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ABSTRACT
Given the specific mean shift outlier model, the score test for multiple

outliers in nonlinear regression is discussed as an alternative to the likelihood
ratio test. The geometric interpretation of the score statistic is also presented.
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1. INTRODUCTION

For routine regression diagnostic work, we prefer hypothesis testing which can
be easily constructed using standard regression software. Methods that are based on
the maximum likelihood estimates often require special and complicated programs,
and are not well suited for this purpose. The score statistic provides a suitable
diagnostic test.

In this article, we consider the problem of testing for multiple outliers in nonlinear
regression. We proceed by first specifying a mean shift outlier model, assuming the
suspect set of outliers is known. Given this model, we discuss standard approaches
to obtaining score statistic for outliers and provide its geometric interpretation.

In other applications, diagnostics based on the score test have been proposed by
Atkinson(1981, 1982), Cook and Weisberg(1983), Lawrance(1987), Tsai(1988), St.
Laurent(1990), and others.
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2. OUTLIERS IN NONLINEAR REGRESSION

The standard nonlinear regression model can be expressed as
yi = f(x:,0) +e, 1=1,2,---,n,

in which the i-th response y; is related to the g-dimensional vector of known ex-
planatory variable x; through the known model function f, which depends on p-
dimensional unknown parameter vector 8, and ¢; is error. We assume that f is
twice continuously differentiable in @, and errors ¢; are independent, identically dis-
tributed normal random variables with mean 0 and variance o?. In matrix notation
we will write,

Y =1(X,0) + ¢, (2.1)
where Y is an n-dimensional vector with elements vy, ¥, - -, ¥, X is an n X ¢ matrix
with rows xT,xT ... xI| € is an n-dimensional vector with elements €, €3, -, €,,
and f(X,0) = (f(x1,0), f(x2,0), -, f(%x,6))".

Suppose we suspect in advance that m cases indexed by an m-dimensional vector
I = (¢1,%2, " ,%m), are outliers. It can be helpful to write the model as
{yi = f(x:,0)+ 6 +¢€, foriel
Yi = f(Xi,O)—{'-C,', for 2 ¢I,

which is called the mean shift outlier model. In matrix notation we may write,

Y =£(X,8) + D6 +e, (2.2)

where § = (6;1, 62, - 5,~m)T and D = (d;,d,,---,d), and d; is the ¢;-th standard
basis vector for R".
We denote the log-likelihood for model (2.2) by L(O §,0?%) and obtain
L(6,6,0%) = _% log 0% — 2—3(Y —£(X,0)— D§)T(Y — £(X,6) — D$)
a

. |
- __ 2 _
=3 logo 2025(0,5), (2.3)

where 5(0,8) = (Y — £(X,0) — D§)T(Y — £(X,0) — D6). Given 0%, (2.3) is
maximized with respect to ¢ = (8,8) when 5(8, §) is minimized at the least squares
estimates ¢ = (0(1),5) Furthermore, dL/do? = 0 has solution ¢ = 5(8,8)/n,
which gives a maximum for given ¢ as the second derivative is negative. This
suggests that ¢ = (8 1),6) and &7 = 5(9(1),3)/71 are the maximum likelihood
estimates. Under the null hypothesis § = 0, the maximum likelihood estimates are
Go = (8,0) and 62 = $(0,0)/n, which are the maximum likelihood estimates of
model (2.1). :
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The testing of the hypothesis § = 0 is equivalent to testing whether m cases
in the set I are outliers. In the next section, we consider procedures for testing

Hy: 6 = 0 against H; : § # 0.

3. SCORE TEST

The score test or Lagrange multiplier test is a widely applicable method of test
construction that provides a convenient alternative to the likelihood ratio test. The
score statistic, due originally to Rao(1947) and developed further by Silvey(1959),
1s given by,

S = U(do) I(¢ho) " Ulgho),

where,

& L(¢)
OpdpT

U(@) = 222), and () = B(16)) = - B

)

We have the vector of efficient score,

AL(6,0) 8L(0,6))T
a0 98

U(¢) =U(8,8) = (

and the observed information matrix,

_0*L(6,8)  9°L(8,8)

_ _ [Tu(8,6) 15(8,8)] _ 00007 90067
I@)=16.9)= |1, (6.6) 1.0,6)] = | 9°L(6,86) 0°L(8,6)]"
9606" 0606"
where each of the first derivatives is given by
oLe,s) 1 . B r, Of
L 5 o —];— . . T
55 = 02(Y f(X,0) - D6)' D,
and the second derivatives are given by
0°L(6,6) 1, of p, Of O*f
= —— (=) (—=7F) — (=Y — f(X,0) — D6
) = ) (o) — s (Y — (X, 8) — DB)),

o’L(6,6) 1, oOf

T
= ——(—=)TD
00087 02(50T) ’
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W_L(_Q_,Q = __I_DTD — __1_1
9606" o? o™

Let e be the n-dimensional ordinary residual vector, where e =Y — f(X,é). We
define e; to be m-vectors whose j-th element is e;;. Under the null hypothesis § = 0,
the efficient score U(g,) is given by

1

~

o2

U(s) = U(0,0) =

DT(Y - f(X,9))

and the observed information I(¢,) is

ﬁ i=1 3

7 5 VTV ~ . U7
(go) = 1(6,0) = [(0) Tulf.0)] _ 1 VIV -3 W VID
0 ’ 121(0,0) 122(0,0) DTV I

where V = V(8) and W = W(8) are f/08” and 9*f/0098” evaluated at g,

respectively. The expected information matrix is Z(¢)

. , VIV VTD
7,,(8,0) Tp(8
6

Z(60) = 70,0 = BU6.0) = [743'0) 7610 | = 3

DTV I,

Using Z(¢b,)~" to estimate variance, the score statistic for the test § = 0 is

S = U(o)TT(cho) ' U(by)

) [ ] VIV VD] ' [0
= == 0 e:}"

& D'V I, e;

1 A A A _ A _
= g—z-eIT(Im—DTV(VrV) 'WID) te;

1 A
= —e; (L. — Hi) ey,
g

where H; is the m x m minor of H = V(VTV)’lvT with rows and columns indexed
by I. The asymptotic distribution of S is a chi-square distribution with m degrees
of freedom under appropriate regularity conditions. (Gallant, 1987, p. 87; Seber
and Wild, 1989, p. 230)

When the candidate cases for outliers are unknown, the test is usually based on
the maximum value of S for all subsets of size m. A multiple testing procedure, such
as one based on the Bonferroni inequality must be used to find significant levels.
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If the observed information I(¢,) is substituted for the expected information
I(¢y), the statistic is

S, = U(p) I(ehy) "' U(y)

n -1
1 VIV - eW;: VID 0
= ~2 [0 e?] 1=1
o ~
DTV I, er
1 N
= &281T(Im - DTV(VTV - ;e,-W,-) 1‘/TD) 1e1.

The asymptotic properties of this score test are not changed (Cox and Hinkley, 1974,
p. 302; Atkinson, 1985, p. 93).

4. EXAMPLE

To illustrate the results of the previous section we present a numerical example
using the data and the model taken from Clarke (1987). The data examines the
weight of cut grass as a function of the weeks after commencement of grazing in a
pasture for 13 cases. The proposed model is the Mitcherlitz equation,

f(z;,8) = 05 + Ozexp(b12;).

First we assume that we have a single outlier (m = 1) with location unknown.
The score statistics for each case are calculated and listed in Table 1(a). At nominal
level 0.05, the score test for a single outlier will reject if maximum S is larger than
x20.0s/13(1) = 8.355, where x*,(m) is the upper a point of the chi-square distribution
with m degrees of freedom. Since the maximum score statistic, S = 5.52599 for case
6, is less than this value, no evidence is provided that this case is an outlier. However,
if we suspect in advance that case 6 is an outlier, the critical value x2o.0s(1) = 3.841,
would suggest that this case is an outlier. Next, we assume that there are two
outliers (m = 2) and the 10 largest statistics among 78 test statistics for each pair
of 13 cases are listed in Table 1(b). Since the critical value for the multiple outlier
test at level 0.05 based on Bonferroni bound is x%p0s/78(2) = 14.705, none of the
pairs would be declared as outliers by this test.
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Table 1. Score Statistics

(a) m=1 (b) m=2

I S I S

6 5.52599 6, 7 8.93116
13 2.22498 6, 12 7.22563
7 1.75233 6, 13 7.04883
1 1.73959 1, 6 6.55839
5 1.58503 5, 6 6.12461
12 1.51284 2, 6 6.07855
3 1.01087 3, 6 6.02944
9 0.95109 6, 9 5.96888
2 0.70646 4, 6 5.88413
10 0.47200 6, 10 5.76124
4 0.02434

8 0.01529
11 0.00451

5. REMARKS

The likelihood ratio test is based on the maximum likelihood estimate, ¢ =
(0(1), ;5) that require refitting of the nonlinear regression model (:1) times when the
location of outliers 1s unknown. The score test does not require the knowledge of
the maximum likelihood estimate ¢; fitting of model (2.1) is all that is needed.

The score statistic compares the derivatives of the log-likelihood at ¢, to its
standard error. Buse(1982) suggests a simple diagram which represents the score
statistics. Suppose that the vector § consists of only one element. If we now plot the
log-likelihood function, the score statistic takes the squared departure of the slope
of the log-likelihood function evaluated at & from the slope evaluated at §, which
1s zero, weighted by the inverse of the curvature evaluated at §;. This curvature is
identical to the curvature of the quadratic approximation of the log-likelihood whose
first and second derivatives are the same as those of the log-likelihood at 8,. This is
illustrated in Figure 1. If the log-likelihood function is exactly quadratic, which is
the linear model case, the log-likelihood function and the quadratic approximation
are identical.

The score test can be quite different from the likelihood ratio test since the
former 1s based on the linear approximation. An important assumption used in
these methods is that the expectation surface in the neighborhood of  is flat, so
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that the tangent plane at # provides an accurate approximation. The accuracy of
the score test can be investigated using curvature measures, and needs further study.
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Figure 1. Score Statistic for Testing Hy : § = &



