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ABSTRACT

The multicollinearity problem in a multiple linear regression model may
present deleterious effects on predictions. Thus, it is desirable to consider the
optimal fractions with respect to the unbiased estimate of the mean squares
errors of the predicted values. Interestingly, the optimal fractions can be
also illuminated by the Bayesian interpretation of the general James-Stein
estimators.
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1. INTRODUCTION

The presence of multicollinearity in a multiple linear regression model has a
number of potentially serious effects on the least squares(LS) estimates of the pa-
rameters. Thus, some alternative estimation techniques to the LS method have
been introduced to remedy the problems caused by serious multicollinearity. Since
the concepts of the alternatives are based upon shrinking the norm of the LS esti-
mates of the coefficients, the resulting estimators become biased. Some of them are,
for example, ridge estimator, principal components estimator, Stein-type estimator,
Marquardt’s fractional rank estimator, etc.
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However, it has been said that multicollinearity does not seem to necessarily
have as deleterious effects on prediction as it does on the LS estimated coefficients
because the quality of the prediction depends upon the location of the point at which
one needs to predict. In other words, there are some regions in the regressor space
where prediction will be effective and others where prediction will be quite poor due
to the presence of severe multicollinearity. In fact, it is difficult to divide the good
and bad regions for prediction.

Therefore, it is desirable to develop a biased estimator of the parameter vector
from the viewpoint of prediction[Myers(1986,p.249)]. It can be done by minimizing
the unbiased estimate of the mean squares errors(MSE) of the predicted values
which is used as a performance criterion. Furthermore, it is shown that the new
estimates of the coefficients are exactly equivalent to those provided by Bayesian
interpretation of a general James-Stein estimator of the parameter vector.

The multicollinearity problem on prediction is reviewed in section 2. In section
3, the unbiased estimator of MSE of the predicted values is developed by utiliz-
ing the fractional principal components regression and the corresponding optimal
fractions are derived. Section 4 is devoted to deriving Bayesian interpretation of a
general James-Stein estimator. Finally, the concluding remarks and suggestions are
in section 5.

2. EFFECTS OF MULTICOLLINEARITY ON
PREDICTION

Consider the multiple linear regression(MLR) model,
y=X B +¢ | (2.1)

where y is an (n x 1) vector of responses, X is an (n X p) matrix of the predetermined,
standardized regressors, 8 is a (p X 1) parameter vector, and ¢ is an (n X 1) random
error vector with E( ¢ ) =0 and Var( ¢ ) = 0?I. Faced with the multicollinearity
problem in (2.1), a reparameterized model based on the eigenvalue decomposition
will be useful for the analysis:

y=2a+ ¢, (22)

where Z = XV, a =V’ 3, and V is the (p x p) matrix of the eigenvectors of X’'X
e,V =[vy,...,v], v; is the jth eigenvector of X’X. Note that V is an orthogonal
matrix and Z'Z = A = diag(Ay,...,A,), where the A; is the jth largest eigenvalue
of X'X.

If one wants to predict at the point, x,, then the quality of prediction can be

2

measured by the variance of y(x,), apart from o*, i.e.,
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o Var(§(x)) = (X' X)7'x,

H
[~
(3
S‘N}
~
>
<

(2.3)

Recalling that if multicollinearity is present in the model, then at least one
A; = 0, when the corresponding z,; =x,v; to A\; = 0 is very close to zero, the
prediction at x, will work well. Otherwise, the prediction will be quite poor. Thus,
the location of the point to predict determines the quality of prediction.

Therefore, as far as the prediction is concerned with the multicollinearity prob-
lem, the mean squares errors of the predicted values(MSEP) can be an interesting
measure for the performance of the multiple linear regression model. Since MSEP
is unknown, its unbiased estimate will be utilized in this paper. There are similar

prediction criteria for ridge regression[Wahba et.al.(1979), Myers(1986)].

3. OPTIMAL FRACTIONS WITH RESPECT TO MSEP
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Consider the fractional principal components(FPC) regression as follows[Lee(1986)];

y=2Za+e¢
=ZF Fa+¢
= Zf art &

where F = diag(fi,...,fp), 0 < fi<1lforalli, Zr = ZF~, and o r = Fo. The
diagonal matrix F is termed the fraction matrix and the diagonals f; are named as
the fractions. Note that F'~ is a generalized inverse of F'. Then the LS estimator of
a r can be obtained as of the form,

bprs = (ZpZr) ' Zpy

The expression in (3.1) is the general form of the biased estimators of the
coeficients, «;’s, for combatting multicollinearity. In other words, the fractions,

fi» 7 = l,...,p, may take different set of values for various estimation tech-

niques. For example, (1)(Principal Components Regression) f; = ... = f, =

L, fror = ... = fp, =0 (2 )(Ridgc Regression) f; = Aj/(Aj + k), 7 = 1,...,p

(3)(Stein) f; = 1 — co?/(apsAdys) (4)(Fractional Rank) fi=...=f, =1, frp1 =
2

/\,_Ha?_,_l/( 7+1a,’,+1 + o ) P2 T e = fp = O,th.
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Using the biased estimator G because of multicollinearity, the fitted values are

Yp=2dp=ZF(Z'Z)"'Z'y
= HFX, (32)

where Hp = ZF(Z’Z)‘lZ’. Then the MSE of yr can be expressed as follows;

=1
n

z r(§iF +ZBzas (9:r)

=1 =1

In order to obtain the unbiased estimate of M SE(3r), named as UMSEP, first,
look at

Var(jir) = Var(x\8p) = Var(xiVap)
=oXX!\VF(Z'Z)'\2'Z(2'Z) ' FV'x;
= ?x!VF?A"V'x,.

Thus,

>_Var(gip) = o*tr(XVFATV'X')
=1
= *tr(ZF*A7'2Z")
= o*tr(HE) = o*tr(F?) (3.3)

Therefore, the unbiased estimate of the ‘variance part’ is s%tr(HZ%), where s? is
the residual mean squares.

Secondly, the ‘squared-bias part’ is reexpressed as

> Bias®(§ir) = (XB—E(XBr)) (X B—E(X Br))
i=1
= (XB—-XVFA'Z'Za)(XB—XVFAZ'Za)
= (X8)'(1 — Hr)*(XB). (3.4)
The unbiased estimate of the term in (3.4) can be established by considering

E(SSEr) = E((y—XBr)' (y—XBF))
= E((y—ZFA'Z'y)(y—ZFA™'Z'y))
= E(y'(I - Hr)*y)
= (XB)(I — Hr)X(XB) + o%tr[(I — Hr)%.

So, the unbiased estimate of the ‘squared-bias part’ is SSEp — s%tr[(I — Hp)?Y.
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Consequently, the unbiased estimate of MSE(Y ) is

UMSEP = sttr(H2) + SSEp — sttr[(I — Hg)?]
= SSEp + s*(2tr(Hp) — n). (3.5)

Note that, for the special case, I = I, it turns out to be ps? which is the unbiased
estimate of 3 Var(y;).

The fractions, which are the diagonal elements of F', play important roles in
this FPC framework because they determine the shrinking proportions of the LS
estimated parameters, &;, j = 1,...,p, which are inflated due to multicollinearity.
The optimal values of the f;’s, in terms of a prediction criterion, are nothing but
those for which UM SE P is minimized.

The first derivatives of UM .SE P with respect to the f;’s can be expressed in the
matrix form with defining

OUMSEP di ((')UMSEP BUMS'EP)
_ . = ag —_— . _——

oF af, > 8f,
ie.,
OUMSEP 2Sz&tr(Hp) n JISSEFR
oF OF " OF .
P GOy Hrpy Oy Hpy
2s° ] + (-2 ar 7 )
A a2 fih &
= 25212 +2 (3.6)
)\pdg prp&lpha;‘:

Therefore, the optimal values of the f;’s in terms of UMSEP are

=1 7=1,...,p. .
fi %al j=L....p (3.7)

Note that the Hessian matrix is positive definite.
Interestingly, these optimal values can be illuminated from the viewpoint of the

Bayesian interpretation of a generalized James-Stein estimator which will be derived
in the next section.
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4. BAYESIAN-INTERPRETED GENERALIZED
JAMES-STEIN ESTIMATOR

The concept of shrinking the LS estimator, proposed by Stein, has been justified
as a broad class of alternative precedures to LS estimation when multicollinearity is
present in the MLR model. The Stein estimator for &, &gr, 1s

CCT2

T = (1 - )aps- (4-1)

J})Q)

At ~
arshéps

Note that MSE(asr) < MSE(a;s) for 0 < ¢ < 2(p — 2). Furthermore, substi-
tuting s* for o2, the resulting estimator, so-called the James-Stein(JS) estimator, is

e = (1 — —F)Q; 6. 4.2
gJS ( QILSAQLS )g—l,b ( )

By the way, it 1s worth while to look at its Bayesian interpretation and the
derivation of the JS estimator [ Vinod and Ullah(1981) |. Assuming that

(A1) y~ N(Za,o?I)
(A2) a~ N, 2(2'2)7) (43

under the quadratic loss function, the Bayes estimator of o which is the posterior
mean vector, is

G =(0722'Z+ 0 2'Z)y 0722’ Z&ys + 02 7' Z o).

Letting, now, ¢, =0 (it implies to shrink toward to zero),
o

—_
o2 n o_g( 2Ls

:(1—— i

ap
a

o? + o2

)as- (4.4)

Replacing the term (02+02) by its unbiased estimator based upon the LS estima-
tion 2, &7 gAd s/ p, the Bayesian-interpreted Stein estimator of o can be expressed
as

po?

oo, 4.5
QILSAQLS )Q[,s ( )

QBSZ(I—

E(apsAdys) E[(a+(2'2)"'Z'¢) Ma+(2'Z)" ' Z'¢)]
2 E{c'Aa)+ E(€ZA7'72'¢) + 2E(a’' Z'¢)

pog + pt72 .

ol
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which is equivalent to the Stein estimator in (4.1) by taking ¢ = p. In addition,
substituting o? by s?, the Bayesian-interpreted James-Stein(JS) estimator of a is

2

n ps R
=== . 4,
aps = ( EA )ars (4.6)

The Bayesian-interpreted JS estimator seems to be practical, but it utilizes a
uniform shrinkage which is improper in the context of the multicollinearity preblem.
Therefore, by assuming a more general prior density of @, a more sensible Bayesian
interpretation can be made [Lee(1986)].

Instead of (A2) in (4.3), the prior density of a can be postulated as follows:

(GA2) a~ N(a,, Do (Z2'Z)71),

where D, = diag(o3,,...,0% ).

The prior density in (GAZ2) looks more general than that in (A2), because it is
more meaningful to assume that the variances of the a;’s depend upon not only the
eigenvalues but also the self-endowed values, the o,,’s. With the assumptions (A1)

and (GA2), the Bayes estimator of a , labelled by GB, is

Qgp = (0'_2Z’Z + D(:IZ,Z)—I(O'_ZZ,ZCA_!LS + DO_,lZ,ZQo)
= (072 + DY)y o %a.5 + DI'ay,).

That is,
0'2 0'2

Y68 = (——2—)&; + (——)a;o, for all j.

0GB (024’05,1 )nj+(02+0é])aj,o or all j
Now, taking ajo =0, 3 =1,...,p,

2
~ g -
&jep = (1— o )é;. (4.7)
CY,

The results in (4.7) are parallel to those in (4.4). In order to obtain the unbiased
estimator of (0% + o5, ), defining A;(0) = diag(0,...,0,1;,0,...,0),

=0, +o (4.8)

Thus, from(4.8), the unbiased estimator of (02, + 0?) is A;42.
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Plugging this result into (4.7) and, in addition, substituting s* for o?, the gener-
alized Bayesian-interpreted James-Stein (GBJS) estimators of the «;’s are developed
as

2

A

Ya;, 1=1,...,p. (4.9)

& =(1-+=
»GBJS ( /\]' a;
It is interesting to investigate that the estimated shrinkage values for the GBJS
estimators are equivalent to the optimal fractions based on UMSEP in Sec. 3. Note

that the quadratic loss function in terms of a is selected for obtaining the GBJS
estimator [Baranchik(1970)].

5. CONCLUDING REMARKS AND SUGGESTIONS

When multicollinearity is dipped into the MLR model, one of the alternative
methods to the LS method, the Stein-type estimator can be chosen to shrink the LS
estimator. However, the optimal fractions with respect to the unbiased estimate of
the mean squares errors of the predicted values have the same forms as the general-
ized Stein-type solutions which utilize the different shrinkages. In other words, the
generalized JS estimators can be recommended if the aim is to get estimators with
the 'better’ MSE of the predicted values.

Some extensive simulation studies can be suggested for comparisons among the
prediction-oriented measures.
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