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ABSTRACT

‘This paper proposes two test statistics which enable us to proceed the
variables selection in Fisher’s linear discriminant function for the case of het-
erogeneous discrimination with equal training sample size. Simultaneous con-
fidence intervals associated with the test are also given. These are exact and
approximate results. The latter is based upon an approximation of a linear
sum of Wishart distributions with unequal scale matrices. Using simulated
sampling experiments, powers of the two tests have been tabulated, and power
comparisons have been made between them.
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1. INTRODUCTION

In discriminant analysis, when we have large number of variables it may be of
interest to find out a smaller number of important variables which are adequate for
discrimination. This is known as variables selection problem and is important not
only for increasing the ability of discrimination but also for the cost and compu-
tational considerations. For homogeneous(equal covariance matrices case) discrimi-
nant analysis, various statistics(cf. Dillon and Goldstein, 1984) were suggested and
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used in the variables selection procedure. However little attention appears to have
been paid to the variables selection in heterogeneous(unequal covariance matrices
case) discriminant analysis(cf. Fatti et. al., 1982).

Rao(1952) was first to provide the first test for additional discrimination in the
two-group case with homogeneous covariance matrices. If [)fq) and D(Qp) denote
respective sample Mahalanobis distance between the two groups based on the ¢
variables in X,y and all the p variables X = (X(1)» X(3))'- Then Rao gives the test
statistic:

N+ Ny—p—1
F = — o(Dfy — qu))/(N1+N2—2+cD§q)), (1)

where ¢ = Ny Ny /(N; + N,) has an F-distribution with (p —¢) and (N; + Ny —p—1)
degrees of freedom under the null hypothesis that the randomly selected (p — ¢)
variables in X(y) provide no extra discrimination between the two groups. Rao(1952)
showed that the statistic can be used for testing the hypothesis that the coefficients
of the elements of X(;) in the Fisher’s linear discriminant function(LDF) are all
zero. The LDF can be also used for the two-group heterogeneous discrimination.
Investigations by Gilbert(1969) and Marks and Dunn(1974) indicated that the LDF
was adequate if the differences among the covariance matrices were not extreme.
Robustness of the LDF is also shown by Lachenbruch et. al.(1973).

It is interesting to note when training sample sizes are equal(N, = N, = N),
the estimated LDF is exactly the same for both homogeneous and heterogeneous
cases(cf Morrison, 1990). However, in the case of the heterogeneous discrimination,
Rao’s statistic would not be applicable for testing the coefficients of the LDF. In-
stead a proper test statistic which takes into account the heterogeneous covariance
matrices is needed. However, it has not been seen yet. Our concern in this pa-
per is to propose procedures for testing the hypothesis on the coefficients of the
LDF in the case of two-group heterogeneous discrimination with training samples
of equal size. The procedures are obtained by generalizing Rao’s(1952) criterion.
For the test we propose two test statistics. One is obtained from exact sampling
distribution. But it loses many degrees of freedom in constructing a test which is
independent of heterogeneity and homogeneity of the two covariance matrices. To
circumvent this problem the other is proposed by using an approximation to the
distribution of a linear sum of independent Wishart matrices obtained by Nel and

van del Merwe(1986).

2. DEFINITIONS AND PRELIMINARY RESULTS

Assume that, for individuals from population II;, 7 = 1,2, the p component re-
sponse vector X is normally distributed with mean u; and covariance matrix ¥;.
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Anderson and Bahadur(1962) developed the discriminant functions for the two mul-
tivariate normal populations. When the parameters are known, they proposed the
discriminant function

Y = (g — p2) (151 4+ £285) 71X (2)

and a rule assigning an individual with particular response vector value of X to II;
if Y > § and to I, otherwise. Among various choices of ¢;, t5, and &, if we set
ty = ty = 1/2 and a corresponding value of é, (2) is called the LDF with equal
sample size(cf. Morrison, 1990 and Marks and Dunn ,1974 ). When parameters
are unknown, the method might be extended by replacing the parameters by their
estimators. Now consider the LDF with equal sample size:

X = 2 — ) (B + 22)7NX, (3)

where a’ = (ay,...,a,), X' = (21,...,2,), for the two heterogeneous populations.
If any of the coefficients a; are zero, then the corresponding variables z; do not make
any contribution for the discrimination between two populations. Therefore, it is of
interest to find out as to which of the coefficients are zero.

Let X = (X{}), X{3)) and let A = p,—pg, and = ¥y + ¥ be correspondingly
partitioned as

A = (ALAY, Q@ = {Q5), 1,1 = 1,2,
and a = (a},a}). We set X(1), Ay, and a; are of order ¢x1 and i, is of order gxg.
Lemma 1. The hypothesis H: a,0; = ... = a, = 0 is equivalent to the
hypothesis that
Az - &’)ng;llAl — 0
and this denotes that the mean difference of X(2) in both populations, after elimi-
nating the effect of Xy, 1s zero.
Proof. Under the hypothesis H, i.e. a5 = 0, (3) gives the following equation:
—Allgll—llglgﬂ?_;l + Aéﬂ;zl.l = O, where 022‘1 = sz — 9219;11012.
Postmultiplying €4, and solving the relation gives first two lines of the lemma.
This proves the first part of the statement. For the second part of the statement, let
X(2) = (X(1y(2), X{3)(1))', ¢ = 1,2, be the ¢ — th population variates, where X(1)(z)

is of order ¢gxl. Then Z =X(1) — X(2) is distributed as multivariate normal with
mean vector /A and covariance matrix Q. If we let Z = (Z], Z,)', where Z, is of
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order ¢x1, the conditional distribution of Z, given Z; is

Zy | Zy ~ Ny o (Dg + Q05 (70 = D), Qazn).
Thus
E[ZQ | Zl} = AQ + QQ]SZI_II(ZI - AI) (4)

Upon eliminating the effect of Z, in (4) and setting to zero gives the second state-
ment. &

Lemma 2. If we define M = A'Q~'A and M; = A[Q;'A,, the hypothesis H
1s equivalent to the hypothesis that

Hy: M = M;.

Proof. 17! may be written as

g _ [on o AB-'A' —AB!
=l o ol T |4 B |

where A = Q'Qy2, B = Qy2,. By decomposing M, we have
M=M; + {8 - Q00 A Y0, {D2 — 0 Q57 A}

Substituting the result of Lemma 1 to the left hand side of the equation gives the
result. &

This can be interpreted as the hypothesis H is equivalent to the hypothesis that
the Mahalanobis linear distance(M) between two heterogeneous populations based
on the p variables is equal to the distance (Mj) between the populations on the
basis of the first ¢ variables.

3. TEST STATISTICS

In most practical situations the parameters u; and £;, 2 = 1,2 will not be known.
So, to test H which is equivalent to M = My, we develop tests based upon sampling
distributions of estimates of M and Mj.

3.1 An Exact Procedure
Let X,(1) and X,(2) are the o — th observations from two independent mul-
tivariate normal populations II; ~ N,(p;,%;), 1 = 1,2, where ¥, # ¥,. Assuming
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the numbering of the observations in two samples of equal size is independent of
observations themselves, let Z, = X, (1) — X,(2), a=1,...,N. Then

- - 1
7= X(1) = X(2) ~ Ny(A, 59), (5)

QO = £,4%,, A = py—pq, independently of (N—1)Q = ©N_(Z,~-Z)(2.-Z)

which is a Wishart distribution with N — 1 degrees of freedom with scale matrix :

nQ ~ W,(n,Q), where n =N — 1. (6)
Let Z,A,Q, and Q are partitioned as
Z=(Z0,25). = (AL ALY, Q={Q45), Q= {Q;), i,5 =1,2,

where Z, and A\, are of order ¢xI apd 4, and Qn are of order gxq. The Hotelling’s
T?s(Hotelling, 1931) based upon Z and the one based on only Z; are respectively

T? = NZ'Q'Z and T? = NZiQp'Zy
with noncentrality parameters A, = NA'Q7'A and A\, = NAQTA,.
Lemma 3. Conditional on qu being fixed,

(n—q)
n + qu

rpr2 _
122.1 -

N(Zy = Q5 20 Y0551 (Zs — Qa1 Z1) (7)

is Hotelling’s T? based on n — ¢ degrees of freedom with noncentrality parameter

1
Mzt = ey, N (B = O QR0 0 (B2 = Oy ). (8)
i

Proof. Under the distributions (5) and (6), it is straightforward to see, from
Kaufman(1969) and Kshirsagar(1972), that when T7(i.e. Z; and {}y) is fixed

(Zy — Q' Z)) ~ Npy(Dg = Q5 Ay, Qapa(1 + T2 /n)/N), (9)

and nflg-“ ~ Wy_y(n — ¢, §y1). Moreover, the two distributions are inde-
pendent(cf. Kshirsagar, 1972). Constructing Hotelling’s 7% using the two random
matrices gives the results. &

Noticing that

12 =1 4 N(Zy = Q05 2005 (22 — 0 05 20),

329
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A=A, 4+ N(OA, — Qo Q0 A0 Q0 (A — Q0 Q0 A,

T4, , and Agz, defined in Lemma 3, can be expressed in terms of 1,1y, Ap and A,

y (Tl—q) 2 il
15, = B T:([p =1,), (10)
1
A =———(X, = A,). 11
22.1 1—+—T[12/TL( 4 1) ( )

Thus we have following result.

Theorem 4. When M = M, a statistic

) n-— p+ 1 2
F2 = ]
(p—q)(n—q) ™

follows central F-distribution with (p — ¢) and (n — p + 1) degrees of freedom, and
it 1s independent of qu.

Proof. Since M — M, = (A, — A;)/N, under the hypothesis, the conditional
distribution in (7) becomes Hotelling’s 7* with noncentrality parameter Ay, = 0.
Moreover, the distributional relation between Hotelling’s T? and F-distribution(cf.
Anderson, 1984) gives the conditional distribution of F,, when Tq2 is fixed, as a cen-
tral F— distribution with (p — ¢) and (n — p + 1) degrees of freedom. However this
conditional distribution does not involve Tq?‘, and so F}y is independently distributed

of qu. &

From Lemma 2 and Theorem 4, we can test the hypothesis H: a; = 0 by using
the following statistic:

N(Zy = Q3 20 Q0 (Ze = O QL Z0)(n —p + 1)
(n + NZiQi' Za)(p — q)

The statistic Fj is distributed as the central F— distribution with (p — ¢) and (n —
p + 1) degrees of freedom when H is true. Thus the hypothesis is accepted when

F2 S Faa
where Pr(f, < F, | H) = 1-a.

Corollary 1. (1 - a) simultaneous confidence intervals associated with the above
procedure are
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|’7(/2-S22152UI/1 A1+S22152IIA )| <
{ o Y Q).z.ﬂ(l) —q)(n+ NZ, Qn )/( (n —p+ 1))}1/2’ (13)

for all nonnull ~.

Proof. Let C = Z, — leﬁﬁlzl Aand D = Ay — 0519714, then from the
distribution (9) and the distribution nQy, ~ Wy_g(n — ¢, s21), we have (1- a)
confidence region for D:

(p—q)n+T7)
Nn—p+1) ?

(€= DYQ3(C = D)< F, (14)

where £, indicates (1 — a)-th quantile of F-distribution with (p—¢) and (n —p+1)
degrees of frecedom. In addition to the inequality, a generalization of the Cauchy-
Schwarz inequality(cf. Anderson, 1984) gives, for all nonnull v,

~

| Y(C = D) | < {¥ sy (C— DYQ7L(C — D)2 (15)

Using this inequality to the equation (14) and noticing that Tq2 = NZ{Ql‘llZl, we
have the result. &

It should be observed from (1) that if we had known ¥, = ¥,, we would have
used Rao’s F-statistic with (p — ¢) and (2N — p — 1) degrees of freedom; thus we
have lost N — | degrees of freedom in constructing the test and the simultaneous
confidence intervals which are independent of the two covariance matrices. On the
other hand, when we know ¥} # ¥,, we may need a test statistic which takes into
account the heterogeneity of the two covariance matrices, and it would be better to
use the test statistic rather than the one independent of the two covariance matrices.
The followings derive a test statistic for this consideration.

3.2. An Approximate Procedure

Suppose X (1) and X(2) are the sample mean vectors and S; and S; the sample
covariance matrices of random sample of equal size N = N, = N respectively from
two independent multivariate normal populations II; ~ Np(p:, i), @ = 1,2, where
¥y # sy, Then

Vo= X(1) - X(2) ~ Np(A, ), (16)

where @ = ¥+ ¥,, and A = p; — po, independently of O = (S1 + S2) which
is a sum of Wishart distributions with different scale matrix. Using the second
mornent approximation by Nel and van del Merwe(1986), the sumn of different scale
matrix Wishart distributions have following approximate distribution:
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O~ Wi (f9), (17)

that is the random matrix fQ" is approximately distributed as Wishart distribution
with its scale matrix 2 and f degrees of freedom, where

f= (N =D{tr[Q% + tr*[Q]}/ {tr[S] + B2 + tr?[S,] + tr2[S,]). (18)

In practice we will replace ¥; by S; in (18). Let Y, A,Q, and O* are partitioned as
Y = (}71,7 )72,)17 A = (A117A/2)la Sl = {sz}7 Q* = {Q:J}’ 1”] = 1’27
where Y] and A, are of order gxl and €, and Qu are of order gxq. The approxi-

mation of Hotelling’s 77 statistics based upon ¥ and the one based on only Y, are
respectively denoted by

U? = NY'QU'Y and U? = NY/QT'Y

p

with noncentrality parameters A> = NA'Q™'A and Ay = NAQG AL

Theorem 5. Under the hypothesis H: a, = 0 the statistic:

g NG = OO V)5 (Y - O 5TV (f - p+ 1)
3 - _,A* 1 ° (19)
(f + NI Yl)( —q)

is approximately distributed as the central F- distribution with (p—¢) and (f=p+1)
degrees of freedom.

Proof. Using the similar proof in Lemma 3, conditional on U? being fixed, we
see that

Y= 9 iy, — 0 Yy 372 (Y — 2, 05 ) (20)

U‘222.1 = ﬂle?A

is an approximate Hotelling’s 7% based on f—q degrees of freedom with noncentrality
parameter
I

Aoq = m/—fN(A — 00 Q7 A Q55 (D2 — QA (21)

Using the relations

U2=U2 + N(Y, — 00y ) (Vs —Q;]Q;;lﬁ)
A= A0 N(A = QA1) 05, (Ds — 905 Ay,
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and
UL, = (ff ;Lj’; (U2 — U, (22)
Nps = WM; ), (23)

we have, when ag = 0 which is equivalent to M = M, a statistic
f—p+1
(p—a)(f—q)

follows approximate F-distribution with (p — ¢) and (f — p+ 1) degrees of freedom,
and it is independent of U(f. &

F; o= U§2.1

Thus the hypothesis is accepted when F3 < F,, where Pr(F; < F, | H) =
Il — «. It may be noted that (f — p + 1) need not be integer. But this does not
cause any difficulty in consulting a table of significant values of the test statistic.
Moreover, from the similar proof of Corollary 1, approximate (1 — &) simultaneous
confidence intervals associated with the above approximate procedure are

| 7'(Yz — Q%QT#Z SEAY; + QuQiA) | <
{Fo v Qpuv(p ~ O + NYYQT V) (N(f —p+ 1))}, (24)

for all nonnull ~.

Noticing that for any symmetric positive definite matrices C and D, tr{(C +
DY > tr[C* + D?] and tr2[C + D] > tr?[C] + tr?[D], the degrees of freedom f in
(18) always larger than n. Thus, comparing to the exact procedure, the approximate
procedure can save the degrees of freedom for testing the hypothesis. As indicated
before to calculate the degrees of freedom in (18) we would replace ¥; by S; ¢ = 1, 2.
Thus exact power function of the test based upon Fj is not available. Such that
power comparison of the tests based upon F; and Fj needs a simulation study.

4. PERFORMANCE OF TESTS ON SIMULATED DATA

The statistics £, and F3 are derived to test the null hypothesis(H) that discrim-
inant variables x ,,,... 2, contribute no discriminatory power in heterogeneous
discriminant analysis. However, as in the stepwise procedure, an important applica-
tion of these tests occurs with ¢ = p — |, that is when we are testing the importance
of one discriminant variable once all the other discriminant variables have been taken
into account. For this reason, we confine our simulation study to the case where
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g = p—1, that is testing whether one discriminant variable may be dropped without
affecting the overall discriminatory power.

For tabulating the powers of the tests for H based on £, Fy and Fj3, the fol-
lowing procedure was adopted. To put the problem into canonical form, we made a
transformation(see, Gilbert, 1969) so that pu, =0, gy = v, ¥y =1,,and £, = A, a
diagonal matrix. The parameters involved are the p elements of v; the p elements
of A; N and p, an uncomfortable total of 2p 4 2 parameters. Thus we simplified the

parameter structure by setting A = diag{A,..., A\, A+ 1 }, and i-th element of v as
v, = (=1)y*12, ¢ =1,...,p— 1. The last component v, is adjusted according to
various quantities of & = A, — 0,0, A (see, Lemma 1). For each set of values

N, p, p1, p2, Xy and E,, 200 different pairs of samples were generated by SAS/IML.
Then, using Fy. F3, and Fjy , 0(z.e. & = 0)
which states that the p-th discriminant variable z, do not make any contribution
for the discrimination. Table 1 gives the empirical significance level for each test.
All tests were conducted at o = .05 level of significance.

we tested the null hypothesis H: a, =

Table 1. Empirical Significance Level of The Tests Based Upon
Fy, Fy and F3 with £ =0

N =10 N =20 N =50
p Ak F, £y Fy £y F3 Fy F, F3
2 1.095 .050 .030 | .090 .055 .025|.070 .045 .025
3 5 (.106 .045 .040 | .110 .060 .045|.075 .045 .040
10 | .120 .055 .045 | .130 .065 .050 |.075 .050 .050
2 1.096 .050 .005|.070 .060 .010 |{.090 .055 .025
9 o |.145 .060 .025 | .115 .050 .035|.110 .065 .045
10 {170 .055 .025 | .120 .055 .050 | .115 .050 .045
2 1. 115 085 .005|.060 .040 .010|.070 .055 .015
T 5 | .175 095 020 | .110 .050 .015 | .120 .055 .020
10| .330 .185 .030 |.125 .035 .015].110 .050 .030

The following are noted from Table 1: (i) Rao’s test based on F; has empirical
significance level which, in each case, larger than .05, and hence it is not adequate
for the variables selection criterion for the LDF in heteroscedastic two group dis-
crimination case. (ii) For the exact test based upon F,, empirical significance level
is around .05, but for the cases with N = 10 and p = 7, even considering for the
sampling variations, the empirical significance levels are considerably larger than
.05. Thus we can conjecture that the large values are due to inadequate pairing of
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the independent samples which reduces sizable information obtained by data. (iii)
In each case, empirical significance level for the test based on Fj is less than that
based on F,. Moreover it is less than the significance level a = .05. Table 2 is given
for comparing the powers of tests based on F, and F3 for p = 3.

Table 2. Empirical Powers Of Tests Based Upon F> and F3 For Testing
H: a, =0 (z.e. £ =0) Against Simple Alternative Hypothesis at a = .05

Values of ¢
N A 0.1 0.5 1.0 1.5 2.0 2.5 3.0 5.0

[\

060 070 130 235 330 440  .585  .915
(.055) (.070) (.175) (.330) (.520) (.715) (.820) (.980)
055 065 120 .195 285 370 510  .845
(.060) (.070) (.115) (.230) (.365) (.500) (.625) (.940)
10|.060 065 .095 .140 235 325 400  .765
(.055) (.065) (.080) (.160) (.265) (.360) (.460) (.830)

10

<t

Q]

080 110 210 435 660 775  .885  .995
(.075) (.160) (.360) (.635) (.875) (.850) (.965) (1.00)
20 5 |.080 .085 220 375 530 725  .825  .995
(.085) (.130) (.260) (.435) (.695) (.830) (.920) (1.00)
10].075 090 195 305 435 585 749 985
(.080) (.100) (.230) (.320) (.490) (.670) (.810) (.990)

2 |.040 160 465 .825 965 995 1.00  1.00
(.065) (.215) (.700) (.950) (.990) (1.00) (1.00) (1.00)
50 5 |.045 115 405 .745 935 980  .995  1.00
(.045) (.155) (.520) (.840) (.965) (.995) (1.00) (1.00)
10 |.040 105 335 610 .868 950  .995  1.00
(.045) (.125) (.355) (.705) (.908) (.955) (.990) (1.00)

Note: The values in parentheses denote the powers of the test based upon F3,
and the other values tabulated in the upper space are those based on F.

The following observations may be made from Table 2: (i) Generally the test
based on Fj seem to have more power than that based on F,. (ii) As deviations
from the null hypothesis become larger, when the value of ¢ is far apart from 0, the
powers of the test based on F3 seem to exceed those of the test based on F; and this
phenomenon becomes more clear for moderate and large sample sizes. (iii) Finally,
as the distance between two populations become larger(in other words, as the value
of A decreases), the two tests tend to have better powers.
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5. CONCLUDING REMARKS

In this paper we have given two test statistics which can be used as criteria for the
variables selection on Fisher’s LDF constructed under two unequal covariance matri-
ces case. It is shown that the exact and an approximate test statistics respectively
follow exact and approximate F-distribution under the null hypothesis that some
randomly selected coefficients in the LDF are zero. The approximate test statistic
may be considered as a generalization of Rao’s test statistic in a sense that, when
¥, = ¥,, the proposed test statistic (19) reduces to the Rao’s test statistic defined
in (1). Limited but informative sampling experiments show that the approximate
test statistic generally gives more powerful test than that based upon the exact test
statistic. Our study was confined to the case of two group discriminant analysis
with equal training sample size. Thus the issues of more developments pertaining
to the unequal sample size and the multiple group discriminant analysis are clearly
needed and left for continuing study.
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