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ABSTRACT

Consider the problem of estimating an arbitrary continuous vector
function under a weighted quadratic loss in the multiparameter expo-
nential family with the density of the natural form. We first provide,
using Blyth’s (1951) method, a set of sufficient conditions for the admis-
sibility of (possibly generalized Bayes) estimators and then treat some
examples for normal, Poisson, and gamma distributions as applications
of the main result.
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1. INTRODUCTION

Let X = (X1, X3,--+, X;) be a random vector on X' C R? whose density is
given by

f(z;0) = == g — (61,---,6,) EOCRP.2€ X CRP (1.1)

with respect to some o-finite measure i on X' where © is taken to be the
natural parameter space, © = {6 : [e®?;(dz) < co}. Consider the problem
of estimating a continuous vector function Vr(6) under a weighted quadratic
loss L(0,d) = 3%, Vi(0)(d; — V;r(0))?, where d = (dy,- - - ,dp) € D C RP, the
decision space, and V;(6), i = 1,-- -, p, are positive and differentiable functions
on O.

For general p(> 1), Brown and IIwang (1982) have devcloped a simple and
unified approach using Blyth’s(1951) method for proving the admissibility of
( possibly generalized Bayes ) estimators of the mean vector Vp(0) under a
weighted quadratic loss with a single sequence of priors for all estimators in
the multiparameter exponential family with the density (1.1). Das Gupta and
Sinha(1984), using Brown and Hwang’s technique which is in turn based on
Blyth’s method, gave sufficient conditions for the admissibility of ( possibly
generalized Bayes ) estimators of Vr(#0), other than the mean V(6), under
the sum of squared error losses where r(#) is a function with continuous partial
derivatives. Recently, for p = 1 Kim(1991) obtained, using Blyth’s method,
sufficient conditions of the admissibility of ( possibly generalized Bayes ) esti-
mators of an arbitrary ( piecewise ) continuous function £(6) under a squared
error loss. These sufficient conditions are different from those of Das Gupta
and Sinha (1984) for p = 1. For p > 1, Dong(1990) gave sufficient conditions
for the admissibility of ( possibly generalized Bayes ) estimators of Vr(8) under
a weighted quadratic loss.

The purpose of this thesis is to provide sufficient conditions different from
those of Dong(1990) using Brown and Hwang’s technique for the admissibility
of ( possibly generalized Bayes ) estimators of Vr(0) in the multiparameter
exponential family with the density (1.1) under a weighted quadratic loss.
This result partially generalizes results of Brown and Hwang(1982) for V;(6) =
1,7=1,2,---,p, and Vr(0) = Vy(0), Das Gupta and Sinha(1984) for V;(6) =
l,7=1,2,---,p, and Kim(1991) for an arbitrary continuous function h(6). In
Section 2 we treat some preliminaries includin g Blyth’s method which is crucial
in our analysis. In Section 3 we give, using Blyth’s method, a set of sufficient
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conditions for the admissibility of ( possibly generalized Bayes ) estimators
of Vr(0) under a weighted quadratic loss. Finally, Chapter 4 contains some
examples for normal, Poisson, and gamma distributions as applications of the
main result.

2. PRELIMINARIES

Let X be a random vector with the density (1.1). Consider the problem of
estimating Vr(0), a continuous vector function of 8, under a weighted quadratic
loss

L(0,d) = zpj Vi(0)(d; — Vir(0))%, € ©, de D, (2.1)

where V(8), ¢ = 1, -, p, are positive and differentiable functions and Vr(0) =
(Vir(0),---,V,r(0)), Vir(0) = 0r(0)/00;, i =1,2,---,p.

The convexity of the loss functon (2.1) permits us to restrict attention only
to nonrandomized estimators. See Ferguson(1967, p78) or Berger (1985, p40).
Furthermore, there is no loss of generality in restricting our attention to the
case of a single observation X for, as is well-known, the vector of the sums of
the obervations in a sample of size n from the density (1.1) is sufficient for 8
whose distribution also has the density (1.1).

Consider a prior distribution II(-) with the differentiable density = (-) with
respect to Lebesgue measure. Assume [I(K) < oo for all compact set K C O,
and define for fixed n(# —1) € R! and a € R?,

I(h) = / h(8)el (=+e)-rt (@ gg v € X
e
Assume, for: = 1,2, -,p,

L{|Vi(Vi(0)g(0))]} < o0,z € X, (2.2)

where g(#) = w(0)e~*0—#O+m+1r(®) ig diflerentiable everywhere.
Let 6,(z) have the i** coordinates.

zi+oi | L[Vi(Vi(6)g(9))]

@) = 23T T H+ Do)

=1,---,p, (2.3)
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with the obvious convention that I.[V;(V;(0)g(8))]/oo =0, ¢t =1,---,p. Note
that I.(Vi(8)g(#)) > 0 for all z € X, and hence &% in (2.3) is well defined for
i =1,---,p. Throughout this paper assume that R(#,6,) < oo for all # € O.

Remark 2.1. When O = R?, if for each z € &
I[Vi(0)g(8)] < oo, for all i =1,---,p, (2.4)

in addition to (2.2), then 6,(X) is the generalized Bayes estimator of Vr(6)
with respect to the prior II(§). This can be shown as follows: By integration
by parts, fort =1,---,p,

LIVi(Vi(0)9(0))] = frs Vi(Vi(0)g(0))e(=+)=(r+17(®) dg
= (2 + a)L(Vi(0)9(6)) + (n + DI(Vi(0)g(6))(Vir(8))]. (2.5)

Hence if (2.2) and (2.4) hold, we have, from (2.5),

zitoi  L[Vi(Vi(6)9(0))] _ I:[Vi(6)g(6)Vir(8)]
n+1  (n+1)L(Vi(0)g(9)) L[Vi(6)g(6)]

On the other hand, when © # R?, say O = /{’.'=1((l.', bi), if

8(z) =

lim V;(8)g(6)e@itod=(mt0r®) — g for 4 =1,...,p, (2.6)
B!

in addition to (2.2) and (2.4), then é,(X) in (2.3) is an appropriate generalized
Bayes estimator of Vr(6).

We now introduce the Blyth’s(1951) method for providing the admissib-
lity of estimators, stated below in the form appeared in Berger (1976, p345,
Theorem 3). See also Stein(1955), Farrell(1964), and Berger(1985, p547).

Lemma 2.1. Let {k,} be a sequence of absolutely continuous functions
defined on O satisfying
(1) fo h2(6)x(0)dO for alln =1,2,---;

(2) for all

n=12 yha(6) > K > 0 for all @ in a set C for which
cm(0)do
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(3) hn(0) — 1 ae. (Lebesgue measure) as n — oo.

Consider a sequence {7, } of prior densities with respect to Lebesgue mea-

sure such that m,(8) = A2(0)x(6), n = 1,2,---. Then if
A= /@[R(o,a,) —R(8, 6. )]7a(6)d6 — 0 as n — oo,

then 6,(X) is admissible where &, is the corresponding Bayes estimator with
respect to the proper prior 7,(0).

Remark 2.2. When © =R?,ifforallr € X and 1 =1,---,p,

L[Vi(0)h7(8)g(0)] < oo, (2.7)

and

L{|Vi(Vi(0)hz(0)g(0))]] < oo, (2.8)
then the Bayes estimator &, (X) with respect to 7,(8) = h2(0)7(6) under the
loss (2.1) has the ¢** coordinate
T+ o L{Vi(Vi(0)R3(6)g(8))]

n+1  (n+1)L[Vi(0)hL(0)g(d)]
i =1,---,p. This can be easily seen by using integration by parts. Further-
more, when © # RP, say, © = )%,-zl(a.',b;), if

£, (x) =

(2.9)

,lim Vi(@)h3(0)g(8)cHmten=(rir(®) = o, (2.10)
in addition to (2.7) and (2.8), then é,,(X) in (2.9) is the Bayes estimator with
respect to m,(6) = h2(8)w(0) under the loss (2.1).

3. SUFFICIENT CONDITIONS FOR
ADMISSIBILITY

In this chapter we give the main result which provides sufficient conditions
for 6,(X) in (2.3) to be admissible for estimating Vr(#) under the loss (2.1).

39
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Theorem 3.1. Let II(6) be a prior distribution satisfying (2.2). Assume
that there exists a sequence {h,(6)} of absolutely continuous functions defined
on O satisfying the conditions (1),(2), and (3) of Lemma 2.1. and the condi-
tions (2.7),(2.8), and (2.10). Then 6,(X) in (2.3) is admissible for estimating
Vr(8) under the loss (2.1) if

P
3 /e [Viha(8)]2Vi(8)7(8) d — 0 as n — oo, (3.1)
=1
P
> [ [Villn Vi(®)r(0)}Vi(0)n(0) b < oo, (3:2)
i=1
and
Z / 0)[—c; — Vip(0) + (n + DVir(OFd0 < 0. (3.3)
Proof. By Lemma 2.1, it is enough to show that
/[Raa R(0,6,,)]m(8)d8 — 0 as n — oo,
Now,
p .
=3 AL,
i=1
where

LU ViOIEi() = Vir(0)? - (8, (2) - Vir(0))
flz; 0)p(dz)]7r,(0) dO, fori=1,-

Hence, it suffices to show that Af — 0 as n — oo for each ¢ = 1,---,p. Now,

applying Fubini’s theorem yields

i i i i i (v ]z[(V,-r(()))Vi(G)hf,(B)g(O)]
An - /X(ﬁw(:l:) - 5,r"(:1:)) [(6r(X) + 67\»,,()‘ )) -2 II[Vi(o)h%(o)g(a)]
L [Vi(0) 7 (0)g(0)]u(dx)
= /X [6:(z) — &, (@)L [Vi(0)h2(0)g(0)] u(dx).

(34)
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Substituting (2.3) and (2.9) into (3.4) we have

Al = / [ L[Vi(Vi(9)9(9))] L[Vi(Vi(0)hn(0)9(6))] ]2
" (n+ DLVi()g(0)]  (n+ 1) L[Vi(0)A2(0)9(0)]
Ix[V( )h7(0)g(0)]u(dX)

< /. [I (Vi ()(0»1_Ix[hz(o)vmo)g(o))]r
= (n+1)2 L[Vi(0)9(0) L{Vi(8)h2(0)9(0)]
LIVAO)R2(0)9(6)lu(dz)
L{Vi(9)ha(0)9(6)V:iha(0)]]* 2
R e IRAVOLE PO ER)

= (n_-{—z—l_)?(B" +4A,), say. (3.5)

First, consider the term, A, in the right-hand side of (3.5). Now for each
z € X, using Cauchy-Schwartz inequality,

{L:[Vi(6)ha(0)9(0) Viha(6)]}
L[Vi(0)g(6)h(0)] - I[Vi(8)g(0){ Vihn(6)}7]. (3.6)

Substituting (3.6) into A, yields, by Fubini’s theorem and condition (3.1) of
Theorem 3.1,

An < /Ix(v.-w)g(o)[v.-hn(a)P)u(dx)

= [T OPVO(0)d0 — 0 a5 n > o (37)

Next, consider the term, B,, in the right-hand side of (3.5). Using the
Cauchy-Schwartz inequality and the fact that for all n > 1, h2(f) < M < oo
a.e. (Lebesgue measure) by (1) and (3) of Lemma 2.1, and then apply Fubini’s
theorem yield

B, < 1 [V(O)g(())] Vi(0)g()
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[Vi(Vi(0)g(0))]
< M/ [ V(() (0 ](da:)
= o [ e e e an, (38)
But,
Vi(Vi(0)g(8)) V'.[V;.(g)r(o)e—a.o-w(ﬂ)ﬂvﬂ)r(9)]

{Vi[Vi(0)m(8)] + Vi(0)m(0)[—cii — Vipp(8) + (0 + 1) Vir(6))]}
e~ 0—#(8)+(n+1)r(6) (3.9)

Hence, (3.8) becomes, using the conditions (3.2) and (3.3) of Theorem 3.1 and
(3.9),

B < [ TAHOTOL KOO o Vip(0) (1 + DV O

Vi(0)(6)
< 2 [FIROR 4 vio)a(0)-as — Vir(0) + (n + DT (D)
< oo (3.10)
Recall that, from (3.5),
B, = /X bo(X)p(dz) foralln>1 (3.11)

where, for each £ € X and n > 1,

_ [EIV(Vi®)g(0))]  L[Vi(Vi(0)g(0)r2 (O], ., 2
= [~ o) ”[V'(”)g‘””‘"”)(]é o
Then using condition (3) of Lemma 2.1, (3.12) yields, for all z € X. .
ba(z) =0 as n — oo. (3.13)

Hence, by the Lebesgue’s dominated convergence theorem, (3.10) and (3.13)
gives



SUFFICIENT CONDITIONS FOR ADMISSIBILITY

B,—0 as n — oo. (3.14)

Therefore, from (3.5), (3.7) and (3.14), we have A,' — 0 as n — oo for all
i =1,---,p. Thus, 6;(X) is admissible for estimating Vr(#) under the loss
(2.1) by Lemma 2.1.

There are many choices of the sequence {h,} satisfying conditions (1), (2),
and (3) of Lemma 2.1. When © = RP, we use the sequence {h,} given in
Brown and Hwang (1982) such that

1 et
mw*’{m|m>1

and
1 , o<1
ha(0) =4 11 <o <n (3.15)
0 . 10l>n, n=23,---

and also, when © # RP, we take the sequence {h,} given in Brown and Hwang
(1982) such that

_J L A<t
’“”—{O,Mm>1
and
1 , AB) <1
ha(0) =4 1 -8 . 1<A@B) <n (3.16)

’ A(a)Zn, n=213""

where A%(0) = E In?(|6;]). Note that the sequences (3.15) and (3.16) satisfy

the assumptlons (1) (2), and (3) of Lemma 2.1. Hence, we have the following
corollaries without proofs as applications of Theorem 3.1.

Corollary 3.1. Let © = RP. If

) (0) |
Eszpm|m) (3.17)

63
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where S = {6 : |#] > 2} and the conditions (2.2), (3.2), and (3.3) of Theorem
3.1 are satisfied, then 6,(X) in (2.3) is admissible for estimating Vr(6) under
the loss (2.1).

Corollary 3.2. Let © # Rr. If

Vi(0)m(9)
df < oo, 3.18
,Z; s 07N 0)ln( oy« = (3.18)
where S = {8 : A(f) > 2}, and the conditions (2.2), (3.2), and (3.3) of
Theorem 3.1 are satisfied, then 6,(.X) in (2.3) is admissible for estimating
Vr(0) under the loss (2.1).

4. EXAMPLES

In the following we use Corollary 3.1 for @ = R? and Corollary 3.2 for
O # RP.

Example 4.1. Suppose that X ~ N(#,1,), @ € R?, I, the p x p identity
martrix. Then the density of X is of the form f(z;0) = exp {6-z— 266},
with repect to o— finite measure p(dz) = (27) " %exp {Z TF, :vz}dm where
z € X = RP and § € © = RP. In this case @(f) = 16 - 6. It is desired to
estimate Vr(f) = 8 under a weighted quadratic loss

ie 08 (d; — 6;)?, (4.1)

i=1

where k is a non negative and even integer. Here V;(0) = ¢~ and r(8) = 10-9.
Consider a prior density n(6) = 1. Then with o = 0, g(8) = exp{(n/2)8 - 6},
n # —1. Now, we apply Corollary 3.1. A simple calculation shows that
Condition (2.2) with a = 0 is satisfied for p > 1 and n # —1. Now, we can
easily check that Condition (3.3) with a = 0 is satisfied for p > 1 if n = 0,
and Condition (3.2) is also satisfied for p > 1 if k¥ = 0. Finally, we consider
condition (3.17). Then, transforming to p-dimensional spherical coordinates,

Z/ < p/ ——-1——-d9
{161>2} |0|21n |0| - {lo1>2} |0]2 In? |0]
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0o p—1
= pﬂn / ——r d"'
2

r2ln’r
< oo forp=1,2,

where B, = JT -+ [T [Z sinP 2y sin? Py -sinyp_g - dyr dyg - dy, 1 < oo.
Hence, 6,(X) = X is admissible for p = 1,2 under a weighted quadratic
loss (4.1) with k¥ = 0 by Corollary 3.1. Beak(1990) showed that for p > 3
§(X)={1-(p—2)/(ZF, |X:|”*)*} X, b > 1, dominate §,(X) = X under the
sum of squared error loss and hence 6,(X) = X is inadmissible for p > 3 under
the sum of squared error loss . Note that b = 1 gives the ordinary James-Stein
estimator.

Example 4.2. Let X be as in Example 4.1. It is desired to estimate
Vr(#) = 6 under a weighted quadratic loss

L0, d) = 31+ 697 (ds — 6, (42)

=1

Here V;(0) = (14 67)"" and r(#) = 10 - 6. Conder a prior density
P
w(0) = [I(1 + 67) exp{—(n/2)0 - 6}, # —1.
i=1

Then with a = 0, g(0) = f[l(l + 0?). Now, we apply Corollary 3.1. Con-
dition (2.2) with a@ = 0 is trivially satisfied for p > 1 and 5 # —1. The
conditions (3.2) and (3.3) are equivalent in this case. And, it can be eas-
ily shown that Condition (3.3) with @ = 0 is satisfied for p > 1 if n > 0.
Finally, a simple calculation shows that condition (3.17) is satisfied only for
p =1and n > 0. Hence, 6.(X) = X/(np+ 1), » > 0, is admissible for
p = 1 under a weighted quadratic loss (4.2). In particular, 6,(X) = X
is admissible for p = 1. Brown(1980) showed that the estimator §;(X) =
X; —c(sgn X)X P/H{Z I Xl i =1,--+,p,0 < ¢ < 2[3p—4]; p > 2 dominates
6-(X) = X for p > 2, and hence 6,(X) = X is inadmissible for p > 2 under a
weighted quadratic loss (4.2).

Example 4.3. Suppose that X; ~ Possion(};), \; > 0,7 =1,---,p and
X; are independent. Then X = (Xj,:--, X,) have the density
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p
= H[e—)\iAfi](‘zi!)_lvl‘i = 07172' e a’\i > O,Z = ]-7' P

with respect to counting measure. Now we rewrite the density as the reparametrized
form with In A\; = 6; for ¢ = 1,---,p. Then, the density of X is of the form

f(z;60) = exp(6 - :E—Ze ),0 € 0= R”:EEA-—A._1{0,1, -}

i=1

) 4
with respect to o—finite measure u(z) = (H z;!)~1- (counting measure). In

this case Lp(O) Z exp{0;}. We want to estimate V;r(6) = exp{6;} for

1=1,---,p under a Welghted quadratic loss

P

L(0,d) =Y e % (d; — % )2, (4.3)

=1

Here V;(8;) = exp{—6;} and r(8) = F_, ¢%. Consider a prior density
P
9) = H eea—n-eXP{oa}’n # —1.
i=1

Then with a = 0, ¢(6) = H e, We apply Corollary 3.1. Condition (2.2)

with a = 0 is trivially satlsﬁed for p>1and 5 # —1. It is enough to check
Condition (3.3) because the Conditions (3.2) and (3.3) are equivalent with o =
0. Then we can easily show that Condition (3.3) is satisfied either for p = 1 if
n > 0, or for p > 2if n = 0, and Condition (3.17) holds for p = 1 if n > 0. Thus
6-(X) = X/(1+1n), n >0 is admissible for p =1 under a weighted quadratic
loss (4.3). In particular, §,(X) = X is admissible for p = 1. Clevenson and
Zidek (1975) showed that for p > 2, 6(X) =[1 - (p—1)/{Eo; Xi + p— 1}]X
dominates 6,(X) = X, and hence 6 (X) = X is inadmissible for p > 2 under
a weighted quadratic 1oss (4.3).

Example 4.4. Let X = (Xj,---,X,) have the density
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,IEI ALz p
f(x; A) = E}_f_;(_.s_)_e—/\.‘-x:"z c X —_ Xi:l(oa OO)

A= (A, ,Ap) € )%;:1(0,00) with respect to Lebesque measure. Now we
reparametrize —A; = 0;, for : = 1,---,p. Then X have the density of the of
the form

0.x+s In(-6;)
f(z;0) =e 2:;

with respect to o—finite measure p(dzr) = [ﬁ 2371 /{T?(s)}] dz where § € © =
=1
)p(,-zl(—oo,O),w EX = )%;:1(0,00) Then ¢(0) = —s Z In |0;| and we want to
estimate V;r(8) = 1/|6;|, i =1,---,p under a welghted quadratic loss
»
L(8,d) =10 +*(d; — 1/16;])*,m is an integer. (4.4)
=1 '
Here, V() = |0;|™*? and r(0) = f: In(—#6;). Fix n # —1, « € R? and consider
i=1

a prior distribution [] with the density #(0) = ﬁ |6;|"=*~™=1. Then with
i=1

a=0,g(0) = I] |6;|"™=2. We apply Corollary 3.2. Condition (2.2) with

a=0is tr1v1ally satlsﬁed Simple algebra shows that Condition (3.3) with
a = 0 is satisfied for p > 1 if n = s — 1. Finally, Condition (3.18) is satisfied if

Z/ 10:17 7 TT; 4 10,
= J{seo:A(8)>2} A%(0) In*(A(6))

df < oo.

A lengthy calculation by transforming to p-dimensional spherical coordinates
shows that this requires either p = 1if n = sorp=2ifnp = s and m = 0.
Therfore Corollary 3.2 fails. In this situation Dong(1990) showed by using
different sufficient conditions that §,(X) = X/(s + 1) is admissible either for
p =1 or for p =2 and m = 0 under the loss (4.4). Also, Berger(1980) showed
that for p > 3,m = 0, {X;/(1+3s)}1 = {c(1+3) In X;}/{b+ ¥ s(s+1)(In X;)?}]
dominates 6,(X) = X/(s+ 1) where s > 3, 6> 0, and



68

Kyung-Hwa Dong and Byung-Hwee Kim

0coc  2p=2=F(s + )7 =3 [T /(s + 1]}
= 1+ (2p/b) + (16/[27bp] + b=2[dp + > {s(s + 1)} '/*°

On the other hand, Das Gupta (1986) showed that for p > 2,m # 0, { X;/(1+

8)} + X2 (IB[ X7 ™2y dominates 6,(X) = X/(1 + s).
i=1

(1)

(2)

(3)

(4)

(5)

(6)

(7

(8)
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