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ABSTRACT

In this article, we consider two sample problem with randomly right cen-
sored data. We propose two-sample confidence intervals for the difference in
medians or any quantiles, based on bootstrap. The bootstrap version of two-
sample confidence intervals proposed in this article is simple to apply and do
not need the assumption of the shift model, so that for the non-shift model,
the density estimation is not necessary, which is an attractive feature in small
to moderate sized sample case.

KEYWORDS: Bootstrap, Kaplan-Meier estimator, confidence interval, qu-
antile, Martingales, Monte Carlo study.

1. INTRODUCTION AND SUMMARY

We consider two sample problem with randomly right censored data. For the z
sample, we assume that X, ..., X,, are independent and identically distributed with
a distribution function F (i\i‘/i Fyand Cy,...,Cy CH. Xs represent survival times,
C’s represent censoring times. Survival times and censoring times are assumed
independent. We observe only (T;,6;) where T; = min(X;,C;);6; = I(X; < C;).
For the y sample, we assume Y;,...,Y, iy G; Dy,...,D, ¢ K. We observe only
(U;,n;) where U; = min(Y}, D;);ni = I(Y; < D;). The y sample is assumed to be
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independent of the z sample. Let F,, and G,, be the Kaplan-Meier estimators of F
and G.

The Kaplan-Meier estimator (KME, Kaplan and Meier 1958) of F' is defined as

Fot)y=1- T[] (m—_i>6(') (1.1)

T <t m-—1+1

where T(y) < T() < -+ < Ty and 61y, 63y, - - ., 6(m) are the §’s corresponding to
Tt1y, T(2)y- - - (m) respectively. The KME of G can be defined similarly. It should be
noted that: (i) if censored and uncensored observations are tied, we take the con-
vention that the censored observations occur just after the uncensored observations;
(ii) if the last observation is censored, F,,(t) in the formula (1.1) never reduces to
0 and thus in some samples F,,(t) may not be a distribution function, that is, it
gives positive probability to +o0o. Regarding convention (ii), when we wish to gen-
erate random variables from (1.1), we actually use any distribution function which
allocates the mass at 400 to a point greater than Tim)-

For randomly right-censored data, two-sample nonparametric tests based on
ranks have vast literature; Gehan (1965), Efron (1967), Prentice (1978), and Brook-
meyer and Crowley (1982), among others. But two-sample confidence intervals for
the difference in two population medians have received little attention until Wang
and Hettmansperger (1990). Their confidence interval was constructed by subtrac-
tion the endpoints of one sample quantile interval from the opposite endpoints of
the other, where endpoints are in the form of KME. To achieve the specified overall
level «, they show three ways to select the confidence coefficients for the one-sample
quantile intervals under the assumption of the shift model. For the Behrens-Fisher
problem, where we test whether two populations have the same median but may
differ in shape, the confidence intervals by Wang and Hettmansperger (WH) need
the estimation of densities of two populations, which usually requires large samples.

In this article, we propose two-sample confidence intervals for the difference in
medians or any quantiles, based on bootstrap. Bootstrap methods for censored
data have been proposed by Efron (1981). Various one sample bootstrap confidence
intervals for quantiles can be found in Kim (1990).

Let us state the general idea of the bootstrap (see Efron and Tibshirani, 1986).
We have a random quantity of interest B = n(D, P), which is a function of both
the data D and the unknown probability mechanism P that generates D. We
wish to estimate some aspect of the distribution of R. We assume that we have
some way of estimating the probability model P from the data D, producing P.
Once we have ]5, we can generate D* from P by Monte Carlo methods, so that we
observe R* = n(D*,ﬁ). The idea of the bootstrap is to estimate some aspect of
the distribution of R by that of R*. For example, we use the bootstrap distribution
of R* = (G Y(p) — FrY(p)) — (G (p) — F;}(p)) to estimate the distribution of
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R = (G;}(p)—F;'(p))— (G ' (p)— F~'(p)), where G}, and F}, are bootstrap versions
of KME’s for G,, and F,, respectively. Considering now the asymptotics, suppose
that the random quantity R has a limiting distribution L. If as n — oo the
distribution of R* converges a.s. to L, we shall say that the bootstrap is consistent
for R or that the random quantity R* has the valid limiting distribution.

The consistency of the bootstrap for R = (G (p)— F;'(p)) — (G~ (p)— F~*(p))
is proved in Section 2. In Section 3, details of how to construct bootstrap confidence
intervals for quantiles are described. And also simulation studies are reported for
the small sample performance of bootstrap confidence intervals and the confidence
intervals by WH. Finally the bootstrap confidence intervals are obtained for a real
data set in Section 4.

The bootstrap version of two-sample confidence intervals proposed in this article
is simple to apply and do not need the assumption of the shift model, so that for the
Behrens- Fisher problem (or non-shift model), the density estimation is not necessary,
which is an attractive feature in small to moderate sized sample case. It has been
found in simulation study that the bootstrap confidence intervals are wider than the
WH confidence intervals under the shift model, which seems to be a trade-off for
the robustness of bootstrap confidence intervals to the underlying model. However
it should be noted that

(i) the confidence intervals based on bootstrap guarantee the specified confidence
coefficient 1-a whether two underlying distributions differ in shape or not;

(ii) the bootstrap confidence intervals can be applied for the estimation of any
quantiles, whereas the WH intervals are only for the medians.

2. THEORETICAL BASIS

In this section, the theoretical basis is given for using the bootstrap distribution
of R* = (G:"Y(p) — F:7'(p)) — (G;'(p) — F,'(p)) to estimate the distribution of

n m

R = (G (p) - F;\(p)) — (G~'(p) — F\(p)).

Theorem 1. Let F' and G be continuously differentiable functions with posi-
tive derivatives, and let £} and G be the Kaplan-Meier estimator for F,, and G,
computed from the resampled data. Let 0 < p < 1. Then it follows that as n and
m tend to infinity

Q" = vn(G; N p) - G, (p)) — vVm(F 7 Hp) — F M (p))

for almost all sequences (11, 6;),(1%,82),.-.; (Uy,m), (Uz,m2),... and
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Q= V(G (p) = G7(p) — Vm(F, ' (p) — F~\(p))

have the same limiting distribution on [0, 7] for any 7 < T' = sup{t : (1 — F(¢))(1 —
H®)(1 - G)(1 - K(1)) > 0},

Proof. It should be mentioned that we consider the conditional distribution of
Q" for almost all sample sequences. That is, given w € 2, we have a specified
sequence (11,6,),(T3,62),...; (Ui,m),(Usz,m2),.... Conditionally on this sequence
we can obtain the distribution of @* for each m and n. And this can be done for
almost all w € Q.

Akritas (1986) proved that \/m(£(-) — F,(-)) for almost all sequences (T3, 8, ),

(12,62),- .. and \/m(Fn(-) — F(-)) have the same limiting distribution on [0, 7] for
any 71 < sup{t: (1—F(t))(1—H(t)) > 0}, using the theory of martingales for point
processes. Hence, \/n(G}(-) — G.(-)) for almost all sequences (D1, m), (D2, 72), . ..
and /n(G,(-) — G(-)) have the same limiting distribution on [0,73] for any <
sup{t : (1 — G(t))(1 — K(t)) > 0}. For the asymptotics of quantiles we need the
result of Doss and Gill (1992). Stating the result heuristically, if the distribution
of \/m(F(t) — Fn(t)) is close to that of \/m(F,(t) — F(t)), then the distribution
of vm(F; 1 (p) — F;'(p)) is close to that of /m(F;'(p) — F~(p)). For a strict
statement, see Theorem 2 of Doss and Gill (1992).
. Since \/m(F(-) — F»(-)) has the valid limiting distribution, we can conclude
that /m(F"'(p) — F;;*(p)) also has the valid limiting distribution from the above
result. The same fact holds for \/n(G;™'(p) — G;'(p)). Now being the z sample
and y sample independent, we can conclude that @* and @ have the same limiting
distribution by Theorem 3.2 and 5.1 in Billingsley (1968). O

Since () and @Q* have the same limiting distribution, we can say that the distri-
bution of (G37'(p) — G} (p)) — (Fi~'(p) — F;'(p)) is close to the distribution of
(G (p) — G (p)) — (F,'(p) — F~'(p)) for large m and n. (The argument for the

n

reason of this is as follows: Since /m(Fx"!(p) — F'(p)) 5 Wi, Frlp)—F;(p) =~
W, /+/m. For the exact form of the random variable W), see Theorem 2.1 in Akritas
(1986) and Theorem 2 in Doss and Gill (1992). Similarly G;*(p)—G~1(p) =~ W,/ /7.
Hence (G;7'(p) — G (p)) — (Fi7 ' (p) — F:(p)) = Wy/\/n — W1 /+/m, which is also

the approximate distribution of (G;'(p) — G~!(p)) — (F;}(p) — F~1(p)) for large m
and n.) This fact validates the use of the bootstrap distribution of

R = (G 7N p) — F 7 (p)) — (Gl (p) — Fi' (p))
for the distribution of

R= (G (p) - F(p)) — (G™'(p) — F7'(p)).

However we will work on |R*| instead of R*. It was pointed out in Burr and
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Doss (1990) that the use of R™ in one sample case gives the low coverage probability
problem. The details of how to construct the confidence interval for G~(p) — F~(p)
are described in the next section.

3. MONTE CARLO STUDY

In the previous section, we have shown that as n and m tend to infinity, the
bootstrap confidence intervals for G™!(p) — F~'(p) have the valid limiting distribu-
tion. Simulation studies are reported in this section that assess the small sample
performance of the bootstrap confidence intervals.

Let us first describe how to resample. Efron (1981) introduced the following two
bootstrap methods for censored data and showed that they are distributionally the
same. For z sample,

Method 1. Draw an iid sample of pairs (T5,87),...,(Tx,6r,) from the m pairs

(T1,61),- - -, (Trm, 6m), in which each pair (77, 6F) takes the values (T3, 6;) with prob-
ability 1/m, 7 =1,...,m.

Method 2. Generate X* ~ F,,, and C’ ~ H,,, where H,, is the KME of H
defined by the right side of (1.1) except that é; is replaced by 1 — §(;). Then form
(Tr,67), where T* = min(X],C}), 6 = (X7 <Cr),i=1,...,m.

In the same manner, two bootstrap methods above can be applied for the y
sample. Even though two bootstrap methods are equivalent, we use both methods
in the simulation study to have a guideline on the proper number of resampling, say
B.

Now let us describe how to construct a bootstrap confidence interval for the
difference in quantiles when given a set of z and y sample, (T1,61),...,(Tm,bm);

(U17 nl)v' . '1(Un’ T]ﬂ)

Step 1. Take a set of bootstrap samples, (17, 67),...,(Tn, 65 ); (UT,n1),---, (U,
n7). From this set of bootstrap samples, we obtain F;"!(p) and G '(p), the pth
quantiles of F* and G, where F, and G, are bootstrap versions of KMEs of F,

nl
and G, respectively.

Step 2. Repeat Step 1 B times, obtaining B pairs of bootstrap pth quantiles
Fri )@, G )W, - B (0) P, G (p) P

Step 3. Construct a bootstrap confidence interval (L,U) for the difference of
quantiles G !(p) — F.;'(p) using the bootstrap distribution of
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| (G==Y(p) — Fx"Y(p)) — (G (p) — F;'(p)) | and the simple percentile method.

n m

In Step 3, instead of the percentile method we might use a studentized quantity
of G;1(p) — F;'(p) whose bootstrap version is

(G '(p) = F;7Up)) — (G (p) — F'(p)
&(Gy Y (p) — Fi'(p) '

(3.1)

But this method is too time consuming since the evaluation of 6(G% !(p) —
Fx~1(p)) involves two ”layers” of bootstrapping, so that we were not able to study
the bootstrap confidence intervals based on T-like quantity as in (3.1).

We used the smoothed version of the usual cdf (CDF) to get the quantile: for
t equal to an uncensored observed time, CDF*™°°th(¢) = ;(CDF(t—) + CDF(2)).
Linear interpolation was used to fill in the values of CDF*™°°"(1) between the prob-
ability mass points.

For Monte Carlo study, we generate 1,000 sets of artificial z and y samples. Both
failure times and censoring times are generated from exponential distribution with
parameter A, i.e. f(z) = Ae™**,z > 0. The censoring weight can be adjusted by
the values of the parameter \. We shall consider equal values of A for failure time
distribution and censoring time distribution, which gives 50% censoring weight.

For each set of data, we obtain a bootstrap confidence interval for the difference
in quantiles as described in Steps 1-3. A WH confidence interval is also constructed
for the purpose of comparison. Wang and Hettmansperger(1990) consider three
ways to construct the confidence intervals for the difference in medians, and recom-
mend the intervals with equal confidence coefficients, which we implemented in the
Monte Carlo study. The small sample performance of bootstrap confidence inter-
vals is compared with that of WH confidence intervals by two criteria; width of the
confidence intervals and the actual coverage probability computed from 1,000 sets
of data.

The result of Monte Carlo study is summarized in Table 3.1 and 3.2. The
coverage probability comes from 1,000 simulations (simulated sets of data). For each
simulation, we resample 400 times. We found that a larger number of bootstraps
gave different and more reliable results for particular samples, but the conclusion
of our study seems to be nevertheless reliable by averaging over 1,000 simulations.
(Note that two results by bootstrap Method 1 and Method 2 are quite close.)

In table 3.1, the shift model is assumed, where F, H, G and K are all ex-
ponential distribution functions with A = 1. Thus the true difference of medians
(A =G (3)—F7'(3)) is zero. It is observed that WH intervals show more efficiency
(narrower width with the specified confidence level, 1 — o = .95, achieved).

A non-shift model is assumed in Table 3.2. We observe that WH intervals assum-
ing the shift model do not guarantee the specified level, while the bootstrap intervals
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do. Wang and Hettmansperger propose another intervals for the non-shift model,
which requires the estimation of densities at medians. For small to moderate sized
sample with censoring, the estimation of density may not be sensible. Also in the
practical application, it may be obscure to tell whether the observed data comply
with the shift model or non-shift model. In those cases we may safely apply the
bootstrap methods. Moreover the bootstrap interval has another advantage that it
can be used for the estimation of any quantiles other than median.

Table 3.1. Confidence intervals for the difference between two medians
under a shift model.
(Sample sizes; m=n=40. A’s for F, H, G, and K are 1. F7Y (1) =G7(3) = 693
A = 0. 1,000 simulations and 400 bootstraps. The entry in parentheses is the estimated
standard error.)

Method 1 Method 2 WH
C.P. L.B. U.B. C.P. L.B. U.B. C.P. L.B. U.B. | Ratio
0.963 -0.706 0.702 | 0.969 -0.709 0.705 | 0.952 -0.566 0.565 | 0.85
(.006) (.015) (.015) | (.005) (.015) (.015) (.007) (.011) (.011) { (.01)

Table 3.2. Confidence intervals for the difference between two medians

(Sample sizes; m=n=40. X’s for F' and H are 1, X’s for G and K are 3. F‘l(%) = .693,

under a non-shift model.

G™Y(3)=.231; A = —.462. 1,000 simulations and 400 bootstraps. The entry in
parentheses is the estimated standard error.)

Method 1 Method 2 WH
C.pP. L.B. U.B. C.P. L.B. U.B. C.P. L.B. U.B. | Ratio
0.955 -0.993 0.029 | 0.952 -0.992 0.028 | 0.931 -0.879 -0.115} 0.80
(.007) (.013) (.009) | (.007) (.013) (.009) | (.008) (.011) (.006) | (.01)

Key to Tables 3.1 and 3.2:

C.P.=observed coverage probability of confidence intervals.

L.B. (U.B.) = average of lower(upper) bound of 1,000 confidence inter-
vals

Ratio= average of 1,000 ratios of the width of WH interval to the aver-
age of two widths of bootstrap intervals by Methods 1 and 2. The
estimated standard error of Ratio (average ratio) was obtained from
1,000 ratios.
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4. AN APPLICATION TO REAL DATA

In this section the bootstrap methods are applied to a real data set. In the
period of 1964-73, 225 patients with malignant melanoma (cancer of the skin) had
radical surgery performed at the Department of Plastic Surgery, University Hospital
of Odense, Denmark. All patients were followed until the end of 1977. The survival
time since the operation was censored by death from other causes and also by the
termination of the follow-up period. A full listing of the data is given in Andersen,
Borgan, Gill and Keiding (1993). In analyzing this data set, it was found that sex
was a significant risk factor, with men having higher risk than women; see Andersen
et al. (1993). The data stratified by sex is summarized in the next table.

uncensored censored | total
men 31 56 87
women 29 109 138
total 60 165 225

Let X’s and C’s denote the survival time and the censoring time respectively
associated with male patients, while Y’s and D’s with female patients. And let
F and G be the distribution functions of X and Y respectively. We can com-
pute F, and G,, KME’s of F' and G, from the observations (11,61),...,(Tm,6m);
(Ursm),- -y (Un,nn), where T; = min(X;, C;), & = I(X; < C;i); U; = min(Y;, D;),
n: = I(Y; < D;). The estimated survival curves for men and women, 1 — F,,(¢) and
1 — G,(t), are depicted in Figure 1. We consider the difference between two pth
quantiles, i.e. A = G~'(p) — F~!(p). We notice in Figure 1 that the inference for
the median survival times is not feasible due to the heavy censoring of the data set.
Therefore the WH interval is not applicable here.
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Figure 1. Survival Curves for men and women

We examine the bootstrap confidence interval for A with p = .2 and .15. We
chose these values of p based on the distributional property of KME’s, rather than
the practical reason. It is known that the accuracy is low in the tails (i.e. around
the last uncensored observations) of KME’s. Hence more sensible inference for A
can be done around the median of uncensored survival times. Three quartiles of
uncensored observations for men and women are shown in the next table. The
median of uncensored survival times for men is 967, which lies between .2th and
.15th quantiles of F,, (F7'(.2) =977, F;'(.15) = 769). We observe the same thing
for women (Q, = 1854, G;'(.2) = 2156, G';'(.15) = 1642).

o Q2 Qs
men 625 967 1086
women | 1252 1854 2021

Table 4.1 shows the bootstrap confidence intervals for A with p = .2. The 95%
confidence interval contains zero, but the 90% confidence interval does not. We can
say that there is mild evidence that the time of 80% of male patients surviving differs
from the time of 80% of female patients surviving. The 95% bootstrap confidence
intervals for A with p = .15 are shown in Table 4.2. We can reject the hypothesis
that two .15th quantiles are equal at the significance level .05.
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For Tables 4.1 and 4.2, the number of bootstraps was 4,000. Note that two re-
sults for bootstrap methods 1 and 2 in each table are pretty close with this number
of bootstraps. A larger number of bootstraps would give more reliable results.

Table 4.1. Bootstrap confidence intervals for the difference between two
.2th quantiles.
(Sample sizes; m(for men)=87, n(for women)=138. F;!(.2) = 976.6, G;!(.2) = 21564,
A = G;(.2) - F;*(.2) = 1179.8. Number of bootstraps=4,000.)

Method 1 Method 2

1-a L.B. U.B. Width L.B. U.B. Width
95 | -1320.4 3679.9 5000.3 | -1358.9 3718.5 5077.4
.90 79.2 2280.4 2201.1 67.8 2291.8 2224.0

Table 4.2. 95% bootstrap confidence intervals for the difference between
two .15th quantiles.
(F'(.15) = 768.5, G;(.15) = 1641.7, A = 873.3. Number of bootstraps=4,000.)

Method 1 Method 2
L.B. U.B. Width | L.B. U.B. Width
149.0 1597.5 1448.5 | 158.6 1588.0 14294

Key to Tables 4.1 and 4.2:

1 — a = confidence coefficient.
L.B. (U.B.) = lower(upper) bound of bootstrap confidence intervals.

Width = width of interval, i.e. U.B. — L.B.
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