exists such a robust k°. An example will be illustrated to show

how to select such a robust kK from a given set of data for the quadratic polynomial
regression model. :

2. An unbiased estimate of TMSE and IMSE

Consider the linear model (1.1). Let A be a diagonal matrix of eigenvalues of X ‘X and
P be an orthogonal matrix of corresponding eigenvectors. Then P ' (X 'X)P = A, Letting
Z = XP and a=P ’B, the linear model (1.1) is reparametrized as follows:

Y=XPP'B + ¢
Za +

where Z'Z = A,
The least squares estimator of a is
a=(z2'2)"'2'Y=0"'2"Y
and a ridge estimator of d is
wk) = (Z'Z+klp)'Z'Y
(A+Kklp) 'Aa,  k>0.

Thus, the residual sum of squares of a(k) is

SSE(k) = (Y -Za(k)) ' (Y-Za(k)
Y'Y- alk) ' Z'Y-ka(k) ' a(k)

Since
ASSE(D). = gy ' z(A + KI)Z'Y > 0,

SSE(k) is an increasing function of k.
Noting that E[@] = « and Var(a@) = oA 7}
Ela(k)] = (A+kl,) 'AE[a]
= (A+klp) A

and

(A+kIp) " Var( A @))(A+kI,) !
o (A+kI,) AA+KI,)

oA (A+KI,) 2 .

Last equality follows from the fact that the diagonal matrices are
commutative.

Var( a(k))
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Now, from Hoerl and Kennard(1970),
TMSE(k) = TrE{(a(k)-a)(a(k)-a) ']

= Tr(Var(a(k))) + Tr(E[ a(k)]-«)(E[a(k))-a) *  (21)

- 2 2. 1
=6 ;tl O k)z + K*Tr(A+KkIp) %aa * .

Also, from Lim, Choi & Park(1980),
Julk) = > Tr[AA+KI,) MY + KXTr{(A+KI,) "M(A+KI,) faa '], (22)

where
M= I zz 'dw(z), z=P ’«x.
R
Letting
2 _ _SSE)
N = n_p_l ’ (2.3)
s? is an unbiased estimate of 2. From Var(a)=FE[aa’]- aa’,
ae ' = Elaa’}-o0A"?
= E[‘U.;.‘L ’ _SZA —l] (2.4)
Using unbiased estimates s and aa’ - s?A™' for o and o’ in (21) and (22),

respectively, we get an unbiased estimate of TMSE(k) and Jw(k) as follows;

TMSE(k) = s% 3, +KPTr(A+KL) X aa ' -sA Y, (25)

ISENeY +k)2

Ju(k) = SPTr[A(A+KIL) *M] @26)
+K2Tr[ (A+kIp) "M(A+KIL) M aa’ -s2A D] . '
Note TMSE(k) and Jw(k) are continuous function of k. Also it can be easily checked
that there exists a k>0 such that TMSE(k) < TMSE(0) and Ju(k) < Ju(0) by
parallel arguments to TMSE(k) in Horel & Kennard(1970) and J.(k) in Lim, Choi &
Park(1980), respectively. Thus, for each of the objective functions TMSE(k) and Juw(k)
there exist optimal kK7 and Kku such that

TMSE(kt) = min x TMSE(k)
and
jw(kw)'__minkjw(k)-

When the w(x) takes the uniform mass 1/n at each design point, the IMSE( y;) is

Jalk) = EMSE(5x(z)) L.
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But the Ck is defined by

;MSE( yil 2:))

02

= 5 Jalk).

Ck

Thus the Ci criterion is equivalent to the IMSE criterion with a special case of weight
function. Noting that
M= ﬁ:zizi’i_=_u=__.
i=1 n n

>

and then, substituting this into equation (2.2),
2 2
Talk) = er[/\(mu,) )4 —ﬁ—Tr[(MkI,) LGS AR R
= 2 2 -2 7
Lzl cieminae ) 1}

By replacing o2 and f;:MSE( y( 2:)) by their unbiased estimates, Mallows(1973) and

Myers(1986) suggest a C,-like statistic,
Ce= B _ . oniHy),

where Hi=Z(Z ' Z+kl,) 'Z ’, which is proportional to

5 _s* A k2 20 s 2 -1
Jalk) = n Z (0 +k)T n 7)'[/\(1\+k1p) (aa’-sA)]

Recall that

Elaa’ -s®A J=aa’.
For a quite small eigen-value A, it might be possible that an unbiased estimate of ct.z is
negative, ie.,

2
(liz" %’ <0,

which is absurd. Thus, it might be more reasonable to use an estimator @ of da ’ defined
by
o l&,-&,- if i#j 28
= 2
¢ max (0, &iz-—f:} if i=j
and then, to select k at which

Jnlk) = Z W ﬂ'[A(A+kIp) Q) (29)

is minimized.
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3. A robust choice of k

To find a 2(k*) which behaves reasonably well wrt. Ju(k), Ja(k)(or Ci)and

TMSE(k), we adopt the minimax principle in the statistical decision theory. First, we

define the relative efficiency function of k in each of the objective function as follows:
Julky)

.Z‘n(kn)

Jn.(k)

TMSE(kT)

TMSE(k)

Now we propose a robust selection rule of k in the sense of maximizing the worst
relative efficiency function of k among Effi(k), Eff2(k) and Effs(k), ie, find k™ such
that

Eff2(k)
Effs(k) =

mn . pri(k") = TEX TN, Efd(k).

Since Effi(k),1<i<3, are continuous functions of k, there always exists such a
robust k°.

4. Example

To illustrate how to select a robust k® for a quadratic polynomial regression model, we
consider an example which was analyzed in Lim, Choi & Park(1980) for the IMSE
criterion. The response variable w is the amount (parts per million, ppm) of water soluble
in the soil and two explananatory variables are the concentration (weight percent, wt %) of
clay( v1) and the soil PH.(vz). Twenty observations were taken. The original data were
presented and described by Myers(1971).

All the variables are standardized and the quadratic polynomial regression model in the
standardized variables is given by

y=Buxy +Baxz + Buxi + Baxs +Buxix: +e,
where

y=—w@"—

xi = —E'S%ﬁ"-‘— i=1,2

xixg = HELREL ij=12
v
Si = zk:(u x- v:)? & Si= Zkl(v av g~ v
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The orthogonal matrix P, 21, sz, the moments matrix
1 1 2 " . »
M= —i-_ll_l_l‘;lxx ‘dadx, x ' = (x1,x2,X1 X2 ,X1x2)
and M,=P 'M,P are given in Lim, Choi & Park(1980). An unbiased estimate s given
in Lim, Choi & Park(1980) is wrong and the correct value is
s% = 0.019649.

To estimate three criteria, Ju(k), Ja(k) and TMSE(k), first we use unbiased

estimates « o’ -s*A ! and s? for aa’ and o, respectively. Next, we use a more

reasonable estimates @ for ua ’. For these two cases, the numerical optimization is

performed using the IMSL subroutine duvmif. The numerical results are summerized in
Table 1 and Table 2.

Table 1@ Eff=Mini<i<aEffi of selection rules using unbiased estimates

aa’ ~s?A -, for aa’

Criteria Eff(%6)
Ju(k) 7.04
Jak)Cor Cy) | 1661
TMSE(k) 57.68
Robust 67.97

Table 2: Eff= Min 1<;<3 Eff; of selection rules using unbiased estimates @ for oo ’

Criteria Eff(%)
Juk) 82.72
Jall) Cor Co | M
TMSE(K) :ﬁ ‘1‘8
Robust )
Using an unbiased estimates aa’-s®A"! for «a’, the efficiency curve of

TMSE(k) is quite flat in the neighbourhood of 0, which cause the relative efficiency of
robust k* being quite small, as we can see from Figure 1. robust kK is .26484x10 3
and the relative worst efficiency is Eff=67.97%. On the other hand, using @ instead of
unbiased estimates for aa ', all three efficiency curves are sharply increased near 0 as we
can see from Figure 2. Robust k* is .11572x10 3 and the relative worst efficiency is
Eff=95.10%. For the Ci criterion, the optimal Ka using @ is kn=.11902%10 "* and the
optimal k from the Cix (or Ja(k) using unbiased estimats aa’-s®A7!) is
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k=

.15985% 10 3. In this example, the optimal k for the prediction-oriented criterion is

more conservative than the total mean square error criterion of B(k) and the optimal k
for Ja(k) (using Q) is closer to robust k.

(11

(2]
(3]

(4

5]
(6]
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Figure 1. Efficiency Curve of selection rules using unbiased
estimates aa ’ -s*A™! for aa ’
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Figure 2. Efficiency Curve of selection rules using @ for aa ’
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