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ABSTRACT

A moving average model, LMA(q) and an autoregressive-moving average
model, NLARMA(p,q), with Laplacian marginal distribution are constructed
and their properties are discussed; Their autocorrelation structures are com-
pletely analogous to those of Gaussian process and they are partially time
reversible in the third order moments. Finally, we study the mixing property
of NLARMA process.

KEYWORDS: Laplacian Moving Average(LMA) process, New Laplacian Au-
toregressive Moving Average(NLARMA) process, autocorrelation structure, par-
tially time reversibility, strong-mixing property

1. INTRODUCTION

A study on non-Gaussian time series models has been continued in the past two
decades. To describe a Laplacian process with Laplacian marginal distribution, De-
wald and Lewis(1985) introduced the New Laplacian Autoregressive(NLAR) process
which followed the earlier work by Lawrance and Lewis(1981, 1985}, the New Expo-
nential Autoregressive(NEAR) process. The motivation behind Laplacian process
is in the need of models for correlated random variables with a larger kurtosis or a
heavier tails than is exhibited by Gaussian variates. Son and Cho(1988) developed
the modelling and forecasting procedures in the NLAR process. In this paper we
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discuss the Laplacian Moving Average(LMA) process and the New Laplacian Au-
toregressive Moving Average (NLARMA) process in relation to the NLAR process.

In section 2 and section 3, we construct the LMA(q) model and the NLAR-
MA(p,q) model, respectively. In secton 4, the autocorrelation structures are ob-
tained. Partially time reversibility in the third order moments is discussed in section
5. Finally, we show the mixing property of NLARMA process.

2. LAPLACIAN MOVING AVERAGE PROCESS

Throughout this paper we assume without loss of generality that the margi-
nal distribution of {X,} is the standard Laplacian distribution for simplicity. The
EMA(1) process developed by Lawrance and Lewis(1977) directly leads to the con-
struction of a first-order Laplacian Moving Average(LMA(1)) process,

_ 0Et W.p. 02
Xe = { E,_,+0F, wp.1-6? (2.1)

for t = 0,£1,42,..., and || < 1, where {F;} is a sequence of i.i.d. standard
Laplacian variables. It is easily shown that the {X,} has a standard Laplacian
marginal distribution following the relation

Mx(s) = 92ME(80) + (1 — OZ)AgE(s)ME(s(})
02 1 — 2
T T A1 =50 (2.2)

1 — 52’

where Mx(s) and Mg(s) are the moment generating function of X; and E;, respec-
tively.

As an extension to the second-order moving average process, we replace F,_;
in (2.1) by another LMA(1) variable, a random linear combination of 6, F;_; and
0:E, 1 + E;_,, which are still Laplacian and independent of F,. Thus, the LMA(2)
process is given by

6E; w.p. 63
Xt = 01Et_1 + GOEt w.p. (1 — 9(2))0% (23)
Et—2 + 01Et—1 + ooEt w.p. (1 - 0(2))(1 - 0%),

fort =0,+1,%£2,...and |6;] <1,{=0,1.
The general LMA(q) process is constructed
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00Et w.p. bo
61E 1+ 6 E, wp. b
Xt = S (2.4)
eq_lEt__q+1 R 01Et—1 + OOEt w.p. bq—l
E g +0, 0E g1+ +6,E 1 +6E, w.p. by,
fort=0,£1,4£2,... and |0;| < 1,7=0,1,2,---,9 — 1, where
62 ,i=0
bi=q (1=63)---(1-02)0? ,1<i<q—1,(¢>2) (2.5)
(1-63)---(1—-02_,) ,i=gq

3. NEW LAPLACIAN AUTOREGRESSIVE
MOVING AVERAGE PROCESS

We have constructed the moving average process in Laplacian variables. Follow-
ing Lawrance and Lewis(1980) the NLARMA(p,q) process can be constructed by
replacing an E;_, variable in the LMA(q) process of (2.4) by an NLAR(p) variable
which is independent of Ey, E;_y, -+, E;_g41. Thus the NLARMA(p,q) process is
defined,

0E; w.p. by
01Et_1+00Et Ww.p. bl

X,

: : (3.1)
aq_lE’t_q+1 + -4+ alEt—l + 00Et w.p. bq—l
| Atg + 0B g1+ -+ 0B+ 0E, w.p. b,

for t = 0,%1,4+2,... and |4;| < 1,7 = 0,1,2,---,q9 — 1, where b;,’s are defined in
(2.5), {E:} is a sequence of 1.1.d. standard Laplacian variables, and

¢At—q—1 w.p. a4 ]
PAt_g—2 W.p.  ay
Ay = : : + €14 (3.2)
$A;_q_p W.p. @

0 wp. 1—p

\

with p* = 5°% | a; and

(= { E,_, wp.1—7x (3.3)
e VI=pY¢|Ei, wp.m=¢?p /(1 —(1—p)e?). '
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for0<|p|<land 0 <p<1.
The NLARMA(1,1) process is the simplest form of NLARMA(p,q) process;

_ HEt W.p. 92
Xe= { A, +0FE, wp. 1 —06% (3.4)

fort =0,4+1,%2,... and |0] < 1, where

_} A2 wop.p
Ay = { (2] wp. 1l—p } +ee (35)
and
. { Ei .y wp.l—m (3.6)
T VIS PIGlEL wep. = ¢%p/(1 — (1 - p)¢?), .

for 0 < |¢] <1 and 0 < p < 1. We can easily show that the marginal distribution
of {X.} in (3.4) is a standard Laplacian distribution as follows;

Mx(S) = 02]\§E(80) + (1 — 02)]\3E(89)MA(5)
2 1 — 2
! B 5207 t (1 —s20%)(1 — s?) (3.7)

1

4. AUTOCORRELATION STRUCTURE

The autocorrelation function(ACF) of LMA(q) process is calculated as follows;

q9 9
E(XtXt k = Z@, Z b]E Et—iXt—-k)
0 B i= (4.1)
=3 ZE(EiXih),

1

-
Il
=}

since b; = 02(b; + biy1 + -+ by) = 07 X% b; and 0;3°7_; b; = b;/0; when 6; # 0.

Accordingly we have

9 bi
COV(Xt,Xt_k) = Z ECOV(Et—iXt—k)' (42)

i=0 "¢

Since
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q
2 S b ,k<i<k+gq

COV(Et_,', Xt—/c) = j=i—k (43)
0 , otherwise,
using (2.4), it follows that
.y b bz+k
Cov( Xy, Xi_x) = 22 (4.4)
9 01+k
which gives the ACF,
g—k
Civk > 1 <k <
Pk = ; GGtk 1 (4.5)
0 , k>q,

where ¢; = b;/0; if §; # 0 and ¢; = 0 if §; = 0. The result (4.5) implies that the ACF
of LMA(q) clearly has the cut-off property, which is completely analogous to that
of Gaussian MA(q) process. For example, the ACF of LMA(1) of (2.1) is

pr=01—-0%) and pp =0, k>2. (4.6)

The theoretically admissible range of the ACF of LMA(1) is [-0.385, 0.385] , while
[-0.5, 0.5] for Gaussian MA(1) process. The ACF of LMA(2) process of (2.3) is

pr =011 = 05){60 + (1 — 65)(1 — 67)}
{pz = 0o(1 - 63)(1 - 03) (4.7)
Pk :‘0, k23

The admissible region for p; and p; in LMA(2) shrinks to the interior of that of
Gaussian MA(2).
Next, we derive the autocorreleation function of the NLARMA(p,q) process of
(3.1). Its initial step gives
=1 p,
E(X.Xi—t) Z 5 EBeiXes) + b E(AgXemk), k2 1, (4.8)

0

noting that 6, ,Z'-_O by—j = by_;/0,_; for 8,_; # 0 and 0 < ¢ < ¢ — 1. Letting
pr = Corr(X;, Xy_¢) and Ry = Corr(E,, X,_y) for £ > 1, (4.8) becomes

qg—1

b;
Z Rk i+ b6,Corr(Ai_g, Xi—k), k> 1. (4.9)

z—‘O
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From
3
E(At—th—k) = ¢ZaiE(At_q_iXt_k) + E(Et—th——/c) (4:.].0)
1=1
and
Var(A,_,) = (1 — ¢*p") 'Var(e,y,), (4.11)
we have

Corr(Ai—q, Xi—k)

P
=¢> a;Corr(A_g—i, Xo—k) + /1 — $*p"Corr(e,—g, Xe—k), k> 1.  (4.12)

=1

In case of £k = 0, we do not have (4.8). Thus if ¢ = & < p when 7 = k&,
Corr(Ai—q, Xi) = b,. Now, from (4.9) and (4.12), when 1 <k <p

q—1

b;
ZgR"‘ +b¢Za Corr(Ai—q—iXi-k)

i=1

+ b \/1 — @2p* Corr(et_ Xi_k)
q-1 b.
_Z Rk1+¢ Z ka_ZHJRkjt)

i=1,15#k 7=0 (413)
+ b ¢ak + byy/1 — ¢2 *Corr(e—q, Xi—k)

= ¢ZG.P1¢ i+ Z —(Rk~ —¢ > a;jRi_;;)

j=Li#k

+ b, mCorr(et_q, Xi—k),

where pg = bg and

(1 =7+ 7|1 —p )0, L, kb

Corr(gi_g, Xi—k) = \/1 il

(4.14)

The final result of p;, when k > p is the same as (4.13) only if the term 3°%_, ., a; Ry,
is replaced by >¥_, a;Rx_;j_;. Since Ri_; = Corr(E;—;, X;-x) = 0 for k > 1, for
k>p+gq, (4.13) gives

r
Pk = ¢ Aipr—iy (4.15)
=1 ’
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which is the same as the NLAR(p) process,

lb p
Za Pk— i"¢20 Z aJRk—] - < k<p+yq, (4'16)

t=0 7t 3=1,7#k

and finally the equation (4.13) for p; holds when 1 < k < gq.

For example, we can obtain the ACF of NLARMA(1,1) process as follows
(1= 83)(1 = #p)(1 — 7+ 7l|VI—p)8
\/1 — 7+ 7(l — p)d?
pr = (¢p)* o1, k > 2. (4.17)

p1 = ¢p(l — %) +

?

The ACF of NLARMA(1,1), in case of ¢ = 0, is the same as that of LMA(1) and
the ACF of NLARMA(1,1), in case of 6 = 0, is the same as that of NLAR(1).The
admissible region for p; and p; in NLARMA(1,1) shrinks to the interior of that in
Gaussian ARMA(1,1).

5. PARTIALLY TIME REVERSIBILITY

The moment generating function of joint p.d.f. of X; and X,_; of LMA(1) of
(2.1) is

MX;,X;-] (Sl? 32) = E{CSIX'+82X‘_1 }
— (02)2E{esl 6E:+s,0E; 1 }
+ 02(1 _ 02)E{esl 6E¢+3s2(6E¢—1+E:-2)
+ (1 — 62)02E {5 0Ft+Fu-1)+90Bc1} (5.1)
4+ (1 _ 92)2E{681(0Et+E:—1)+sz(9Ez—1+E:—2)}

_ 1—92(3§+s%+231320)
T (1-s3)(1—5302){1— (51 +520)2} "

We note that (5.1) is not symmetric in s; and s;, and so the LMA(1) process is not
time reversible.

But
E(X?X.-) = E(X;X?,)=0 foralll >0, (5.2)

which implies that the LMA(1) process is partially time reversible in the sense of
third order moments. To show the partially time reversibility of LMA(1) we rewrite

the LMA(1) of (2.1) as follows
Xt - 0Et + WtEt——17 (5.3)
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where {W,} is a sequence of i.i.d. Bernoulli(l — 6) r.v’s and independent of {E;}
for all ¢. Thus we have following two equations,

E(X2X,() = E{(8E, + W.Ei-1)*X,_1)

4
= E{QZEEXt—I + WtzEtz_lXt_l + 29WtEtEt_1Xt_1} (5 )

and

E(X.X2,) =E{(0E + W:E. 1) X2} (5.5)
= FE{0E,X2,+ W,E,_, X2 ,}. '
Solving (5.4) and (5.5) for all | > 1 yields E(X?X,;) = E(X,X2,)=0foralll>1.
Also, We know that E(X?) = 0 for all ¢ since X, is a marginally standard Laplacian
variable. Hence, the equation (5.2) holds.

From the structure of (5.1) we expect that the joint distribution of (X, Xio1)
be a mixture of joint distributions of (0E:,0E._1), (0E,,0E,_; + E;_2) , (0FE, +
E,_1,0FE;_1) , and (E, + E,_y,0E,_1 + E;_2) with the corresponding probabilities
0%, 02(1 — 62), 6%(1 — 6?%), and (1 — 6%)%, respectively.

Now, we can easily know that NLARMA(1,1) process, a mixture of NLAR(1)
and LMA(1), is not fully time reversible since neither NLAR(1) process nor LMA(1)
process is fully time reversible. But by induction, we have E(X2X,_;) = E(X, X2 )
= 0 for all [ > 0, which implies that NLARMA(1,1) is partially time reversible in the
sense of third order moments. The partially time reversibility of NLARMA(1,1) is
similarly proved as LMA(1) by using the fact that the NLAR(1) of (3.5) is rewritten
by Aoy = Z?io Yit—1Et—5-1, where gy = 1 and ¥;,_1 = d?] f:_é Wiich, 7 =
1,2,

6. STRONG-MIXING PROPERTY

Son and Cho(1988) showed that the NLAR(1) process is strong-mizing. Follow-
ing them we can easily show the mixing property of {X,} in the NLARMA (1,1).
The NLARMA(1,1) in (3.4) can be rewritten as

9Et+k+1 Ww.p. 02
k-1

¢* A, + Z ¢j5t+k—j +0F; k41 WP Pk(l —6%)
Xitk+r = § ]?0 . (6.1)
3 Ferko; + 0Bk wp.  p(l—p)(1 -6,

i=0

i=0,1,2,... k1.
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Let Y = 0F, 441 + Zf;é ¢'€ryk—; then from (3.6)

2k _ 42k — g2
My(s) — E(esY) _ ¢ + (1 ¢ )/(1 ) (62)

(=) [T, {1 - ¢%(1 - p)s?)

The moment generating function (6.2) of the distribution of Y gives the following
relation,

k j 0 w.p. ¢
Y =0l Z I¢| 1 - pLj + Ly wp.1-— ¢2k (63)

=1

where {L; : 7 = 0,1,2,...,k,k + 1} is a sequence of i.i.d. standard Laplacian
variables. Now, following Son and Cho(1988), we have

dFy(y) < Ce Wl dy, (6.4)

where C 1s a constant.

Suppose Fii; and Gipryr are sigma fields generated by (..., A;_q, A, Fy,
Ea,...,Eit1) and (Atik, Atvktts -+ > Etvksr, Etykao,...), respectively. Let L2
(Fiy1) and L2(Giyx41) be the collections of real valued functions that are measurable
with respect to Fiyy and Gyyry1, respectively, and f € L2(Fiy,) and g € L2(Gipp41)
in the sense that E(f?) < co and E(¢?) < co. Consider the events Q = { X,y 141 =
9Et+k+1} with PY(Q) = 027 R = {Xt+k+1 = ¢kAt.+ Z;:é ¢j5t+k—j + 9Et+k+1}
with Pr(R) = p*(1 — 0%) and S; = {Xy441 = Yo Feyk—; + 0FE 141} with
Pr(S;) = p'(1 — p)(1 — 6%). for ¢ = 0,1,2,...,k — 1. By the Markov property
of {A;} we have that

E(f-g) — E(f)E(g) = E{f - (E(g|X:) — E(g9))}. (6.5)
Now,
E(g9|A:) = 9253_{1(9|At)|Q} + p*(1 — 0%)E{(g|A:)| R}
+ 21 - p)(1 = 0)B{(]401S.) (6.6)
and
k-1
E(g) = 0’E(g]|Q) + p*(1 — *)E(g|R) + 3_ p'(1 — p)(1 — 6*)E(g]S:). (6.7)

=0

Since E{(g9|4:)|Q} = E(¢|Q) and E{(g]A,)|S:} = E(g|S;) for i = 0,1,2,...,
k—1,
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E(glA:) — E(g) = p*(1 — 6*){E((g]A0)|R) — E(¢|R)}. (6.8)
IE{(glA)|R} = |f ( | Xipks1 = y)dFy(y — ¢*a.)|
<C- E(lg|| X rer1 = y)e~#=#" =l dy, from (6.4) (6.9)
<C- E(|g|| Xerksr = y)e W+ e dy .
=2C- d’ *E(|g])-
And,
IE(gIR)| = | /2% E{(g]A)| R} - 27 ! - exp(—|a|) day|

A

C - [, e E(|g])e ' da;, from (6.9) (6.10)
2C - E(lgh(1 - ™)™

After this, following Son and Cho(1988) we can directly derive the fact that
NLARMA(1,1) process is strong-mizing and asymptotically uncorrelated in the sense
of Rosenblatt(1971).

7. FURTHER STUDY

We have derived a moving average model(LMA) with Laplacian marginal dis-
tribution. The autoregressive model(NLAR) and the moving average model (LMA)
are combined to give a mixed model(NLARMA). They are easily simulated, as is
the NLAR process.

About estimation problems, we have failed in writing the likelihood function of
LMA and NLARMA. This fact makes impossible to efficiently estimate parameters.
The Yule-Walker estimates for 6 in the LMA(1) are solutions s which satisfy the
equation 63 —6+r, =0, where || <1 and 1 = %, z424-1/ Ty 7. But they
are not unique. The NLARMA model is not explicitly estimated by the Yule-
Walker estimation because of the overparameterization. But the conditional least
square estimation by Klimko and Nelson(1978) can be applied to the estimation of
NLARMA model and is under study.

About forecasting problems, the minimum mean square error forecasts can be
obtained as is the NLAR process of Son and Cho(1988). Also, the model-free pre-
diction intervals can be obtained using the mixing property.
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