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Outlier Detection Diagnostic based on
Interpolation Method in Autoregressive Modelst
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ABSTRACT

An outlier detection diagnostic for the detection of k-consecutive atypical
observations is considered. The proposed diagnostic is based on the inno-
vational variance estimate utilizing both the interpolated and the predicted
residuals. We adopt the interpolation method to construct the proposed di-
agnostic by replacing atypical observations. The performance of the proposed
diagnostic is investigated by simulation. A real example is presented.

KEYWORDS: Outlier Detection, Autoregressive Model, Consecutive Addi-
tive Qutlier, Interpolated Residual, Predicted Residual

1. INTRODUCTION

It is not unusual that time series have atypical observations which would affect
the parameter estimates and model identification. In the presence of atypical obser-
vations, the conventional time series analysis procedure can easily lead to errorneous
conclusions. Thus, it is an important problem to develop a procedure that can de-
tect the possible outliers and remove their effects. In this paper, we propose an
outlier detection procedure for k-consecutive atypical observations.
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Fox(1972) introduced two different types of outliers in time series. One is an
Additive Outlier(AO) which may be induced by some external causes such as a
gross recording error or measurement error. The other is an Innovational Outlier(10)
which may be caused by some internal changes or endogeneous effects. Other types
of outliers have been introduced by Tsay(1988) and Martin and Yohai(1986) to
describe more complicated effect of outliers in a parametric form, which include
Patches of Outliers(PO), Level Change(L.C), and Transient Change(TC). Bruce and
Martin(1989) suggested the use of consecutive AQ’s asserting that outliers and other
influential observations typically come in patches. Lee(1990) also advocated the use
of consecutive AQO’s since PO and TC can be approximated by consecutive AQ’s.
We will consider the consecutive AO’s model in this paper.

Chang(1982) and Tsay(1986b, 1988) proposed methods based on the interven-
tion analysis. They used the maximum of several tests to identify outliers, but it
may have the danger of detecting false types of outliers and it turns out not suit-
able for consecutive AO’s. Pena(1990) proposed an influential statistic D (-) which
mearsures the effect of the influential observation on parameter estimates. But it is
known that detection procedures based on parameter estimates often fail because of
smearing effects (see Bruce(1989)).

The detection procedure proposed here is based on the innovational variance
estimate, suggested by Bruce and Martin(1989) and Ledolter(1990), utilizing both
the interpolated and the predicted residuals. For the construction of the diagnostic,
we use interpolated series where atypical observations are replaced by the interpola-
tors of Pourahmadi(1989). The innovational variance estimate is known to be more
useful than parameter estimates in the presence of smearing effects. Furthermore,
Ledolter(1989) and others observed that the interpolated residual is effective for a
single AO while the predicted one for a single I0. Since a single IO may approximate
a finite sequence of consecutive AO’s with enough accuracy, our procedure should
detect both a single and consecutive AO’s effectively.

The paper is organized as follows. Section 2 proposes a detection diagnostic
and discusses its properties. In Section 3, an iterative procedure for a detection
of outliers is given. The performance of the proposed diagnostic is investigated by
simulations in Section 4. The proposed procedure is applied to the United Kingdom
Spirit data. Proofs are contained in the Appendix.

2. INTERPOLATION DIAGNOSTIC

In this section an outlier detection diagnostic based on the interpolated series is
proposed and its properties are discussed. For the details of interpolation method,
see Pourahmadi(1989), among others.



OUTLIER DETECTION DIAGNOSTIC

Let z,,t = 1,2,...,n, be a stochastic process following AR(4), then
m(B)z, = ey,

where B is the backshift operator such that B2y = z;_; and 7(B) =1 —mB—--- —
T, B" is a polynomial in B with all zeros lying outside the unit circle. The €’s are
independent normal random variables with mean 0 and variance o?2.

A k-consecutive AO’s model is :

k-1

To+;

Y — Ty + ijéto ]7
J=0

where y;, t = 1,2,...,n, is the observed time series, Tp the starting time of k-
consecutive outliers, w; the magnitude of outlier effect in yr,4;, and &°%’ the indi-
cator function identifying the outlier occurrence time, which is given by

Tot+i _ {1, ift="To+y
710, otherwise.

From now on, [" = (my,...,7,) 1s assumed to be known unless we state otherwise.
We consider a detection procedure based on the innovational variance computed from
the interpolated series.

In the presence of outliers, if we use the observed series to estimate the parame-
ters, a measure based on the parameter estimates will be influenced by the smearing
effects. Therefore, it cannot detect the outliers effectively. On the other hand, if we
replace the outliers by the interpolators, then a measure will not be affected by the
smearing effects, and the outliers would be effectively detected.

An 1-Interpolation Diagnostic(DI;) for the detection of a single outlier is

n—h
DL(T)= 3 (v —¥7)%
t=h+1
where
. {ﬂT(t), t=T
v Yt otherwise.
Here g7(t) = E(yrly1,- - Y7-1,YT+15---,Yn) is an interpolated estimator of y7,
T is the time point of a possible outlier, and §; = II'(y;_,, ..., y;_,)" which is the one-

step ahead prediction based on the interpolated series, where the outlier is replaced
by the interpolated estimator. In the presence of k consecutive outliers beginning
with T, if we let Yy, = (y7,...,yr+%—1), then the interpolated estimator following
Pourahmadi(1989) is the orthogonal projection of Yjs onto the space spanned by
{ye,t < T and t > T + k}. For more details, see Pourahmadi(1989). We may
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decompose DI,(T') as follows :

n—h
DI(T) = > (i —yi+y—9)°
t=h+1 |
= (yr —yp)*+ > (ye—97)° = 2(yr — y:)(yr — 97)
t=h+41
n—h

~2 ~ A ~ 2 ~
=05 —Oror + Y, & — oror,
t=h+1

where &; = y; — y; is the interpolated residual and @; = y; — §; is the predicted
residual based on the interpolated series. The properties of &y and wr are summa-
rized in Ryu (1991). Since DI,(T') consists of @r and wr’s, it is expected to detect
both a single and consecutive AO’s as we discussed in the introduction. If there
exists a single AO at time Ty, since DI,(Tp) is computed with T¢* observation being
replaced by the interpolator, the effects of an outlier on DI;(Tp) are eliminated. But
DI, (T)’s for T # T are contaminated by an outlier and are larger than DI, (T;).
The properties of DI,(T’) are summarized in Theorem 2.1 and Theorem 2.2.

Theorem 2.1 If a single AO occurs at Ty for AR(h), then E(DI(T)) is mini-
mized at T = T.

From the proof of Theorem 2.1, we see that E(DI;(T)—DI;(Tp)) = Lo w?wk +
K, for some K (> 0) which is zero except for T' = Ty — h,---,To + h. Hence we can
detect a single AQO effectively if we choose a proper criterion.

Theorem 2.2 If k-consecutive AO’s occur at T' = Ty, To+1,..., T + k — 1 for
AR(1), then the E(DL(T)) for T =Ty — 1, ..., To + k are smaller than those for
T<Ty—2o0rT>Ty+k+2.

The proof of Theorem 2.2 is analogous to that of Thoerem 2.1 hence is omitted.
Theorem 2.2 implies that when k-consecutive AO’s exist, DI;(T) tends to have
a patch of small values around the time points of outliers, hence it is not useful
to detect k-consecutive AQO’s. To eliminate this effect of k-consecutive AO’s we
propose DI (T'), where the k-consecutve observations are replaced by interpolators,
as follows :

n—h

DI(T)= ) (y; — %)

t=h+1

where
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*_{gT(t) t=T,T+1,....,.T+k—-1
A t£T,T+1,....T+k—1,

yr = (yr_1,-- - y7_p)s and T,...,T + k — 1 are the time point of possible k-
consecutive outliers occurrence and yr(t) are obtained following Pourahmadi(1989)
as before. When there exist k-consecutive AQ’s, the properties of DI(T) in AR(1)
case is described in Theorem 2.3.

Theorem 2.3 If k-consecutive AO’s occur at T =Ty, To +1,...,To + k — 1 for
AR(1), then E(DI,(T)) is minimized at T = Ty,.

The above theorem tells us that if there exist k-consecutive AO’satT =1T,,...,To
+k —1, DI(T5) tends to be smaller than DI(T), for T' # Ty. Thus, if we choose a
proper cutoff using the distribution of DI (T) under Hy (no outlier), then, in the case
of k-consecutive AQ’s, DI(Ty) tends to be smaller than the cutoff while DI,(T),
T # To, would be larger than the cutoff. If there is no outlier, all the D I;(T') would
be smaller than the cutoff. If we compute DI;(T') in the presence of k-consecutive
AO’s, DI,(T) would have a patch of smaller values at T = Ty — 1,...,To + k. But
they are not considerably smaller than the other DI,(T)’s, since the effect of any
single AO in k-consecutive AO case can be overwhelmed by the effects of the other
outliers, which can fail to give clear evidence. Thus, if we have smaller values in a
patched form, we have to increase the number of interpolated observations and re-
compute DI(T') sequentially. The cutoff value can be obtained using the following
Theorem.

Theorem 2.4 If there exists no outlier for AR(1), DI,(T) has the same distri-
bution as the sum of the two independent scaled chi-squares,
(Chom)’ 2 2

o x*(1).

2.2
asX(n-z——(k+1))+ i €
Zf:o ﬂ-%

For large n, the above distribution may be approximated as o2x?(n — 2 — k) and
we use this as the reference distribution under the null hypothesis of no outlier.

So far we have considered only AR(1) case. We extend it to AR(2) case.

Theorem 2.5 If 2-consecutive AO’s at Ty and Tp+1 for AR(2), then E(DI,(T))

1s minimized at T = Ty,

From Theorem 2.5, we see that E(D (7)) attains the minimum when there are
2-consecutive AQO’s for AR(2), because E(DI3(Tp)) is free of the contamination of
outliers while the others are not. For AR(k), when there are k-consecutive AQO’s
with starting point Ty, we conjecture that E(DI(T)) will attain the minimum at
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Ty, since E(DI(T,)) is computed under k-consecutive outliers being all eliminated
while others are computed under the effects of k-consecutive AQ’s being remained
in squared forms.

We cannot derive the distribution of DI;(Tp) since coefficients of €,’s are too
complicated. But if we extend the inference about AR(1) to AR(2), we conjecture
DI,(T) would follow approximately o2x*(n —2 x 2—2). In AR(h), if we interpolate
k-consecutive observations, we get DI (Ty) which is the squared sum of the interpo-
lated residuals. Extending the argument of Theorem 2.3 to AR(h), o2x?(n—2h —k)
may be adopted as the reference distribution.

3. ITERATIVE PROCEDURE FOR DETECTING
OUTLIERS

After investigating the properties of DI (T), we are led to propose an iterative
procedure for the detection of outliers. Because we test whether there exist outliers
or not, we consider cutoff values using the reference distribution. For cutoff values,
75%, 90% and 95% quantiles of the x?-distribution are commonly used by many
authors. Based on our simulation experience, we suggest the use of 8% quantile as
a cutoff. The procedure begins by setting £ = 1 as follows:

Step 1.

Compute DI (T) for T = h+1,...,n — h and choose the time point T = T,
where DI(T') is minimized. Compute a cutoff using the quantile of &% x*(v)
where v = n — 2h — k is the degree of freedom and 6%, is the variance esti-
mator with Tgh, (To + 1)*,...,(To + k — 1) observations being replaced by
the interpolated values. If all DI (T)’s are smaller than the cutoff, determine
there is no further outliers. Otherwise, go to Step 2.

Step 2.

If DI (T)’s are larger than the cutoff except DI(To), then T*, (To + 1), ...,
(To + k — 1)** observations are determined as outliers. After replacing the
outliers by the interpolated values go to Step 1 with k = 1. If DI (T)’s
appear in a patched form near the minimum point while other DI (T)’s are
larger than the cutoff, increase k£ by 1 and go to Step 1.

In Step 2, the effect of outlier is estimated as the difference between the observed
and interpolated values. For the properties of the estimates, see Ryu(1991). In prac-
tice, we seldom know the values of parameters and have to estimate the parameters.
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For the estimation of parameters we use the Yule-Walker estimate since it is much
easier to obtain and is as efficient as the maximum likelihood estimate in the Au-
toregressive models. Also it was shown by Dunsmuir and Robinson(1981) that the
Yule-Walker type estimate has the asymptotic normality in the case of irregularly
observed time series. We use the Yule-Walker estimate to obtain the interpolators
and use the interpolated series to estimate parameters, so that the effect of missing
observations on parameter estimates are reduced. In this case the degree of free-
dom of a reference distribution is reduced by as many as the number of estimated
parameters.

4. NUMERICAL EXAMPLES

To see the performance of the proposed iterative procedures, time series are
generated from various models and our procedure is applied to these data. Besides
the simulated data, United Kingdom spirit data, which was used by Tsay(1986a)
and Lee(1990), is also used to compare the performance of our procedure with other
methods. For the simulation, we use the Box-Muller method to generate the normal
random numbers with mean 0 and variance 1 using SUN3/280. In the following
examples, n = 200 observations are generated from the specified models with the
FORTRANT7 and the first 100 data points are discarded to eliminate the effects of
the starting value. We impose the outlier effect at time point 30.

In a single AO case, we examine the empirical powers(percentage of correct
detection) of our procedure by varying the value of = with o2 = 1. Table 4.1 and
4.2 summarize the simulation results of 1000 replications for each combination of
wr and 7 using 75% and 85% cutoff values, respectively. In general, the empirical
powers of our procedure increases as the cutoff value decreases and the value of
the parameter increases in the absolute value. For a large-size outlier, wr = 5.00,,
the percentage of correct detection ranges from 98.8% to 99.7% when 75% cutoff is
used and from 90.5% to 99.4% when 85% cutoff is used. It is also observed that
percentages are nearly symmetric about # = 0. For w = 4.00. and 3.00,,though
the percentage of correct detection fluctuates depending on the value of 7, it works
fairly well. We recommend the use of 75% cutoff for high sensitivity and 85% cutoff
for moderate sensitivity. In the following examples, we use 85% cutoff.

Table 4.1 Number of correct detection in 1000 replications using 75% quantile

wr [ w 0.9 0.6 0.3 -0.3 -0.6 -0.9
5.00, 996 995 989 988 993 997
4.00, 975 936 905 890 941 967
3.00, 728 615 459 471 621 751
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Table 4.2 Number of correct detection in 1000 replications using 85% quantile

wr [ 7 0.9 0.6 0.3 -0.3 -0.6 -0.9
5.00, 994 965 905 911 971 991
4.00. 892 783 692 702 771 874
3.00, 502 417 326 352 422 513

For the consecutive AQ’s case, the following examples explain the performance
of our procedure.

Example 4.1 2-consecutive AQ’s for AR(2), ¢, = 1.1, ¢, = —0.4, n = 100
and w = 5.0

In this examlpe we generate data from AR(2) with ¢; = 1.1 and ¢, = ~0.4 and
impose 2 consecutive AQ’s at T' =15 and 16 with the magnitude of 50,. The time
series plot is given in Figure 4.1(a). The dot line represents pure series following
AR(2) and the solid line represents outlier contaminated series. From the plot of
DL (T), Figure 4.1(b), we see patched small values instead of a single negative peak
around T = 14, while others are larger than the cutoff. This is the phenomena
which we explained in Theorem 2.2. Due to the smearing effects, if there exist k-
consecutive AQ’s, DI;(T) is not guaranteed to achieve the minimum at the point
where the outlier exists. But as we explained before, after observing the patched
form around the minimum, we increase the number of interpolated observations by
1, 1e., k=2. Figure 4.1 (c) shows that DI,(T) has the minimum at T = 15, while
the other DI,(T)’s are larger than the cutoff. Since we don’t observe any further
patched form, we determine 15th and 16th observations as outliers. After eliminting
the effects of outliers and employing DI, (T) again, Figure 4.1(d), we conclude that
no more outlier exists, since all the DI;(T)’s are smaller than the cutoff.

To compare the performance of our procedure with Chang’s, same data set is
analyzed by SCA * package which uses Chang’s method for the detection of outliers.
Chang’s method does not identify 15th and 16th observations correctly. Instead,
15th observation is identified as an 10 and 17th observation is as a TC in Table
4.4. In other words, Chang’s method cannot detect consecutive AQ’s correctly, as
we explained in Section 1.

4 SCA : Scientific Computing Associates
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Table 4.3 Summary Table of Example 4.1

Step 1 2 3
2-5 True Value Estimate Estimate Estimate
T 1.1 1.050 1.034 1.082
) -0.4 -0.432 -0.400 -0.410
o? 1.0 1.234 1.110 0.993
w 5.0 3.879
5.0 4.545

Table 4.4 The Results of Chang’s Method applied to the data of Example 4.1

Time Estimate T-value Type
15 4.833 4,71 10
17 -3.661 -3.83 TC
+ -
N A
[ I
/
o~
0 20 40 60 80 100

Figure 4.1 (a) Time series Plot for AR(2) with ¢; = 1.1 and ¢, = —0.4
with 2-consecutive AO’s at T' = 15,16
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Figure 4.1 (b) Estimated Test Statistics of DI (T)
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Figure 4.1 (d) Estimated Test Statistics of DI1(T) after eliminating
outlier effect at T' = 15,16

Example 4.2 3-consecutive AO’s for AR(1), ¢; = —0.4, n =100 and w = 5.0

We impose 3-consecutive AQ’s at T' = 30, 31 and 32 with the magnitude of 5o..
We observe patched small values around 7' =31, while other DI (T)’s are larger
than the cutoff, Figure 4.2(a). After we increase k to 2 and employ DI,(T), patched
pattern is again observed, Figure 4.2(b). After DI5(T) is employed, Figure 4.2(c),
no more patched pattern appears and all DI3(T)’s are larger than the cutoff except
at 7' = 30, which indicates that 3-consecutive AQ’s exist at T =30, 31 and 32. After
the effects of AO’s are eliminated, the plot of DI;(7T) shows no abnormal patterns
and all DI(T)’s are smaller than the cutoff. Thus we conclude that 3-consecutive
AQ’s exist at T' =30, 31 and 32. The application result of our procedure and Chang’s
method are summarized in Table 4.5 and Table 4.6, respectively. Again, Chang’s
method does not detect 3 consecutive AQ’s effectively. Instead it identifies a TC
at 30th observation together with two more AO’s at T' =29 and 34, which are not
outliers in our example. From the above simulation results we see that our procedure
can detect not only a single AO but also consecutive AQ’s effectively.
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Table 4.5 Summary Table of Example 4.2

Step 1 2 3 4
2-6 True Value Estimate Estimate Estimate Estimate
T -0.4 -0.409 -0.409 -0.372 -0.381
o? 1.0 1.472 1.214 1.060 0.996
w 5.0 5.013
5.0 7.023
5.0 4.827

Table 4.6 The Results of Chang’s Method applied to the data of Example 4.2

Time Estimate T-value Type
29 3.753 3.92 AO
30 4.974 8.65 TC
34 -3.913 -4.05 AO

180 190 200
1 1

170
1

160
1

150
i

T T T T T T

0 20 40 60 80 100

Figure 4.2 (a) Estimated Test Statistics for AR(1) when there is
3-consecutive AO’s at 7' = 30,31 and 32 DI (T)
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Figure 4.2 (b) Estimated Test Statistics for AR(1) when there is
3-consecutive AO’s at 7' = 30,31 and 32 DI,(T)
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Figure 4.2 (c) DI3(T) after eliminating 3-consecutive AO effect
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Figure 4.2 (d) DI;(T) after eliminating 3-consecutive AO effect

100

Up to this point we apply our detection procedure to the simulated data. In the
next example we apply our procedure to the real data.

Example 4.3 United Kingdom Spirit Data

We analyze the data of annual consumption of spirits in the United Kingdom
from 1870 to 1938, which was analyzed by Fuller (1976) and Tsay (1986b). They
treated the residual series after fitting the time series regression model as an observed
series Z,. A time series plot of Z, is given in Figure 4.3(a). By the iterative procedure
of Tsay (1986b), three outliers at 7' = 40 (10), 46 (AO) and 49 (AQ) were detected.
And Lee (1990) detected 40, 41, 46 and 49'* observations as outliers. We use AR(2)
as an appropriate model to this series.

We employ D1;(T") and observe a sharp negative peak at T' = 49. Since we do not
see any patched pattern around T' = 49 in Fig 4.3(b) we identify 49th observation as
an outlier and eliminate the effect, &4g = —0.0737. When DI,(T) is again employed
to the data with the effect of 49th observation eliminated, we obtain the same
pattern at 7' = 46. This observation is again identified as an outlier and the effect
1s eliminated by &4 = 0.0363. When we employ DI(T) to the adjusted data as
given in Fig 4.3(d), we observe a patched pattern around 7" = 40 and we increase k
from 1 to 2, i.e., DI3(T) 1s employed. From Fig 4.3(e), we determine 2 consecutive
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AOQ’s at T' = 40 and 41. After the effects of outliers are eliminated at T = 40 and 41
with @4 = 0.0997 and &4 = —0.0618, we do not see any further abnormal pattern
in Fig 4.3(f). From the above example we conclude that our iterative procedure
performs relatively well in the presence of consecutive AO’s as well as a single AO.
As we see in Example 4.3, when there exist consecutive AQ’s, we detect all the AQ’s
eventually.

The result applied to SCA is summarized in Table 4.7. Similar to Tsay’s result,
it identifies 3 outliers at 7' =40, 46 and 49.

Table 4.7 The Results of Chang’s Method applied to U. K. Spirit data

Time Estimate T-value Type
40 -0.087 -8.56 TC
46 0.046 6.54 AO
49 -0.061 -8.55 AO

3

o

Q]

(]

3

<

S |

Q@

0 10 20 30 4J 50 60 70

Figure 4.3 (a) Time Series Plot of U.K. Spirit Data
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Figure 4.3 (b) Estimate Test Statistics of DI,(T)
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Figure 4.3 (c) Estimated Test Statistics of D/{(T) after eliminating
outlier effect at 49
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Figure 4.3 (d) Estimated Test Statistics of DI;(T') after eliminating
outliers effect at 46 and 49
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Figure 4.3 (e) Estimated Test Statistics of DI,(T') after eliminating
outliers effect at 46 and 49

T

10

¥ T

20

ot

30

T

T

40

50

T v

60

299



300 Sinsup Cho , Gui Yeol Ryu , Byeong Uk Park , Jae June Lee

0.90
A

0.85
L

0.80
1

0.75
1

0.70
1

T T T T T T T ¥ T T T T T T

0 10 20 30 40 50 60
Figure 4.3 (f) Estimated Test Statistics of DI,(T) after eliminating all

outlier effect

APPENDIX

Proof of theorem 2.1

ForT<To—h—-lorT>To+h+1

T-1 h b
DI(T) = 3 e+ (y7 — 2 myr—i)’ + {yrs1 — (myh + Y miyria-i)}?
=h i= =
t=h+1 Pl To-1 ’
+ - {yren — (Z miyTea-i + TayT)} + Z el

=1 t=h+1

h h
+(yTo - Z Wino—i)z + (yTo+1 - Z 7(‘in0+1_1-)2 +---
=1

i=1

h n—-h
+H(YTo+n — Z 7rino+h—i)2 + Z 5?,
=1 t=To+h+1
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with expectation

E(DI(T)) = [n—2h+ K7 {1 +zh:(7ri2 + 2m;)})o? +Zh:7ri2w:2ro , (A1)

=1 1=0

where K; = Y 72,
For Ty—h<T <Ty—1and j =Ty —T,

E(DI(T)) = [n — 2k + KT {=1+ > (77 + 2m)}]o; + {]‘i LN

i=1 1=0
h—j A
+ D (min; — i)+ Y wihwk, (A.2)
=73 t=h—j+1
where
h
8 = Ki'(mj — 3 _mimiyj).
=1
For T' = T,
3
E(DL(To)) = [n — 2h + K['Y{=1+ Y _(«? + 2m)}]o? . (A.3)

=1

For T=Ty+1,...,T5+ h,

h
E(DL(T)) = [n — 2h + K7 {~1 4+ _(x? + 2m;)}] o2
=1
T-To
+{ Y. 7P+ (rro + 67-1)* + (mibr-1y + T 1)’ + -

1=0

3
+(ThsTo-TOT-T5 + 7Fh)2 + Z 771'25%—'10 }w%"o- (A4)
i=h+To+1-T

Thus from (A.1), (A.2), (A.3) and (A.4), we can see that E(DI,(T)) attains the

minimum at 7g. '

Proof of theorem 2.3

For T <Ty—k—20rT2>To+k+1
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DI(T) = > e+ (yr — myr—1)" + (Y74 — myp) + -
t#£T,T+1,..., T+k,
To,To+1,..., To+k

+(YT k-1 —le}+2k_2)2 +(YT+k —T1YT k1 )*+ (gTo —T1YTy-1)"
+(yTo+1 - leTo) ++ (yTo+k - 7r1yT0+k~l) )

where
YT Tyr—1 + 7fC
YT 41 miyr—1 + o7 (1 + 7?)C
YT+k—1 7r{cyT—l + m :'cz_()l 7rfiC
C = K; ' (yr4x — 7 yr1)
and K, = 5 7% with
k-1
EDL(T)={n-2-(k+1)+ K{l Z Wf’}o‘f
1=0

+H{1+ (k- 1)1 —m)® + ] }wi,,

To show that E(DI(T)) attains the minimum at T, it would be sufficient to
show E(DI(To — 1)) > E(DI(Ty)) and E(DI(To + 1)) > E(DI(Tp)), because
forT=To+j3,7=1,...,k~1, DIt(T) has ( + 1) extra squared terms which are
contaminated by outliers.

ForT =T, — 1,

k-1
E(DI(To—-1))={n—-2—(k+1)+ K;' Y n{'}o? + (7} + K;")w}, .

1=0

For T =Ty,
k=1
B(DI(Ty) = {n—2 — (k+ D)}o? + K* Y- n¥?,
1=0

which is independent of wr, and is the same one in the case of no outlier.
For T =Ty +1,

k—1
E(DI(To+1)) = {n—2—(k+1)}o+ K'Y niol+(1+ K 'wfthw?, .

1=0
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Proof of Theorem 2.4
T-1
DI(T) =Y & + (y7 — myr-1) + (Y541 — my3)* +
t=2
n—1
F(UT4h-1 = TYrph_2)’ + YTk — TYre1)t + DL €l
t=T+k+1
where (y7,...,y7,4_1) is the same as in the proof of Theorem 2.3, when we compute

DI(T,). Therefore

DI(T) = > Z’fl) (Z meT+h—i)’,

t;éT,T+l,...,T+k i=0

where K3 = (X5, 7#)2. Since

> e’ is distributed as o’ (n -2 - (k+1)),

and
k (Zk 7ri)2
. =071)" 2. 2
Z Z 7rl€T+k 1 IS as 1]¢ 2% g X (1)
1=0 =0 t=0 U
and Coerrin,. 74k €7 and K31 (T 11)3(Tho mier44—:)? are independent. .

Proof of theorem 2.5
ForT<Ty—3o0orT>1Ty+4

DI(T) = Z 6t2+(y;"_7rlyT—l"’7"2yT—2)2+(y;‘+1'—7"1y;‘—7r2yT—1)2
AT, T+1,T+2,T+3,
To,70+1,T0+2,T0+3
+(yr+2 — MYy — T2y7)’ + (Yr4s — T1YT42 — ToYTyq )’
+(yT0 — M1Yry—1 — WzyTo-2)2 + (yTo+1 — ™Y, — 7r2yTo——l)2
+(yTo+2 — T1YTo+1 — 7T2y7'0)2 + (yTo+3 — MYTe+2 — 7‘-2yTo+1)2

where

Y7 = myr—1 + T2y7r-2 + cu1(Yr+2 — Yr+2) + c21(Yr43 — Y143)
Y741 = (”f + T )yr—1 + mimeyr—2 + c12(yr42 — ?ﬁT+2) + sz(yT+3 - §T+3)

C = D(I, + A'A)"'T,

and
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1 0 0

b 1 0

T’ = : : . :
br—l b,-_g ... l

B,k = (bgyi—j) for: =0,1,...,r—1and j =0,1,...,k~1
T'A=B,,
T.D=A,r=n-Ty—1

and b,s are MA parameters of y,

Y5 — Ty7—1 — Tay7—2 = cn(Mieryr + (7] + m2)er + er42)
+ca(eres + merse + (72 + mo)eryy + wieT)
= filg)

Y741 — TIYT — T2YT-1 = ci2(miers + (ﬂ'f + m2)er + €742)
+co(erys + mETH2 + (71‘;" + m2)eT1 + 7T:135T)
= fa(g)

YT+2 — MY — T2YT = €742 + Ti(miersr + (7] + mo)er + ert2)
+7m2(er4s + Tiers2 + (7] + T2)era + TieT)
= f3(§.)

YT+3 — T1YT42 — M2Yryy = €743 + To(mersn + (7] + 72)er + e742)

= f4(§)-
After heavy algebra, it can be shown that for T < Ty —3or T > Ty + 4

E(DL(T)) = (n—8)a2 + E(fi(e) + f3(e )+f3( )+ fi(e)
{14+ 1 =m)* + (7 + m2)? + 7w,

For T =Ty — 1,
E(DL(To - 1)) = (n — 8)0? + E(f{(e) + f3(e) + f3(g) + fi(e))

+{c + (1 = miciz — meen1)® + (M1 + mac12)? + 7w, .
For T = Ty,
E(DL(To)) = (n —8)a2 + E(fi(e) + fi(e) + f3(e) + fi(e))-
For T = Ty + 1,

E(DL(To + 1)) = (n — 8)a? + E(fi(e) + fi(e) + fi(e) + fi(e))
+[1 + {71'1 - C“(WI + 7I'2) — 621(71'1 + 27'{'17'('2)}2
+{(men — c2) (7 + m2) + (mico — Cz:z)(”i3 + 27?1772)}2
+{7Ti3 + 2mymy — (mic12 + 7r2011)(7T% + )
—(myco2 + 7r2021)(7Fi3 + 27"17"2)}2
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+7rf{7r%7r2 — (,'12(77'% =+ 7!'2) - C22(7l'% + 27717?2)}2](4)%0 .

Thus E(DI(To+1)— DIx(To)) and E(DIy(To — 1) — DIy(Tp)) are positive. Because
of the same reason as Theorem 2.4, it would be sufficient to compare E(DI,(Tp))
with E(DIL,(T, — 1)) and E(DI,(To + 1)) and we can determine E(DIy(Ty)) is the
minimum of E(DI:(T)). 1
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