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Boundary Crossing Probability in the
Autoregressive Processi
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ABSTRACT

The limiting distribution of the excess over the boundary is determined
for the autoregressive process.

KEYWORDS: Local limit theorem, conditional probability, stopping time.

1. INTRODUCTION

The quadratic forms are of importance in many applications of the theory of
stochastic processes. The quadratic forms can be transformed to weighted sums
of squares of independent identically distributed normal variates. In many ap-
plications, these weights are or approximate the eigenvalues of a Toeplitz matrix.
Choi(1991) found the asymptotic density of quadratic forms. In Section 2, we study
the problem of finding the asymptotic density of a conditional quadratic form. Sec-
tion 3 is devoted to the problem of finding the asymptotic joint density for linear
and quadratic forms. The remainder of the paper uses the results of these sections.
In Section 4, finally, we study the problem of the limiting distribution of the excess
over the boundary for the sum of the autoregressive process.
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2. ASYMPTOTIC DENSITY OF A CONDITIONAL
QUADRATIC FORM

Consider the first order autoregressive model

Xn =04+ pXa1 + €, neEz (1)
where €,, n € Z, areii.d. normally distributed random variables with mean 0

and variance 1. Here X, is a constant and p € (—1,1). The stochastic process
scheme 1s often assumed to correspond to a stationary process. Let

n
== Z )(1._[6!‘.
=1

Then
n 1~ k— n k-1
= [Xo,ok_l + (——— - ]6k+ ZZpk Ie; e
k=1 k=1 j=1
€1 1 €1
= bl + 5(617"'76”)]31'1 9
€, €n

where B, is the same as in Choi(1991) and the b is a vector for which

: ] — po !
bj=X0p1_1+6’(—p), Vj:17...7n_

l—p
To find the conditional distribution of S, given €,_m41,---,€, write S, in
the form
n n 1 — pk—l
Sn = Sn—rn + XO Z Pk—-l €k + Z <—1————'>06k
h=n—m+1 k=n—m+1 - P
n—m n k—1 )
+ Z 2T e+ 3 X AT
k=n—-m+1 j=1 k=n—-m+1 j=n—m+1
n ) 1 _ pk—l
=Sn-m + Xo Z pF e + Z <—>06k
k=n-m+1 k=n—-m+1 1 - p

n ) n k-1 ]
> pk"]'lék g+ 2 2 e

k=n—m+ k=n—m+1 j=n—m+1

Z

€1
617 R 6n~—~m) Bu—ln + C
C/1. m

en-—m
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where

n

, 1= p! - |
A]:/Xopj_l-!-—‘—‘p——()‘f Z Pk_]—leka VJ:L"')n-m

1 P k=n—-m+1
n k—1 o n X n 1 — pk—l
C= 2, ST e+ X0 Y, e+ Y (—————1 )Hék-
k=n—-m+1 j=n—m+1 k=n—m+1 k=n—m+1 - P

Let f, denote the density of S, and f,,. denote the conditional density of
S, given €, 41, -.€, . Then

fn,m(*s’cn-—m+lv T, 6n) = fn—m(s - Cy P, A)

for all s and ¢u_my1, - s€n , where A and C are as above (function of
€n—m+1 " " En )
Theorem 2.1. Let ;Ln'm (- | s) denote a conditional density of €, i1, € ,

given S, = s and let h,(-) denote the density of €, ---,€, . If ¢> 0, then

lim iln,m(tl,--~,t,,l L) = b (b1, tm)s

n—0o0

for all ¢, --,tm , uniformly for all s such that

|S"/Ln
Un

< e

Where u, and o, is the means and variances of S,.

Proof. Let f, denote the density of S, and let f,.,., denote the conditional

density of S, .given ¢, 41, --,€, . Then, for fixed t,,---,t,,
] fnm(s‘tl»"'»tm)
h“"’t(h’“'*tm |’) = — : hm(tla"'atm).
fals)

From Choi(1991), f.(s) and faom(s | ti,---,tm) may be approximated by
normal densities with means

1 & 1
Hy = 5 Z /\nk = Stl(Bn) =0
k=1

< <

’ 1 = A
K’, =3 Z ’\(n—m)k + C =

D)
~ k=1

tr(Bp_m) +C = C

N —

and variances
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k=1 k=1
2 n—m 1 n—rm
I 2 2
g = Qe + E {n—m)k>
respectively, where ay, k =1,2,---,n —m, are as in Choi(1991) with b replaced

by A . Now, by Theorem 3.1 in Choi(1991) applied to both the numerator and
denominator,

N2
fnm(*5 l tla"'*"m) 041127r P\I){_%(—o—,n—"-) } + O(i)

hls) b5z exp{ 122"} + o)
- 1, s—pul o 1 s—pu,
=1 2 expl 5 (5 4 S+ o)
=12 | exp{3(:22)°11 - Zh
0F S —finy Bn—pn, 1 pn—pl g ol
e [ T P e

Since C is an orthogonal matrix,

=D IUETED PV
j=1 2 k=1

Here
1 0 2
lim — b2 =
and
lim 1 i)\g = #{3p3—3p2+ 1}
Y '
S0
1 2
lim — o2 = o’ € (0,0) (say)
n—oo n
Similarly,

’ - Z ‘4? + Z /\V(zn—m)k
=1 k=1

[SR
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T /\ s! { }

[ ande Sl S)

Let a; = A; for j=1,2,---,n—m and a; =0 for y=n-m+1,---,n.
Then
/2
!——1l<o—llial|2 b [[*] +o(1)
!|a||+||b||
2

g,

“[la—=b | +o(1).

Now [lal[+ [ bl=0(v/n) ;and ||b—al=0(1). So

12

Next

B = Hn = C=C(ty,--- ) = O(1)
So

lim _;i—_,un = 0.

n—s o,

The theoremn follows easily.

Theorem 2.2. Let 0 < é < 1 and ¢ > 0, then there is a constant
B = B(é,¢) for which

kn,m(tl,' o 1tm|5) S ma(tla' o 7tm)7

for all ¢,,---,t, ,forall m < né,andfor all s such that
IS - /unl < C\/E'

Proof. Let f, denote the density of S, and let f,,., denote the conditional
density of S, , given €;,_m41,-°,€, . Then, for fixed 1, - ¢y,

fam(s ]t tm)
fu(s)

iln,m(tl,' t 7tm | 5) - hm(tla' o atm)

From Choi(1991), f.(s) and fom(s | t;,---,t,) may be approximated by

311
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normal densities with means

1 & 1
MUn = ; Z /\'ILIC = ; “(Bn) =0
K Z
, 1 TL— T y 1 .
P = 9 Z )‘(It—rn)k +C = ;“‘(Bn-—xn) +C=0C
< k=1 -

and variances

n 1 n
=y gy,
k=1 k=1
n—m 1

n—m
’2 2 2
On = z Qe + :9: Z A(n—m)k:’
k=1 k=1

respectively, as in the proof of Theorem 2.1. So

1
.nm t,"'atm S 1 1
f, (Sll ) \/‘2-7?0;( +0( ))
and
]. 1.2 2
W(s) > —2¢°/7n (] 1)).
Thus

ty.--- .1 oy 2 2
fn,m(‘sl 1  tm) < ﬁ(ﬁc n/on (1+0(1))7
fuls) Tn

which is bounded under the conditions.

Theorem 2.3. Let h,..(-|s) denote a conditional density of ¢,

cee L €m , glVen

S, =s andlet 0 <6 <1 and ¢ > 0, then there is a constant C = C(é,¢) for

which

hn,m(tly T, tm"s) S C‘ hm(tla T, tm)’

for all t;,---,t,, ,forall m < né , and for all s such that

Is — pn] < c/n.

Proof. Let f, denote the density of S, andlet fr = denote the conditional

density of S,, , given ¢, ---,¢, . Then, for fixed ¢y, ---,¢t,,
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f;,m(‘s ' - ’tm)

fa(s)

From Choi(1991), fa.(s) and f; (s | t1,---,t,) may be approximated by

hn,m(tla' T ~tm I S) =

hm(tl) T 7tm)'

normal densities with means

1 & 1
,u'n'—f)‘ZAnk —;tl(Bn) =0
< k=1 <
1 & 1
o = 9 Z /\(n—m)k + ' = str(Bn—m) +C'=
= k‘:m el

and varlances

respectively, as in the proof of Theorem 2.1. So

1

Vanop;

fv:,m(‘s\th"'vtm) S (1+0(1))

and

1 :
fals) = ¢T3 (1 4 o(1)).
21 o,
Thus
Salsltete) _on
f/L,TIL(b|.l ) S ZQGELG/U'Z‘(l—*‘O(l))a
.IH(‘S) On

which i1s bounded under the conditions.

3. ASYMPTOTIC JOINT DENSITY FOR LINEAR
AND QUADRATIC FORMS

Observe that

n—m )
- — n—m § : n—m-—j
-Xn—m = p XO + 14 €5
3=1

=c¢ + a'e, (say)
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and

1
S, = be+ Eéanc,

where ¢€,¢5,--+,¢, are i.i.d. standard normal random variables and By and
b = b, are defind in Section 2.

Lemma 3.1. The joint characteristic function of X,_,, and S, 1is given by

onls0) = ElexplisXom + 115,]]
1 1
=|I—-uB, |2 exp{ics ~ 5 (as + bt)'(I — itB,) ' (as + bt)}.

Proof. We introduce, as in the proof of Lemma 3.2 in Choi(1991), the orthog-
onal matrix C for which C’'DC = By . Then

= (L= itht) - (1 — itAnn)

where the A,;.---,A.. are the eigenvalues of the matrix B, . Let Z = Ce ,
a = Ca and # = Cb . Then it is easily seen that Z,,---,Z, are independent
normal random variables. Moreover,

(as + bt)(I — itB,) '(as + bt) = (as + bt)'[C'(I — itD)~'C](as + bt)
= (as + Bt)(I—itD)  as + Bt).

so that

= (ags + ﬁkt);).

s + bt) (I -itB,) Yas + bt) =
(as + bt) (I —tB,)” (as + bt) : TR

=1

Now

. o = l
E{estn_m+1tbn} — E{exp [ics + Z [i(sak + tﬂk)Zk + §Zt/\nkZ13]]}

k=1
, 1
= eI, E{exp[i(sak +t8k) 2 + §it/\nkZZ]}-
Hence, by using Lemma 3.1 in Choi(1991),

) -3 . 1 & (sak+tﬂk)2
onls,t) = [HF_, (1 — zt/\nk)] exp{zcs — 5}; T——W}

= |1—iB, |} exp{zics ~ 2 (as + bt)/ (I itB,) " (as + bt)}.
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Theorem 3.1. Let f.(z|y) denote a conditional density of X,_, , given
S, =1y andlet f(z) denote the normal density. If ¢> 0, then

ulgrolo jvl(lly) = f('/l’)v an

provided
ly — pnl| < cv/m.

Proof. The characteristic function of X,_,, and S,/v/n is @a(s,t/\/n) .
As in the proof of Theorem 3.1 in Choi(1991), there is no loss of generality in
supposing that M > 1 and that (n+ ||a|®>+ ] b |]*)/oi <M forall n. Let
§=1/8M3 < 1/8M. If |t| <6/ , then

V ‘ __l " - _L_)ﬂ ; 1 Sak-{"‘tﬁk/\/—)
log @, (s, t/ /i) = zlgt:llog(l t\/_> + cs k}:l{ —zt?— }

[ ENLIAED W ,
= 52 ’—{k:l(\/ﬁ) jat)? +ZCb——§){z_j (sox+tBk/V/n)? (\/—) Hat)?

p=2 P
= 4c8 — %clns2 - %c;mt'Z + R, (s, 1), —00 < t < 00,
where
('lnzzai
{Zﬁk‘*‘ Z nk}
2=
and
1 & nMP 1t2 * Mt
R.(s,t)] < = Pr——|b]? P
a0 < 530 (el + g b My
e o Mt © Mt
LICITIN EaliTn |abl{ p+1}
+5 lal S+ o 1 { L1

forall s. |t]|<é/n andall n > 1, by Taylor’s Theorem applied to the logarithm.
Here R, tends to zero as n tends to infinity, for all s and ¢, since

Ln|Mt]P? & 1M |t 1M32|t|
Rl SR znfv*' {2 e LY e Y s
M“|t|2 } 1
pen Te P ja |
Z \/’
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z)MtP 2M‘t13 . 2MsP|t
v el L
=3 vn 3 n¥ 3 Vn

4 Ms |t

la

a’b b
S b g e
and

l : -

”1_{11 Cla = | — p2 = G

I UL peyde] = 30— 30241 =
,ITOLC271*§[§“/,,9(‘L) ‘]—U——W[p =3 +1] =

Hence
Jim u(s,t/v/m) = emrotmmt s g

and, therefore the distribution function of X,_,, and S, converges to the joint
normal.

It is clear that X,_,, and S, have a density f,(z,y) forall n > 1 and that
@n 1s integrable with respect to Lebesgue measure for all n > 3 . So,

1 0o o _
Fle) = o [, L € enlont /v dsdt

f(l‘,y) — —1s:r zty{ —lcls c2t }det

and

-—:sa. zty ([Dn S t/\/_ e—%c;ﬂ—%cﬁz] det '

I a5, t/v/n) B i Ll | dsdt
— 00

| falz,y)=f(z,

for all —oco <,y < oo and all n > 3.
If n is sufficiently large and |t |[< 6y/n , then | R, |< 1(c1s® + c2t?) and,
therefore

o5, 1] Vi) < - bttt
So
é\/ﬁ . y 1
als t/\/n) — e st =yt | o dr Q)
-o/n v

by the dominated convergence theorem. It remains to show that
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lim _ / | wals,t/v/n) | dsdt — 0

n=o0 Jit|>5/m

as n — oo, Now

- ! 1, . 4
| onlsit/ V) [= [T 11 —ithu/vn |72 exp{—gAsz — Bts/v/n — %Ctz/n}
k=1

where
T 2 n n
ay i B
B e B LA D S
L+ A2 n ol R AP LWL o1+ t2/\2k/n

It follows that

“ ) 1 1
Pon(s /) =[] 11+ #A2/n |5 exp{—QAS2 — Bts/\/n — §Ct2/n}

k=1

< (+37) exp{ ~ 1Al + BUAIVRY +(C — B A)E/n)]}

where
N, = ﬁ{k A2 > l}
n o : nk = 4
and
i 1 1
lim — N, = ——meab[ g(x) > —] > 0.
=00 g1 27 2

First, for fixed ¢, we look at that
: 1 27
5, 1 < | — (42 2 )
/ | @als,t/V/n) | ds < (1 +t2/4n) = exp( (t°/n)(C — B*/A)

Now, ( — B? /4 is nonnegative by the Cauchy-Schwarz inequality to CA —

f Dok Ok
B% and A > &=Lk l+M:2/41 So

' T ou(sit ds dt
/t|>o\/_/ |&P * /fl °

1 iNe 1] 4 Me2/4
< Vi [ <_) LI Mt/an
pl>6vm \ 1+ t2/4n S o
3
<

1 iNVn l 1
() TR e———
8 1 +6%/4 /sr_ ol |t|26ﬁ(1+t2/4n)
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’\/~ lt1>6 /7

— as n — oc.
Therefore
1 A i (isw—it
fn(‘l V) - y??b(*sat/\/ﬁ) ds dt
T e (6 1 ds dt = fla,y).

Also, by using Theorem 3.1 in Choi(1991), it is clear that S, has density
fuly) for all n > 1 and that ¢,(0,t/\/n) is integrable with respect to Lebegue
measure for all n > 3. So

) =5 [ a0V

- l/m (0,0 dt = [(y)

2n — 00

as n — oo and f,(y) is bounded away from zero when |y — p,| < ¢y/n. The
theorem follows.

4. MAIN RESULTS

Let {e : kK € Z} be any sequence of i.i.d. normal random variables with
mean 0 and variance one; let { Xy : & € Z*} be a stochastic process satisfying
the autoregression equation ‘

Xi = p Xk + e, ke zZ*

where X, is arbitrary and p € (—1,1) is unknown; let
=Y X1k
k=1
and for a >0,A >0, let
t, =inf{n>1: S, +nA>a}

be the stopping time. Next, define
a — Sta+taA — a.’
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Thus, R, is the excess of the boundary a at the time which it first crosses a .

The goal is to find the limiting distribution of F,. The approach is to compute
the conditional probability of crossing the boundary a , looking backward along the
sequence S,_,, - -.S,_k . we give approximation for the conditional probabilities

Wo(n,r) = Pr(ty, > n|S, =a+r)

where « .7 >0 ,n =1,2,---. We use these approximations to obtain the density
of R,.

Lemma 4.1. As a — 00,

1
1, - w.p.1
a =X p
Proof. Observe first that ¢, — oo as a — oo. If F, = o(€1,---,¢€,), then

X, is JF,-measurable for all k& < n and, therefore, X,_i¢, is F,-measurable
for all n . So, since E(X,_i1¢n | Fac1) = 0, {Sn = Try Xeo1€, Fnon 2> 1} is a
martingale. The lemma then follows from the law of large numbers for martingales

(See, Hall(1930)), since

S + (e — 1A
ta

Si, + taA
—_—

A —
to

< tg < A, w.p.l.

The main results of this paper gives an approximation to the conditional prob-
ability that t, > n , given that S, + nA = a +r . That is, an approximation to

b,(n,1) = Pr(ty, >n|S, =a—nA+r),

for a ,r >0 and n=1,2,---. Now
&, (n,7) =Pr(t, > n|Sn =a—nA+r)
=Pr(Sk+ kA <a, Vk<n|S,=a—-—nA+r)
=Pr(S, — S,y >r—kA, Ve<nl|S, =a—nA+r)
=Pr(S, — Spk>r— kA VE<Im|S, =a—nA+7) — v

where
; . 1
e =Pr(S, - S,_p 21— kA, VEL im, and

a

, . 1
bvn - 'Sn—k <7 - kA, dk - (‘Q_m, n) |Sn =a—nA + T').

Let
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O(r) = Pr(S_y > r— kA, VE2>1)

where
0
Sk = Z Yi 6.
i=—k+1
and
X
JC,’_J, Vie Z.
s=0

Theorem 4.1. If n=n, — 0o as a — 00, in such a way that

a — Hn — 0(1)’
Tn
then
lim ®,(n,r) = ®(r),
for all r > 0.

Proof. First observe that for all & < %m , for large m and n

Sn_Sn—k: Z X] 1€

1=n—k+1
j—i —(n—m
Z Z Pl X D T T
n—k t=n—m+1 Jj=n—k

’

J=
= Sn.mk + Sn.‘m.k (sa‘y)'

Note
m—1
Sn.m.k = Z Z P cn m+i En—m+j+1-
j=m—k 1=1

Letting 7'=j—m+1 and ¢ =1¢—m , we find that

m-—1
rL m.k — § § /) (‘n,—‘ul+ztn—m,+j+l
j=m—k =1
m—1

Z Z )0 . 6i—mtj-—m.—+-l

dm
indis J=m-—k =1
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0 1’1 g
= Y Y P ey = Ty (say)
Ji=—k41 '=1-m
Next observe that for all ¢ > 0,
. ) 1
Pr(S, — Sn_kx > r — kA VE < ;m|Sn =a—nA+r)
1
< Pr(Spmi 2r—c— kA VEL 7m|Sn:a—nA+r)

, 1
+Pr(] S .. I> &, 3k<2m|5 =a-nA+r)

and
) 1
Pr(S, — Sp—k > 1 — kA VEk < sm‘Sn =a—nA+r)
- 1
>Pr(Sppmie >r+e— kA VEL ;2—m|Sn =a—nA+r)

o 1
—Pr(|S] x>, 3k < 3m|5n =a—nA+r).
Now, let s =r +¢ and

m—1 2 1
B*:{eeR’": T Zp eiegm > s — kA, ngﬁm}.

j=m—4k 1=1

Then
Pr(S, x> s — kA, Vk < %m | S, =a—nA+r)
) / . /B b 1Su = @ = nA + 1) denmn, ..., den
R | hnleemin @) e, deo

1
= Pr(Tm,k Z S — k‘A7 Vk S ;m),

by Theorem 2.1 in Section 2 and Scheffé’s Theorem (See, Lehmann(1959), p351).

Moreover

1
Pr(T,, x> s — kA, Vk < ~m)

3'=1 L, 1
Z ST P T ey 2 5 — kA, Yk < Sm)
’:~k+1 =—m+1 2
0
—Pr( Y Ve 2s— kA VE21)

J=—k+1
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=Pr(Ty > s — kA, Yk > 1) as m — 00

where T, = S_,.
On the other hand

b = Xn i Z pJ (n— m)6]+1
J=n-—k
. n—1 ‘ N 1
=p2" X, Z o (”_2’”)5]-“, for k< -m.
j=n—k 2
So
1
Pr(] S, ... =€ 3k<§ —a—nA+r)

< Pr(| Xn-m |2 —| Sy =a—-nA+r)

n--1
+Pr(] > P"_("_fm)fﬁx > ,/l—m|5n =a—nA+r)
j=n—k pz

=) + (U),  (say).

Using Theorem 3.1 in Section 3 and Scheffé’s Theorem, it may be shown that
the first term (/) tends to zero as m — oo for fixed € > 0. To see how observe

that

JUle9) = f@)ldz =0 as n— oo

So

lim sup falz|y)de = 0.

C—00  p lz|>c

Therefore
Cli_{g sup Pr{|X,-m|>c| S, =a—-nA+r} = 0.
Similarly, by using Theorem 2.2 in Section 2 and Scheffé’s Theorem. The second

term (/) tends to zero.
Finally, we show that

v — 0, as n — 0o.

Now, for any ¢ , 0<5<%



BOUNDARY CROSSING PROBABILITY 323

) 1
v=Pr(S, = S,._.>r—kA, VE< §m, Sn— Sk <71 — kA,

1 !
ke (3m,n)[5 =a—nld+7)

A

o . 1
Pe(S, — S, -1 <r— kA, Jk € (§m,n) |Sn =a—nA+r)

i 1
< Pr(S, —Sn—x <r— kA, 3k € (—Q—m,nﬁ] |Sn =a—nA+r)

+Pr(Sy — Sack <1 — kA, 3k € (né,n)|S, = a —nA + T)
= E.1(m,8) + E,.(6). (say)

The second of these terms is bounded. Indeed, replacing n — k by k , we find
that

b 2(0) = Pr(S, — Sacx <7 — kA, Ik € (nb,n)|S, =a—nA+r)
= Pr(S >a— kA, 3k € (0,n(1 —6))|[Sn =a—nA+r)
< C Pr(Sk > a— kA, Ik € (0,n(1 — 8)))
= C Pr(t, <n(l =9)). (*)

by Theorem 2.3 in Section 2; and last terms in (*) approaches zero as n — oo
since by Lemma 4.1 and n/a — 1/A.

b

Let
" g=1 1
D = {(' c R "Zl Z /)J"L—lti € <r— kA, dk ¢ (im,né]}
Jz=n—k+1 =1
Then

1
Eai(m,8) = Pr(S, — Sp_x <r—kA, Fk € (im,né] IS, =a—nA+r)

= / izn,m(tls) dt
D’
B

< hon (1) di
D’

k 1
< B Pr Xooopr <r —kA, Ik € (=m,nd
* 2

i=1

k
1
<BPr(d Xpitnoiy1 <t — kA, k€ (3m90))

=1

bl

by using Theorem 2.2 in Section 2 and tends to zero as m — oo.

The theorem now follows by letting a — co, m — oo, and € — 0, in that
order.
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Theorem 4.2. Let % = (¢, —a/A)/y/a/A . Then t; and K, are asymptoti-
cally independent as a — oc ; the limiting distribution of ¢} is normal with mean
0 and variance o2/A? ; and the limiting distribution of £, has density

1
h*(r) = — ®(r), > 0.
(r) = % ®(r)

Proof. The proof of theorem follows from Theorem 2 in Woodroofe(1982). Let
g. denote the joint density of t, and R, ; that is

d

ga(n,r) = —Pr{t. =n, R, < r}.

dr
Then

1 a+r—nA

ga(n,7) = — &( ) ®u(n,7)
Tn Ty
1 a—nA

~ = ) (r)

On Tn

under the conditions of the theorem. The theorem follows easily.
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