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ABSTRACT

The predictive density function of a potential future observation and its
first four moments are obtained in this paper to study the effects of a non-

normal prior of the unknown mean of a normal population.

The derived predictive density function is modified to study changes in
utility curves, used to choose the optimum treatment from a given set of
treatments, at a given level of stimulus due to slight deviations from normality
of the prior distribution. Numerical illustrations are provided to exhibit some

effects.
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1. INTRODUCTION

The concept of predictive distribution dates back, at least, to Laplace’s rule of
succession. The predictive approach which had long been neglected or entirely disre-
garded expresses statistical decisions in terms of potential observables. Geisser(1982)
provides compelling arguments in favour of predictive approach to statistical infer-
ence problems. An excellent monograph of Aitchison and Dunsmore(1975) provides

! Department of Statistics, University of Delhi, Delhi, India



236 Ashok K. Bansal & Pankaj Sinha

a detailed treatment of prediction analyses in Bayesian set up with a variety of
illustrative applications.

Bayesian approach to prediction of the probability distribution of potential future
sample data assumes availability of the prior distribution besides sample informa-
tion. It is often felt that models generating the sample information will have some
external validity, not possessed by priors on the parameters of the model. This im-
plies that the probability density f(z|f#) will be known much more accurately than
the prior distribution. Inference robustness with respect to prior (IRP) is, therefore,
considered to be the bigger problem by non Bayesians. However, if f(z|6) itself is
uncertain, standard inference robustness (SIR) of the Bayesian inference/decision
should be investigated along with IRP.

However, any Bayesian analysis based on a single prior is questionable due to
subjectivity involved in its choice. Berger (1984, 1990) surveyed several approaches
for examining robustness of Bayes decisions of possible misspecification of the prior
distribution, while discussing robust Bayesian viewpoint. A reasonable approach is
to consider a class of plausible priors which are in the neighbourhood of a specific
assessed approximation to the “ true ” prior and study sensitivity of the decision as
the prior varies over this class. The class of Edgeworth series distributions (ESD)
has been employed by Bansal (1978 a, b, 1979, 1980) and Chakravarti and Bansal
(1988) to investigate effects of non-normal prior on Bayes decisions and forecasts.

The investigators performing prediction analyses in Bayesian framework find
mathematically and computationally convenient to use either conjugate class of pri-
ors or non-informative ( or vague) priors. There is hardly any sensitivity study of
decisive predictions to slight changes in prior from the commonly used conjugate
prior. We obtain the predictive density function of a future potential sample mean,
given an independent sample from a similar normal population, with an ESD prior
for the unknown mean. Measures of skewness and kurtosis are computed to illus-
trate the effect of non-normality in the prior on the predictive density. Under the
assumptions, given in Aitchison and Dunsmore (1975), treatment allocation problem
is revisited to investigate effects of Edgeworth type of non-normality in the prior on
the choice of optimum treatment at a given level of stimulus.

2. PREDICTIVE DENSITY FUNCTION

Let us consider a random sample x= (z;,z3,...,%,) from N(8,r) population
with unknown mean # but known precision r(> 0). Suppose Y= (Y;,Y>,...,Yn)
be an independent potential future sample from the same population. Further,
assume that 6 has a non-normal prior density function £(6) belonging to the class
of Edgeworth series distributions (ESD), given by
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£(8) = (7/27) /2 expl—7(0 — u)? /2] H(6) (2.1)
where,
H8) = 1+ PAsHy(V/7(0 — 1)) + 5o M Ha(W/7(0 — )
FsNHS (V7 (0~ 1) (22)

H,(-) is the Hermite polynomial of degree k; A3 and A4 are the measures of skewness
and kurtosis, respectively. An ESD prior £(#) is unimodal and a proper density
function when (A3, A4) lies in the Barton-Dennis (1952) region. The advantage with
Edgeworth series approach is that it represents a class of prior distributions which
includes the normal conjugate prior N(g,7) as one of the members for Az = Ay = 0.
With varying values of terms A3 and A4 ( other than zero), it gives a variety of
moderately non-normal uni-modal proper p.d.fs taking both skewness and kurtosis
into consideration. We have found the class of ESD priors to be mathematically
very convenient to work with, and study of sensitivity to non-normality in the prior
is computationally simple.

The predictive density function of the potential future sample mean M, given
the observed sample x, 1s

p(Mlx) = [ E0x)p(MI0)d, M = YN

— 00

1 Nrr'
= (Nr7'[2x7")!/? exp[—i TT;T

(M — p)|H*(2)/G (2.3)
where,

1 1 1
H(z)=1+ -éAng/?Ha(z) + gy M Ha(2) + ﬁA;*;quars(z),
1 1
G = [1+ 2Aap™ Ha{/pr(m — w)} + 5y Ap* He{ v/PT(m — )}
1
+525p” He{ v/pr(m — 1)}

z={n(m — p) + N(M — p)}y/rr/7*(N +n),

W = (v nrm)/, p=nrr
n=r(n+N)/m", 77 =74+r(N+n), 7 =71+nn m=Zwi/"

and £(0|x) is the posterior density of 8, given x, w.r.t. ESD prior density of § which
was derived by Bansal (1978a).

It is well known that the effect of a prior distribution becomes insignificant on
the posterior distribution as the likelihood function dominates the prior for large
sample sizes. Bansal (1978a) , in particular, reported that {(8|x) was insensitive to
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an ESD prior (2.1) for n > 10. Thus p(M|x) should also be insensitive to moderate
amount of nonnormality in the £(8) for large values of n.

The moments of the predictive density function (2.3) with respect to n ESD prior
are given by

my = /Z Mp(M|m)dM, (2.4)

my = /°° (M — my)*p(M|m)dM, k=234 (2.5)

The measures of skewness and kurtosis are

232 = m2/m3 and A} = (my/m2) — 3.

The expansions for m;, my, ms and my are given in the Appendix. It may be noted
that for the normal prior (A3 = Ay =0) m3 = A} =0 and A} = 0.

Ilustration 1. In order to illustrate effects of an ESD prior and observed sample
data x on the predictive density function, we compute A3 and A} for some ESD priors
with common =0, 7=3. Wetaker=1, n=1, N = 1.

Table 1 suggests that non-normality in the prior passes on, to some extent, to
the predictive density function. In particular, priors with Ay = 2.0, given z = 2,
leads to highly leptokurtic asymmetric predictive density functions. However, for
z < 1, the effect of non-normality seems to be less severe. The effect of kurtosis
in the prior appears to be more serious on both the skewness and kurtosis of the
predictive density function and it becomes more pronounced as z increases from 0
to 2.

3. PREDICTION FOR A REGRESSION MODEL

Suppose the future experiment records the response y (value of the dependent
variable) made by some experimental unit to a known stimulus ¢ (value of the ex-
planatory variable). Assume that the common parameter be 8 for each t and p(y|t, §)
be the density function of y. Let us denote the data set (¢1, 1), (t2,72), - -, (ta, ZTn)
by z which is obtained by n earlier independent and identical informative experi-
ments. The predictive density function for y, given ¢t and sample data z, is

pwits) = [ p(ylt,0)p(0l2)do

= [ (it 000) LT et 0)d0/ [ 500) [T el ) (3.1



TREATMENT ALLOCATION WITH NON-NORMAL PRIOR

For the normal linear regression case, y has a normal distribution with mean
a + Bt and precision r(> 0). The least squares estimate of 3 is

B=x(t:i— (- 2)/ Tt — D% T=Lt/n; T=YTai/n
based on the data set z. The regression line for X on ¢ is
X=X+pB(t-1) (3.2)

With E(X) = a+ ft and Var(X) = 3[2 + (t - 1)?/ Z(t: — 1)?]

r

Thus, X + B(t — t) is normally distributed with mean o+ 3t and precision kr where

kTt =nTt+ (-0 Xt - 17 (3.3)

The predictive density function of the future response y for stimulus ¢ when prior
distribution for 8(= a + ft) belongs to the ESD class (2.1) may be easily rewritten
by replacing 1/n by 1/k and N =1 in (2.3).

4. TREATMENT ALLOCATION

A treatment to an object is applied to change its present condition to a desirable
future condition with respect to some aspect of the object.

Suppose the data obtained from n independent informative experiments is of the
form z= {(a;,¢;,z;) : 1 =1,2,---,n}, where the triplet (a,t, z) denote the treatment,
initial quality and final quality of a batch. Suppose a new batch of initial quality
t € T awaits treatment a € A. Let us assume that the possible density functions
of the final quality y € Y are p(yla,t,8) and there is a linear regression of final
quality y on initial quality ¢ for each treatment a. The prognostic density function
for treatment a with respect to the initial state ¢ i1s the predictive density function
of y

p(wla,tz) = [ p(vla,t,0)p(8l2)d0 (4.1)
If the advantage of improving quality from initial state ¢ to final state y is

g(y) — g(t) and the cost of treatment a is Cy, let us consider the utility function
Ula,t,y) =g(y) —g9(t) = Co,(a € A, teT, yeY), (4.2)

The Bayes decisive prediction approach to treatment allocation problem pro-
vides the optimum treatment a*(t), corresponding to state ¢, which maximises the
expected utility
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U(a,t):AU(&,t,y)p(yM,t,g)dy (4.3)

Ilustration 2. We consider the example 12.1 of Aitchison and Dunsmore (1975)
to illustrate sensitivity of optimum treatment allocation to possible misspecification
of the prior distribution of the unknown mean. Table 2 shows treatments, initial
and final qualities in 30 experimental runs of a quality improving process.

We suppose that the underlying stochastic model is N(a, + Bqt,7,) for treat-
ment a € A. Let us assume that the selling price is directly proportional to quality
le., g(y) = y with costs Cy = 4,Cy = 5,C3 = 3. The relevant information on
the parameters (og, B,,7.) comes from 10 results in each of the three treatments.
The regression parameters (a,, 3,) are unknown and we use their least squares es-
timates for the data set z in Table 2. The precisions r, are assumed to be known
and we take their maximum likelihood estimates as their true values. The values
of the prior parameters y and 7 are chosen by ML-II prior method (cf. Berger, 1985).

The expected utility works out to be

o0
Ua,t) = [ (v = tp(sla, te)dy — o
=my—t—c, a=1,2,3 (4.4)
where ™, is the estimated value of the predictive mean with ny = n, = n3 =

10, N = 1,M = y and values of the parameters (u,,aq,34,72,7:), a = 1,2,3,
given in Table 3. In particular, for the normal prior (A3 = Ay = 0) we have

Ula,t) = [tu+ kr(a+ Bt)]/(t + kr) — t—C,, (4.5)

where k™! =n"1 + (t— 5)2/ (i — t_)2.

We plot the utility function (4.4) against ¢ for each of the three treatments to
illustrate effects of an Edgeworth type non-normality in the prior on utility curves.
Table 4 gives optimum treatment for some members of ESD class of priors as ¢t =
26(4)42 on the basis of their graphs. Some cases are illustrated in Figs. 1-4.

We note, for example, treatment 3 is best for ¢ < 34 whereas treatment 1 should
be assigned for ¢ > 34 with a normal prior. Treatments 1 and 3 are equally good
for values of ¢ in the neighbourhood of 34 (see Fig. 1). In the case of priors with
(A3, Aq) = (0.2,2.0),(0.3,2.0),(0.4,2.0) treatment 2 is best for all values of ¢. A
region of indifference occurs in the neighbourhood of ¢ = 34 when Ay = 0.8 and

Az > 0.2,
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5. CONCLUSIONS

The first illustration indicates that the predictive density function may be quite
sensitive to kurtosis in the prior distribution when the observation z is wild (or
extreme).

The choice of optimum treatment is affected by moderate amount of non-normality
in the prior distribution. The graphs of utility curves in second illustration suggest
counterbalancing effects of skewness and kurtosis in the prior on the expected utility
of the treatment at each level of the treatment.

The decisions, therfore, based on predictive decisions may be quite sensitive to
slight departures from normality assumption of the prior distribution.
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APPENDIX
Let us write
I = /°° (M — p')ep(M|m)dM, k=1,2,3,4. (A1)
Then
my — 11 + ﬂ, (A2)
my = I — (my — p')? (A3)
m3 = Iy — 3(my — p')my — (my — #')3 (A4)
my = Iy — 4(my — pymz — 6(mq — p')*mg — (mq — p)?* (A5)

The integrals I; are evaluated by repeated use of the integral

(L)' [ explta(v — I — sta

—amy () [7 exolatnt — 1% () () v - syviane
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() () e
T _
() ()" et
and after tedious algebra we find
h= g0 2 ERma(ar + BOR - 1) 4 (1 - S
AR{(A? + 3B%)R? — 3} + 5A§(1 . %)3/2AR{R4(A4 +10A%B2 + 15B%)
—10R*(A? + 3B?) + 15}]/G (A7)

1
T — (1= =)
-

)3/2 +
T 24
{R*(A* + 18A*B? + 158} —6R*(A* +3B}) + 3} + iA2(1 ~ Ty
! ! 7273 T

RE(A® 4+ 45A°B? + 2254’ B} + 105B%) — 15R*(A* + 18A*B? + 15B;
1 1 1 1

L=[1+ 6A3AR{R2(A2 +9B%) - 3}(1 -

+45R*(A* + 3B}) — 15}]/¢G (A8)
I = qu( )3/2[3/\ (A’R* + 5B?R? — 1) 4 \y(1 — —T—)V%uz(,ﬁm?,2
T* T*
+5B?R? — 3) + /\ 21 - )3/2{124(3/14 + 5082 A% 4+ 105B}) — 30R%(A?
+5B%) + 45}]/G (A9)

_i l 2/ A2 2y _L3/2 L T\
I4—q2G[1+6)\3AR{R(A + 15B;) 3}(1 T*) 24)\4(1 T*)

{RY(A* + 30A2B? + 35B%) — 6R*(A® + 5B%) + 3} + ﬁxgu _ ;;)3
{RS(AS + 75A*B? 4 525 A B! + 315B%) — 15R*(A* + 30A*B? + 35B})
+45R*(A* + 5B7) — 15}] (A10)

Where,

A={Ny +n(m— ,LL))R/T B = Nr/r, By =B/\/q,
R={rr*/r(N +n)}Y? ¢= Nrr'[r".

REFERENCES

( 1) Aitchison, J. and Dunsmore, I. R.(1975). Statistical Prediction Analysis. Cam-
bridge University Press, Cambridge, London.



TREATMENT ALLOCATION WITH NON-NORMAL PRIOR 243

( 2) Bansal, A. K.(1978a). Robustness of Bayes Estimator for the Mean of a Normal
Population with Non-normal Prior. Communications in Statistics AT, 453-
460.

( 3) Bansal, A. K.(1978b). Robustness of Bayes Forecast to Non-normality. Journal
of the Korean Statistical Society, Vol. 7, 11-16.

( 4) Bansal, A. K.(1979). Effect of Non-normality on Bayes Decision Function for
Testing Normal Mean. Journal of the Korean Statistical Society, Vol. 8, 15-21.

( 5) Bansal, A. K.(1980). The Behaviour of Bayes Decisions for the Normal Mean
under Non-standard Prior : Unknown Precision. In : S. Ikeda et. al.(eds.),

Statistical Climatology, Elsvier Scientific Publishing Company, Amsterdam,
85-98.

( 6) Barton, D. E. and Dennis, K. E.(1952). The Conditions under which Gram
Charlier and Edgeworth Curves are Positive, Definite and Unimodal. Biometrika
, Vol. 39, 425-427.

( 7) Berger, J. 0.(1984). Robust Bayesian Viewpoint. In : J. Kadane ed., Robust-
ness of Bayesian Analysis, North Holland, Amsterdam, 63-124.

( 8) Berger, J. 0.(1985). Statistical Decision Theory and Bayesian Analysis. Springer-
Verlag, New York.

( 9) Berger, J. 0.(1990). Robust Bayesian Analysis : Sensitivity to the Prior. Jour-
nal of Statistical Planning and Inference, North Holland, Vol. 25, 303-323.

(10) Chakravarti, S. and Bansal, A. K.(1988). Effect of Non-normal Prior for Re-
gression Parameter on Bayes Decisions and Forecasts. Journal of Quantitative
Economics, Vol. 4, 247-259.

(11) Geisser, S.(1982). Aspects of the Predictive and Estimative Approaches in the
Determination of Probabilities. Biometrics, Vol. 38, 75-85.



244 Ashok K. Bansal & Pankaj Sinha
Table 1 : Skewness and Kurtosis of the Predictive Density Function
X
Az A 0 0.5 1.0 2.0
0.0 0.0 (0,0) (0,0) (0,0) (0,0)
0.2 0.81(0.07,0.25) (0.08,0.31) (0.10,0.51) (0.15,1.48)
0.2 2.0](0.08,0.72) (0.10,0.91) (0.14,1.66) (0.40, 6.45)
0.3 0.8](0.11,0.24) (0.12,0.31) (0.13,0.51) (0.19, 1.49)
0.3 2.0 (0.12,0.70) (0.14,0.90) (0.18, 1.56) (0.49, 6.39)
0.4 0.8](0.15,0.23) (0.16,0.30) (0.17,0.51) (0.24,1.52)
0.4 2.0 (0.16,0.69) (0.18,0.89) (0.23,1.56) (0.57,6.37)

Table 2 : Treatment, initial and final qualities in 30 experimental runs of a quality
improving process

Treatment (Initial quality, Final quality)

1: (30.9, 44.2), (35.8,48.6), (28.2,44.3),
(40.5, 50.0), (23.5,43.0), (474, 52.5),
(51.2, 55.0), (43.0,51.8), (37.7,49.6),
(33.8, 46.1)

2: (33.3, 46. 1) (31.3, 46.7), (23.9, 42.7),
(42.2, 50.0), (27.4,45.0), (50.3,51.0),
(35.8, 47.3), (45.7,51.0), (39.8,49.1),
(37.6, 47.7)

3: (39.8, 46.3), (31.3,38.6), (41.0,50.1),
(51.2, 57.3), (36.4,43.1), (45.7, 56.8),
(26.0, 37.8), (37.1,47.3), (43.0,524),

(35.2, 45.0)
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Table 3 : Estimates of the parameters (a,, 34, 7.), @ = 1,2,3 and the prior
parameters g and T

Treatment

a

Parameters

fa

~

Ta

Qq

Ba

~

Ta

1
2

48.50 0.25 31.51

4747 0.25

0.457
4767 0.25 35.89 0.321
12.52 0.904 0.02

0.1
0.33

Table 4 : Optimum treatment for a given value of stimulus ¢

t
Xs A |26 30 34 38 42
00 003 3 1,3 1 1
02 082 2 1,23 2 2
02 20| 2 2 2 2 2
03 082 2 1,23 2 2
03 20| 2 2 2 2 2
04 082 2 1,23 2 2
04 20| 2 2 2 2 2
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Figure 1. 7 = 2.5, A3 =0.0, A\, =0.0

Figure 2. 7 =25, A3 = .2, \y = .8
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Figure 3. 7 = 2.5, A3 = .2, A, =2.0
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Figure 4. 7 = 2.5, A3 = 4, A4 =2.0



