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A Note on Eigen Transformation
of a Correlation-type Random Matrix
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ABSTRACT

It is well known that distribution of functions of eigen values and vectors of
a certain matrix plays an important role in multivariate analysis. This paper
deals with the transformation of a correlation-type random matrix to its eigen
values and vectors. Properties of the transformation are also considered. The
results obtained are applied to express the joint distribution of eigen values
and vectors of the correlation matrix when sample is taken from a m-variate
spherical distribution.

KEYWORDS: FEigen transformation, Exterior product, Spherical distribu-
tion, Correlation-type random matrix, James’ approach to Jacobian.

1. INTRODUCTION

Distribution problems in multivariate analysis are often related to those of eigen
values and/or vectors of a certain random matrix. A variety of exact distributional
results on the eigen system are easily found when dealing with Wishart(or sample
covariance) matrix. However sample correlation matrix produces no such results,
mainly due to the difficulty in deriving Jacobian of the corresponding eigen transfor-
mation (see Scheunemeyer & Lucantoni,1978). Specifically the complication comes
from the fact that correlation matrix has 1 in the diagonal, causing some constraints
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on its assoclated eigen values and vectors. In this paper, we define a correlation-type
random matrix, consider characteristics of its eigen tranformation, and finally obtain
the Jacobian of it using James’ approach(James,1954). The results will be useful
to obtain the joint distribution of eigen values and vectors of the correlation-type
random matrix.

2. EIGEN TRANSFORMATION OF THE
CORRELATION-TYPE RANDOM MATRIX

A correlation-type random matrix is defined as follow.

Definition 1. A real mn X m symmetric nonsingular matrix is a correlation-type
random matrix, denoted by R = (r,;), if it has fixed constants in the diagonal and
random elements in the off-diagonal. That is,

forz,7 =1,2,---,m,

¢; if 1 =7, constant ¢
Tz'j = r

i # (2.1)

Jt

Thus the usual correlation or similarity matrix would be considered as a typical
form of the R.

2.1 Characteristics of the eigen-transformation of R
Consider the following spectral decomposition of R

R=HLH' (2.2)
where L = diag(ly,l3, -, 1) is a diagonal matrix of the eigen values of R with ; as
the j** diagonal element, and H = (hi;) = (hy hy --- h,,) is an orthogonal matrix
of the eigen vectors h; associated with {;, j = 1,2,---,m. Now we can let, without

loss of generality, that {; < I, < --- <, be the ordered eigen values of R since the
probability that any eigen values of R are equal is zero. Note that the sum of all
eigen values of R is set to a fixed value, ie. 7, [; = 57 ¢;.

To explain some dimensional properties of this eigen transformation, let’s define
the following spaces. For R, L and H given in (2.1) and (2.2),
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S..(R|() = {R | R has common constants ¢;, ¢z, -, ¢n in the diagonal}
S,.(R|L.C) ={R]|ReS,(R|C), and R has common eigen values [;'s ,

p=1,---,m}
S(L|C) ={L| ¥, l; = ¥, ¢ for given constants c1,¢z, ", ¢m}
S,.(H | L,C) ={H € O(m), the orthogonal group of order m | 7o, ;A% = ¢
for given s and ¢s, ¢,j = 1,2,---,m} (2.3)

Then the random elements of those matrices R € S,,(R | C), R € S,.(R | L,C),
L € S,,(L | (), and the constrained manifold H € S,,(H | L,C) can be regarded
as the coordinates of a point on a m(m — 1)/2, (m — 1)(m — 2)/2, (m —1), and
(m — 1)(m — 2)/2 dimensional surface in Euclidean m?-space, respectively.
Furthermore we note the following characteristics of the transformation. If L 1s
fixed, the transformation in (2.2) is equivalent to the transformation of S,,(R | L,C)
— S,(H | L,C). And, for R € S,(R | C) the transformation in (2.2) can be
expressed as the union of S,,(H|L,C) over all partitions L € S,,(L|C). That is, the
transformation becomes S,,(R | C) — Swm(H, L | C) = ULes,.@wic) Sm(H | L, C).
This transformation is not, however, one-to-one correspondence since R deter-
mines 2™ matrices of H such as H = (£h; £ h, --- £ h,) which satisfies (2.2)
unless we impose some constraints, e.g. the first element in each column of H be non-
negative. This restricts the range of H (as R varies) to a 27™th part of S,,(H | L, C).
Hence when we make the transformation R to (L, H), and integrate it with respect
to the total differential over H € S,,(H | L,C), the result should be divided by 2™.

2.2 Exterior products of R and (L, H)
Partition L and H as follows:

H = (H, hy,) L:(Lol l(:) (2.4)

where H,, a submatrix of H, consists of the first (m — 1) columns of H, and L, is
the first (m — 1) x (m — 1) subdiagonal matrix of L. Then we have

R =HLH

= f[]LlH{ + l.,,L hm h:n (25)

If we differentiate both sides of (2.5), premultiply Hj, and postmultiply H; on dR,
we have

H{(dR)H, = H{(dH )L, + (dL,) — LiH{(dH,) (2.6)
since H|(dH,) = —(dH{)H,, a skew-symmetric matrix.

Since the typical (i, j)"element of the RHS of (2.6) is
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di; for ¢ = y, 57
(I ~ t)h{(dh,) fori# ), i,j =12, m— 1, (2.7)

the corresponding exterior product is simply given by

m—1 m—1 m—1
< H{(dH\) Ly + (dLy) = LyH{(dH,) > = T] (4, = 1)~ A (dh)- A hi(dh;) (2.8)
> =1 >t

where the symbol < d.X > denotes the exterior product of the distinct elements of
dX, and A denotes the corresponding “wedge” product.

On the other hand, the exterior product of the LHS of (2.6) is rather complicate.
First, it is easy to see that the (7,7)" element of H|(dR)H, can be written as

(H;(dR)H Z paht(dry,), hi=1,2,--,(m—1) (2.9)

P>y
where pohi; = hyihgy + hyjhy  for m—1>i>7>1, m>p>qg>1.

Hence the exterior product of symmetric H{(dR)H, becomes

m—1 m
< H{(dR)H; > = A Y , h(dr,,) (2.10)
i>5 P>y
Now for p = 2,3,---.m, + = 1,2, ;e — 1, let 4, 1, be a matrix of size
(p—1)x17 with pqhu as Lhe (q, ])‘h elemcnt and let Yp_14 1tself be the (p—1,7)t
submatrix of a matrix W, which is of size (m(m — l)/2) x (m(m — 1)/2). That is,
plhzl p1h12 o plh'ij e plhii
Yp—1, = pehi1 pehla2 T pohi; T pahti; (2.11)
p,p—lhil p,p—lhi2 e p,p—lhij e p,p—lhii
and
(I (AP} T i T Y1,m-1
v = 1/)p—1,1 1/);;—1‘2 "/’p—l,z’ 1/’p—1,m—1 - (2~12)

wm—l,l '(/)m—l,Q et "/)m—l,i Tt ’d)m—l,m—l

Let dr = (dry; : dr3; drsg - -+ : dry dryy - - dri; 1 1drpy drps - - drmm-1) ,
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a (m(m —1)/2) x 1 column vector of differentials. It is actually a vector of rolled-out
lower half elements of dR . Then we have the following two lemmas.

Lemma 1. The exterior product of H,(dR)H,

< HI(dR)H, > = < W'(dr) > = det(¥) 7\(dr,,q) (2.13)

P>q

Proof. By Farrel’s(1985) lemma 6.2.10.

Lemma 2.

m

det(w) = 271 J] det(H,(~1)) (2.14)

where H (—i) is a matrix of size (rn — 1) x (m — 1) formed from H; with its it
row deleted.

Proof. By mathematical inductions.

By combining the above two lemmas, the exterior product of H{(dR)H, becomes

< HI(dR)H, > = 2™7'. ﬁdet(Hl(—z’)) K(drpq). (2.15)
: p>q

As a consequence of (2.8) and (2.15), we have the following theorem which provides
a relationship between exterior products on both sides of (2.6).

Theorem 3.
N (dry) = o Cle /i /_\1 hi(dh;) (2.16)
oy Pq )m ]Hm det( ) oy 2 J

This result obviously plays a central role in obtaining the Jacobian of the eigen
transformation (2.2) of R.

3. APPLICATIONS

As an application we have the following expression for the joint distribution of
(L,H) from R. Let f(R)dR be the density of R. Then the joint density of (L,H)
is given by, directly from (2.16),



344 Keeyoung Kim and Kwangjin Lee

I3 (L — &) R JVQWYKEWm) o)
om-~1 HT—.] det(Hl(—'l)) » R=HLH', g i j i

1=1 >

where f(R)|r=prn stands for the density function of R with R being replaced by
HLH'.

Suppose N-dimensional m random vectors, Yi, Yy, -+, Y, are all independent
where Y; has an N-variate spherical distribution with P(Y; = 0) = 0 for all : =
1,2,---,m. Then the density function of the sample correlation matrix R of Y:’s

(Murhead, 1982) is given by

m

e(n, m)[det(R)| """ 1/2 A (dry,) (3.2)

p>q

where n = N — 1, multivariate gamma function 'y, (a) = ™™=/ [T™ T'(a — (i —
1)/2), and ¢(n,m) = [I'(n/2)]"/I",,(n/2). For this special case, the joint distribution
of (H, L) can be expressed as

cn,m m-l -1 . m-1 m—1
f‘%ﬂHMm—ZmF‘W”H@_MAmJ
m=1) e i=1 3> i=1
1 m—1

{ A hi(dh;)} (3.3)

[TZ, det(H1(—2)) J5,

REMARKS

(1) It is easy to show that det(H,(—¢)) = (—1)"*'h,,,. Hence [T, det(H,(—i))
in (3.3) can be written as the product of all elements in the last column of H.

(2) We need to intergrate out terms associated with H; over the mainfold
Sn(H | L,C) in (3.3) if it is desired to obtain a marginal distribution of the eigen-
values, L. However the intergration

1 m—1

_— h'(dh;
/Sm(H|LvC)H;T;1h /\ bildh;)

mi o5

seems to be increasingly difficult simply because of the complicated integrating re-
gion in S, (H | L,C). No futher development, unfortunately, is provided.
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(3) When sample is taken from a bivariate normal distribution (m = 2), the
null density function of {; for a correlation matrix under the hypothesis of internal
independence is given by using (3.3)

I'(n/2)
T(1/2)0((n - 1)/2)

(2 = 1))™3241,

Here we do not need to consider the integration over S,,(H | L,C') since the corre-
sponding L and H are, for this special case of m = 2, as follows.

(o 204)
“\o 2-4

H=<1 1)/\/2

1 -1

n= (1)1

1
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